• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pushing the limits of existing plasma focus towards 1016 fusion neutrons with Q=0.01

    2022-11-17 02:59:30SingLEE
    Plasma Science and Technology 2022年11期

    Sing LEE

    1 Institute for Plasma Focus Studies,32 Oakpark Drive,Chadstone VIC3148,Australia

    2 Physics Department,University of Malaya,Kuala Lumpur 50603,Malaysia

    3 INTI International University,Nilai 71800,Malaysia

    4 Fuse Energy Technologies,Napierville QC J0J 1L0,Canada

    Abstract Existing conventional megajoule plasma focus machines with 2-3 MA are producing fusion neutron yields of several times 1011 in deuterium operation,the fusion yields predominantly being the beam-gas target.Increasing the current to 10 MA and using 50%-50% D-T mixture will scale the neutron yield towards 1016 D-T fusion neutrons.In this work,we derive the Lawson criterion for plasma focus devices with a beam-target fusion neutron mechanism,so that we may glimpse what future technological advancements are needed for a break-even Q=1 plasma focus.We perform numerical experiments with a present-day feasible 0.9 MV,8.1 MJ,11 MA machine operating in 100 Torr in 50%-50% D-T mixture.The Lee Code simulation gives a detailed description of the plasma focus dynamics through each phase,and provides plasma and yield parameters which show that out of 1.1×1019 fast beam ions produced in the plasma focus pinch,only 1.24×1014 ions take part in beam-target fusion reactions within the pinch,producing the same number of D-T neutrons.The remnant beam ions,numbering at least 1019,exit the focus pinch at 1.9 MeV,which is far above the 115 keV ion energy necessary for an optimum beam-target cross-section.We propose to regain the lost fusion rates by using a high-pressure D-T-filled drift-tube to attenuate the energy of the remnant beam ions until they reach the energy for the optimum fusion cross-section.Such a fusion enhancement tube would further harvest beam-target fusion reactions by increasing the interaction path length(1 m)at increased interaction density(6 atm).A gain factor of 300 is conservatively estimated,with a final yield of 3.7×1016 D-T neutrons carrying kinetic energy of 83.6 kJ,demonstrating Q=0.01.

    Keywords:plasma focus simulation,neutron enhancement,fusion harvester,plasma focus

    1.Introduction

    Current plasma focus(PF)machines for research on conventional megaampere(MA)include the PF1000[1,2]and the NIR(neutron imaging radiography)[3],both operating around the 2-2.5 MA level.The PF1000 is a 40 kV,1332 mF machine with 1 MJ at full voltage operated for the International Centre for Dense Magnetized Plasmas(ICDMP)in Poland.The NIR at Lawrence Livermore National Laboratory,USA,is a 1 MJ machine operating at up to 100 kV with four parallel modules of Marx generators,with currents at the level of 2.5 MA.According to plasma focus scaling of D-D neutron yield[4,5],Yn=1.8×1010(Ipeak)3.8(Ipeakin MA).This scaling was derived on the basis of numerical experiments using the Lee Code over a range of peak discharge currentIpeakof 0.3-5.7 MA.Similarly,experimental results from 50 kA to almost 3 MA produce a scaling law ofYn=8×109(Ipeak)4.4[6].The PF1000[1]reports that its good shots have neutron yields around several times 1011,whilst the NIR reports[3]best yields of 3.8×1011.Both these yields are in agreement with both scaling laws,which giveYnin the range of(2.5-6)×1011(numerically derived scaling law given above)and(1.7-4.5)×1011(experimentally derived scaling law given above),respectively.On the other hand,the HAWK plasma focus at the Naval Research Laboratory,USA,uses a 640 kV high inductance(607 nH 150 mW,stiff)current source to power an injected plasma upstream of an on-axis gas puff,producing 5×1010D-D neutrons at 0.67 MA[6,7].This yield is 13 times and 37 times in excess of that produced by a conventional dense plasma focus(DPF)according to the above-mentioned(Ipeak)3.8scaling and(Ipeak)4.4scaling,respectively.A five times enhancement(energy-based comparison)in neutron yield was observed for SPEED 1[8],which also used a highvoltage stiff(160 mW)current source.The energy-based comparison of HAWK with PF1000[6]shows a similar enhancement factor.It may be postulated that the high impedance of the current source reduces the drop in the current(current dip)during the pinch phase.This reduction is responsible for much of the enhancement.The method of mass delivery of HAWK gives better control and is reported to eliminate trailing mass and restrikes,thus enabling 100%current delivery to the pinch.The use of increasingly higher voltages[3,6,7]with designed high bank impedance and new methods of mass delivery[6]represent innovative approaches and new interest from the leading large laboratories.This concerted effort of these and other large laboratories may be expected to overcome the problem of the socalled neutron saturation in plasma focus.The problem of an apparent neutron limit was summarized in 2012 by Struve and Freeman[9],with data showing that the Los Alamos National Laboratory DPF 6.5 reached 2×1012D-D neutrons,a number which seemed unsurpassable and which was claimed by Nikulin and Polukhin[10]in 2007 as due to neutron saturation imposed by the need to increase anode length with increasing capacitance.Lee[11],in 2009,showed that the Nikulin and Polukhin scenario was erroneous and that the current and neutron‘saturation’was a misnomer for current and neutron scaling deterioration.Numerical experiments using the Lee Code further suggest that,to progress experiments to higher currents,it is advantageous[4,5,11]to go to higher voltages,rather than to try to increase the current by simply increasing the bank capacitance.This is because the speed of the plasma focus current sheath constitutes a‘dynamic’resistance of several mW during the rise of the discharge current.This resistance is beginning to dominate the total circuit impedance,so that the reduction of bank impedance by increasing the already very large bank capacitance leads to a situation of diminishing returns,resulting in a deteriorating scaling of the current.Thus,at several MA,a voltage of 100 kV may be efficient but,at 10 MA,1 MV may be advantageous.Nikulin and Polukhin[10]also pointed out the advantages of higher voltages.The experience of SPEED 2[12]suggested that at 300 kV an upper limit to sheath energy density caused sheath destruction,prevention of which required an additional surface irradiation conditioning process or an artificially coppered insulator surface.The gas puff and gas injection methods of HAWK[6]appear to have eliminated not just such insulator problems but also the re-strike problems[3]associated with trailing mass that plague conventional plasma focus machines.Thus,it appears that high voltages approaching MV may be feasible and should be the basis in our quest to develop bigger plasma focus machines.To envisage what the direction could be,we derive the Lawson criterion[13]for the plasma focus.In this derivation it is necessary to start with the fusion mechanism.The first question that needs to be asked is whether the fusion mechanism in a plasma focus is the beam-gas target or thermonuclear.

    It is now known with certainty that plasma focus machines,from small sub-kJ to large MJ devices,all operate with the same speed factors,resulting in axial speeds of around 10 cm μs-1and radial speeds around 20-30 cm μs-1;the wider range of radial speeds are due to the range of the radius ratioc=b/a,wherebis the cathode radius andais the anode radius[5,14].Such speeds induce voltages ofIdL/dt(whereLis the tube inductance andIis the tube current)that is easily computed to be in the range of tens to hundreds of kV.The induced voltages are largest when the current sheath is compressed by its own magnetic field to a small radius in the radial phase.These high inductive voltages accelerate the beam ions to tens and hundreds of keV and beyond.A comprehensive review of the experimental evidence,on neutron production mechanisms[2]in experiments performed in plasma focus machines world-wide,clearly shows the properties and the dominance of these fast beam ions on the neutron production processes in the plasma focus pinch.On the other hand,the kinetic energies associated with the highly supersonic plasma sheaths are shown to generate temperatures in the stagnated pinched regions of less than 0.5 keV.To show the stark contrast between observed beam ion energies and plasma temperatures within the context of fusion mechanisms,figures 1 and 2 represent a good visual summary.Figures 1 and 2 relate the observed plasma focus beam ion energies to the beam-gas target fusion cross-sections σ[15,16]and,respectively,the observed focus pinch temperatures to the thermonuclear fusion reactivity〈σv〉[15,16].

    Figure 1.The D-D beam-gas target fusion cross-section σ in cm2.

    Figure 2.D-D fusion reactivity〈σv〉in cm3 s-1 for thermonuclear fusion.

    Figures 1 and 2 contrast that the plasma focus beam ions have energies near the optimum of the D-D beam-gas target fusion cross-sections,whereas the plasma focus plasma temperatures are so low that the fusion reactivity〈σv〉are 8 to 14 orders of magnitude below the optimum thermonuclear cross-section.Moreover,the bigger plasma focus machines,for example PF1000 and NIR,have lower radial speeds due to their smaller values of the cathode to anode radius ratioc,typically 1.5 compared with small PFs,which tend to havecabout 3.Therefore,the bigger PFs have gross pinch temperatures close to 0.1 keV.Experiments have suggested that instabilities in pinches[17]may further inject energy from the magnetic fields into the plasma to the extent of 3 to 4 times that of the kinetic energies.This still does not alter the situation significantly.Thus,from energy considerations,conventional plasma focus machines are cold from a thermonuclear fusion point of view.Whilst these remarks may not apply to composite(hybrid)Z-pinches such as magnetized linear inertial fusion(MAGLIF)it must be noted that those composite systems invariably require a two-step process,which can be designed to lead to superior end-point compressions and temperatures[18].For conventional,even highvoltage,plasma focus machines,there is no escaping the fact that the gross pinch is cold from a thermonuclear point of view.The fusion cross-sections for D-T have the same general features as D-D,but the values of the cross-sections are generally 100 times bigger.Therefore,plasma focus machines operating in D-T also produce fusion neutrons through the beam-gas target mechanism.Hence,to derive the Lawson criterion[13]for plasma focus machines,we use the beamgas target fusion mechanism.

    Figure 3.The value of the beam-target cross-section parameter σ/U1/2 versus U for D-T:σ is in cm-2.Note:the optimum value of σ/U1/2 is found to be 5×10-25 cm2 keV-0.5 at beam energy U of 115 keV.

    Figure 4.The discharge current and scaled tube voltage(×10)of DPFQ0.01.

    2.Lawson criterion for beam-gas target PF

    2.1.Developing the Lawson criterion

    We ask the question:how many D-T neutrons(from beamtarget)do we get per unit pinch energy?Modelling by the Lee Code[2,5,19,20]provides the number of beam-target neutrons[21,22]as follows:

    whereIpinchis the current flowing through the pinch at the start of the slow compression phase;rpandzpare the pinch radius and length at the end of that phase;andniis the pinch ion density.Here,Cnis a constant which,in practice,we had calibrated with an experimental point.Here,all the quantities are in SI units(unless otherwise stated)with the beam ion energyU=3Vmax(Vmaxis the maximum induced tube voltage)in keV and the constantCn=1.4×107(a calibrated value)[21,22].The pinch energy[23]at temperatureTis

    wherek=Boltzmann constant,γ=specific heat ratio=5/3,andZeff=1(for fully ionized D-T plasma).

    We assume an equilibrium pinch,equate the confining magnetic pressure to the hydrostatic plasma pressure and we use:

    We divideYb-tbyEpinch,replacinginYb-twith the RHS of equation(3),and we get the required number of beamtarget neutrons per unit pinch energy.Note:((ln(b/rp))~2 andzp~1.4afor a fully ionized hollow anode DPF[24,25],whereais the anode radius.

    Thus,as a first step we obtain the general scaling for the number of D-T DPF beam-target neutrons

    This general scaling stipulates that the number of beam-target neutrons depends on the pinch ion density,the anode radiusaand the energy of the D-T beam ions through the fusion crosssection parameter[σ/U1/2].

    Table 1.The machine configuration of the 1 m PF at 1.2 MV 6 atm D-T operation for DPFQ1.

    Using the optimum value of σ/U1/2(see figure 3),we obtain the optimized scaling as:

    A D-T neutron has energy of 14.1 MeV,i.e.2.26×10-12J.By conservatively estimating thatEpinch~10% of the stored energyE0,then we may take the throughput ratio

    ForQ>1(i.e.better than break-even)

    This may be taken as the equivalent Lawson criterion for the PF.

    2.2.An example

    As an example,we take:a=1 m then forQ>1

    ni>1.7 ×1026m-3(at optimum beam energy of 115 keV)

    (i.e.6 atm of fill pressure is sufficient for break-even,allowing for 50% particle loss from pinch).

    We ran several series of numerical experiments witha=1 m at 4000 Torr.We concluded with the following configuration,shown in table 1.

    The required peak current is 350 MA,and the break-even point(DPFQ1)requires extreme conditions,far beyond what is technologically proven in present-generation DPF machines.For example,the highest pressure that DPFs have been operated at is not much more than 50 Torr[26,27],less than 0.1 atm.Not least among the problems of operating at such high pressures is the localization of currents,leading to sparks and filaments causing asymmetry and breakup of the current sheet.The discharge of currents of the order of 10 MA and more is found to be associated with electrode damage.This indeed threatens the integrity of the whole structure and diagnostic accessories since the explosive powers of the submicrosecond transfer of just multi-megajoule between parts of the system exceed that of exploding dynamite sticks within the confines of the system.The structural engineering of suchlarge plasma focus systems is itself a formidable task,as would be experienced in MAGLIF experiments[28,29].

    Table 2.The machine configuration[5,14,19]of DPFQ0.01:a=15 cm,at 0.9 MV,100 Torr D-T.

    We note that this example ofQ=1 plasma focus is based on a single-step compression.It was shown from conservation of energy and momentum that in inertial fusion schemes,a two-step compression is much more efficient[18,30]than a single-pulse compression.For example,the MAGLIF concept[28,29]uses a laser to provide the first stage of heating,a liner capsule and high current compression as second stage compression,with simulated break-even at about 60 MA.We have shown that a plasma focus operated with a current step[31]achieves much improved efficiency in terms of neutron yield per unit stored energy.It is expected that an improved two-stage scheme coupled with a method to trap some of the remnant fast beam ions(to be discussed below)would further lower the energy and current requirements of the break-even plasma focus to be competitive with other inertial fusion schemes.More work is planned for further simulation of such a two-step or hybrid plasma focus system.

    3.Achievable plasma focus with Q=0.01

    3.1.Proposed configuration

    As an intermediate step towards a DPFQ1 project,a technologically feasible device is proposed-DPFQ0.01 to reachQ~0.01.Linear Transformer Driver LTD technology is progressing towards efficient and reliable implementation at the MV level[32-34],and can be adapted for this configuration.The bank and tube parameters are given in table 2.These parameters were decided upon after numerous runs using the Lee Code discussed below.It is pertinent to note that even this technologically feasible device would still operate at 8 MJ,with currents of just over 10 MA,and would still present formidable challenges of proper current sheath formation and the engineering of the anode and structural integrity mentioned above.

    3.2.Simulation and results

    3.2.1.Description of the LEE Code.The Lee Code is a widely used radiation-coupled code[2,5,14,19]for simulating the plasma focus in various gases,including H2,He,N2,Ne,Ar,Kr,Xe,D2and D-T mixtures.It divides the plasma focus dynamics into five sub-phases,namely the axial phase,the radial inward shock phase,the reflected shock phase,the slow compression pinch phase and the expanded column post-pinch phase.The axial phase uses a snow-plow model,simply for time-matching purposes.The radial inward shock phase uses a slug model separating the magnetic piston from the shock front,and incorporates the all-important signal delay between the current sheath and shock front,as does the reflected shock phase.The pinch phase uses a radiationcoupled equation producing soft x-ray(SXR)yields in neon and nitrogen that agree with measured values,and demonstrates realistic effects of radiative cooling and radiative collapse when operated in the noble gases[23].In each phase,the equation(s)of motion are coupled to the circuit equation.Thermodynamics is implemented in the equations of motion.In the formulation,energy,charge,mass and momentum conservation is carefully maintained.Inductive voltages are considered as the driver of the observed fast ion beams.Realistic simulations are achieved for axial and radial dynamics[35],fast ion beams[36]and relativistic electron beams[37],and post-pinch fast plasma flows[38],with all these having been verified against experimental measurements.The simulated neutron yields in D and D-T have been compared extensively with experimental measurements in various machines,most recently by Marciniaket alin the Polish machine PF-24[39],with wider agreement than achievable by any other codes[2,5].The code has been used in planning and designing machines,for diagnostic references and for predicting yields of SXR,fast beam ions,plasma flows and fusion neutrons[2,5].Scaling laws and insights have been developed using this code[2,5,14,20-23].The scaling has been verified from sub-kJ machines to the MJ PF1000,particularly for neutron yield in terms of anode radius and discharge currents[2,5].The general and specific verification of this code has been reviewed recently by the ICDMP[2].Recent use of the code includes developing the concept of thermalization of the plasma focus using a tapered anode which,by increasing the value of(I/a)in the tapered pinch,increases the temperature of the focus pinch,for the pinch to transition from a beam-target fusion source to one of a thermonuclear fusion source[40,41].By adjusting the taper ratio,the pinch temperature is tunable up to 200 keV,sufficient for aneutronic fusion applications[27,42].

    3.2.2.Simulation results.The Lee Code was run with the configuration of table 2.The main results for DPFQ0.01 are summarized in table 3.The simulated current and voltage waveforms are shown in figure 4.The current sheath accelerates along the axial phase,reaching a speed of 8 cm μs-1with a current rising to 9 MA,at the end of the axial phase at 1.18 μs.As the current sheath transitions into the radial phase the current continues rising,until a peak current of 11.1 MA is reached at 1.9 μs.The current then starts to drop and reaches 9.8 MA at 2.32 μs,as the radially inwardmoving shock wave hits the axis 30 ns after reaching a peak speed of 19.4 cm μs-1,starting the reflected shock phase.Meanwhile,the current sheath,portrayed as a magnetic piston in the code,reaches a peak speed of 12.7 cm μs-1,200 ns before the inward radial shock hits the axis,and slows rapidly to 3 cm μs-1,as the radially inward-moving shock hits the axis.The reflected shock wave moves radially outwards at a speed just under 7 cm μs-1and reaches the slowly inwardmoving magnetic piston after another 0.5 μs.The hardly compressing pinch phase lasts 314 ns.The axial phase takes 1.18 μs,whilst the radial phase takes a total period of 1.98 μs.The peak inductive voltage of 635 kV is reached at the time the piston reaches its peak speed,just before the inward radial shock front hits the axis.

    Table 3.The computed properties of DPFQ0.01.

    The axial and radial mass and plasma current factors in table 3 are assumed model parameters based on experience with a range of machines.The radial phase current dip is not as severe as that typically observed in smaller plasma focus machines.This is due to two factors:(a)the large ratioa/z0of value 3 resulting in a relatively long-duration pinch,and(b)the relatively large surge impedance of the capacitor bank.This large surge impedance is made possible by the high voltage and is deliberately designed to minimize the current drop to optimize the energy transfer to the pinch.The voltage spike corresponding to the pinch dynamics peaks at 635 kV.This is an important indicator that is associated with the energy of the fast beam ions accelerated by the plasma focus mechanism.These fast beam ions are responsible for the fusion reactions.The neutrons will be emitted from a plasma pinch with radius of 3.3 cm and length of 22.9 cm.Half the length of the pinch will protrude from the hollow anode and the other half will extend inside the hollow anode.The neutrons are assumed to be emitted nearly isotropically with a small forward bias.

    3.2.3.Discussion of the simulation results.The code computes aQof 3×10-5,with a beam ion energy of 1.9 MeV.This excessively high ion energy has dropped the fusion cross-section parameter[σ/U1/2]by about 100 times from the optimum value(see figure 3).The operational pressure is 100 Torr;therefore,the exit path in the DPF chamber does not attenuate the beam ion energy sufficiently towards the optimum for fusion.The code shows that the number of beam ions available for fusion is 1.1×1019,and only 1.24×1014of those ions have been involved in fusion in the pinch.Hence,there is a remnant beam consisting of at least 1019ions at 1.9 MeV exiting the plasma focus pinch.A suitable fusion-enhancing tube with length of 1 m containing 6 atm D-T gas is proposed to be placed downstream of the plasma focus,to harvest a proportion of this remnant beam for fusion reactions.This high-pressure section is separated from the DPF chamber by a sub-millisecond shutter,which opens momentarily to allow the remnant ion beam to enter this fusion harvest tube.The D-T ions exit the pinch in a beam with divergence around 20 degrees[1,2,36].A beam-shaper with a suitable magnetic field could be designed to reduce the divergence so that a large fraction of the remnant ions travels down the fusion harvest tube.

    Three factors are expected to contribute to the beam-gas target fusion yield of the harvest tube.First,upon traversing the harvest tube,based on consideration of beam attenuation through the high-pressure tube,the remnant beam ion energy drops from above MeV towards 115 keV,the energy for optimum fusion cross-section;thus,σ increases.In figure 3,it is seen that this recovery of σ contributes up to 100 times to the fusion yield of the harvest tube.Second,the number density of the gas serving as a target to the remnant beam ions is 12 times that of the pinch target densityni.Third,the interaction distance of the remnant beam ion is 5 times that of the interaction distance of the beam ions within the pinch lengthzp.From equation(1)it is seen that beam-target interaction is proportional to target density.It may also be shown from the same equation that the beam-target interaction is also proportional to interaction length.In this situation,the above second and third factors will have a contribution proportional to the ratio of the tube density to pinch density multiplied by the ratio of tube interaction to the pinch length.The product of these two factors is 60.This should be confirmed by Monte Carlo N Particle calculations,which are being planned but are outside the scope of this study.In the meantime,we feel confident that the above discussion allows us to conservatively estimate a minimum number of 300 for the enhancement of the fusion harvesting tube,leading to 3.7×1016D-T neutrons carrying kinetic energy of 83.6 kJ.The result is aQ=0.01 device.

    4.Conclusion

    Scaling using a beam-gas target mechanism in the plasma focus suggests that a 1.2 MV,5 atm D-T DPF with a peak current of 350 MA would suffice for break-even at stored capacitor energy of 7 GJ in a device designated as DPFQ1.The required current could be significantly reduced to below 100 MA with a two-step compression design.Even so,a device of such a scale is beyond the present-day capabilities when one considers that the largest currents reported from the biggest national laboratories are far less than 100 MA.A present-day technologically feasible point(DPFQ0.01:900 kV(8 MJ),11 MA,100 Torr withQ~0.01)is proposed for initial tests.The Lee Code is used to find a suitable configuration of such an operational point.The numerical experiments confirm that all the parameters of such a machine are technologically feasible.The simulations also suggest the necessity to add a high-pressure fusion harvest tube[43]to address the problem of excessive remnant beam ions exiting the plasma focus pinch region and to further enhance beamtarget fusion reactions by increasing the interaction path length at increased interaction density.A final yield of 3.7×1016D-T neutrons carrying kinetic energy of 83.6 kJ is conservatively estimated,demonstratingQ=0.01.Detailed computation is planned,to verify and quantify the enhancement mechanisms of the proposed harvest tube.It is important to note that the Lee Code has been tested by comparison with experiments only up to the level of 2.5 MA,12 cm anode radius and 50 Torr.All the results beyond these levels discussed in this paper await the next generation of machines for comparison with experimental results.

    中文字幕av电影在线播放| 色94色欧美一区二区| 亚洲成人av在线免费| 91午夜精品亚洲一区二区三区| 桃花免费在线播放| 日韩欧美精品免费久久| 国产91av在线免费观看| 99国产精品免费福利视频| 欧美精品人与动牲交sv欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 成人综合一区亚洲| 日本黄大片高清| 看非洲黑人一级黄片| 日韩强制内射视频| 水蜜桃什么品种好| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 丰满人妻一区二区三区视频av| 卡戴珊不雅视频在线播放| 在线观看www视频免费| 精品一品国产午夜福利视频| 日韩人妻高清精品专区| 七月丁香在线播放| 久久午夜福利片| 久久久久久久大尺度免费视频| kizo精华| 国产极品天堂在线| 在线观看美女被高潮喷水网站| 免费黄色在线免费观看| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡 | 全区人妻精品视频| 日韩中文字幕视频在线看片| 亚洲精品日本国产第一区| 国产亚洲av片在线观看秒播厂| 三级经典国产精品| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱| 亚洲精品,欧美精品| av天堂久久9| 亚洲精品成人av观看孕妇| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 国产淫片久久久久久久久| 国产日韩欧美在线精品| 久久久久久久久久久久大奶| 色哟哟·www| 夜夜骑夜夜射夜夜干| 丁香六月天网| 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| 久热这里只有精品99| 日韩人妻高清精品专区| 午夜免费鲁丝| 特大巨黑吊av在线直播| 国产av码专区亚洲av| 亚洲av男天堂| 久久国内精品自在自线图片| 人妻 亚洲 视频| 亚洲av欧美aⅴ国产| 精品久久久久久久久av| 国产69精品久久久久777片| 日韩成人伦理影院| av在线观看视频网站免费| 一级毛片电影观看| 成人二区视频| 国产av码专区亚洲av| 亚州av有码| 老司机亚洲免费影院| 在线观看一区二区三区激情| 亚洲精品自拍成人| 免费观看性生交大片5| 免费看日本二区| 成年人免费黄色播放视频 | 国产淫片久久久久久久久| 久久精品熟女亚洲av麻豆精品| 交换朋友夫妻互换小说| 国产视频首页在线观看| 国产欧美日韩一区二区三区在线 | 精华霜和精华液先用哪个| 啦啦啦视频在线资源免费观看| 国产91av在线免费观看| 制服丝袜香蕉在线| 九色成人免费人妻av| 乱系列少妇在线播放| 国产伦精品一区二区三区四那| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 亚洲精品第二区| 高清视频免费观看一区二区| 色婷婷av一区二区三区视频| 水蜜桃什么品种好| 大香蕉久久网| 高清av免费在线| 国产精品99久久99久久久不卡 | 日日啪夜夜撸| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品| 久久青草综合色| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 欧美日韩在线观看h| 国产av国产精品国产| 欧美成人午夜免费资源| 免费观看av网站的网址| 久久ye,这里只有精品| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| a级一级毛片免费在线观看| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 91成人精品电影| 亚洲欧美精品自产自拍| 欧美另类一区| 精品99又大又爽又粗少妇毛片| 黑丝袜美女国产一区| 亚洲av福利一区| 最近的中文字幕免费完整| 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频 | 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 国产成人精品婷婷| 韩国av在线不卡| 国产一区二区三区综合在线观看 | 久久99精品国语久久久| 午夜老司机福利剧场| 精品久久久噜噜| 中文字幕精品免费在线观看视频 | 高清在线视频一区二区三区| 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 中文在线观看免费www的网站| 我的老师免费观看完整版| 国产亚洲最大av| 91精品国产九色| 大陆偷拍与自拍| 七月丁香在线播放| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费 | 少妇 在线观看| 久久精品国产亚洲av涩爱| 菩萨蛮人人尽说江南好唐韦庄| 国产老妇伦熟女老妇高清| 国产成人午夜福利电影在线观看| 国产一区二区在线观看av| 一本一本综合久久| 久久精品国产亚洲av涩爱| 久久久久久久久大av| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 日本vs欧美在线观看视频 | 国产熟女午夜一区二区三区 | av在线app专区| 天天操日日干夜夜撸| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 亚洲精品视频女| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 男女啪啪激烈高潮av片| 久久韩国三级中文字幕| 久久毛片免费看一区二区三区| 哪个播放器可以免费观看大片| 亚洲va在线va天堂va国产| 少妇的逼水好多| 婷婷色综合大香蕉| 乱系列少妇在线播放| 欧美日本中文国产一区发布| 最近最新中文字幕免费大全7| 国产 精品1| 在线精品无人区一区二区三| 国产亚洲欧美精品永久| 亚洲图色成人| 伊人亚洲综合成人网| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 天天躁夜夜躁狠狠久久av| 高清不卡的av网站| 国产又色又爽无遮挡免| 亚州av有码| 丰满饥渴人妻一区二区三| h日本视频在线播放| 又粗又硬又长又爽又黄的视频| 日本黄色片子视频| 亚洲国产精品一区二区三区在线| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 国产 一区精品| 亚洲精品国产av成人精品| 国产精品不卡视频一区二区| 久久久久视频综合| 国产91av在线免费观看| 在线观看免费日韩欧美大片 | 又爽又黄a免费视频| 日韩av不卡免费在线播放| 91精品伊人久久大香线蕉| 日韩精品免费视频一区二区三区 | 女性生殖器流出的白浆| 成人影院久久| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 51国产日韩欧美| 亚洲av二区三区四区| 国国产精品蜜臀av免费| 中文字幕人妻熟人妻熟丝袜美| 日日啪夜夜撸| 国产在视频线精品| www.av在线官网国产| 国产成人精品婷婷| videos熟女内射| 免费人妻精品一区二区三区视频| 男人爽女人下面视频在线观看| 久久久久国产网址| 噜噜噜噜噜久久久久久91| 十八禁高潮呻吟视频 | 99热全是精品| 天堂中文最新版在线下载| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 国产一区二区在线观看av| 亚洲精品成人av观看孕妇| 欧美区成人在线视频| 一级二级三级毛片免费看| 免费黄频网站在线观看国产| 一区二区三区精品91| 高清欧美精品videossex| 十八禁网站网址无遮挡 | 亚洲精华国产精华液的使用体验| 国产亚洲5aaaaa淫片| av免费在线看不卡| 欧美精品一区二区大全| 国产亚洲午夜精品一区二区久久| 老司机亚洲免费影院| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 欧美国产精品一级二级三级 | 久久婷婷青草| 两个人的视频大全免费| 大片电影免费在线观看免费| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 777米奇影视久久| 下体分泌物呈黄色| 国产在线男女| 国产黄频视频在线观看| 久久国产乱子免费精品| 午夜日本视频在线| av一本久久久久| 久久人人爽人人片av| 亚洲无线观看免费| 欧美精品一区二区大全| 亚洲伊人久久精品综合| 一级毛片久久久久久久久女| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 丰满乱子伦码专区| 黑人巨大精品欧美一区二区蜜桃 | 一本一本综合久久| 日本欧美视频一区| 一级毛片黄色毛片免费观看视频| 各种免费的搞黄视频| 亚洲va在线va天堂va国产| 国产成人精品一,二区| 日韩欧美 国产精品| 国产视频首页在线观看| 如何舔出高潮| 欧美日韩一区二区视频在线观看视频在线| 日韩三级伦理在线观看| 麻豆乱淫一区二区| 亚洲精品456在线播放app| 青春草视频在线免费观看| 一级,二级,三级黄色视频| 国产熟女欧美一区二区| 国产精品一区二区在线不卡| 2021少妇久久久久久久久久久| 亚洲欧美成人精品一区二区| 极品人妻少妇av视频| 大香蕉97超碰在线| 男女无遮挡免费网站观看| 日产精品乱码卡一卡2卡三| 偷拍熟女少妇极品色| 国产精品一二三区在线看| 少妇的逼水好多| 亚洲天堂av无毛| 日本猛色少妇xxxxx猛交久久| 国产免费一区二区三区四区乱码| 高清在线视频一区二区三区| 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 久久久久人妻精品一区果冻| 久久精品久久精品一区二区三区| 久久精品国产亚洲av天美| 久久久久国产网址| 亚洲自偷自拍三级| 超碰97精品在线观看| 亚洲av日韩在线播放| 高清不卡的av网站| 一级毛片aaaaaa免费看小| 欧美精品一区二区免费开放| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 国产日韩欧美在线精品| 午夜福利网站1000一区二区三区| 黑人猛操日本美女一级片| 韩国av在线不卡| 免费大片黄手机在线观看| 少妇人妻久久综合中文| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| av福利片在线| 丰满少妇做爰视频| a级一级毛片免费在线观看| 日本与韩国留学比较| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| freevideosex欧美| 美女福利国产在线| 男人添女人高潮全过程视频| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 精品人妻偷拍中文字幕| 丝袜脚勾引网站| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜| 国产高清三级在线| 国产 一区精品| 人妻少妇偷人精品九色| 夫妻性生交免费视频一级片| 国产亚洲最大av| 免费黄频网站在线观看国产| 日韩av在线免费看完整版不卡| 亚洲va在线va天堂va国产| 不卡视频在线观看欧美| 国产男女内射视频| 亚洲精品乱码久久久v下载方式| 久久99精品国语久久久| 老司机影院成人| 亚洲经典国产精华液单| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 国产熟女午夜一区二区三区 | 精品人妻熟女av久视频| 欧美激情极品国产一区二区三区 | 国产精品一区二区三区四区免费观看| 国产精品免费大片| 午夜精品国产一区二区电影| 国产精品一区二区性色av| 久久国产亚洲av麻豆专区| 欧美高清成人免费视频www| 亚洲精品乱久久久久久| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 亚洲国产精品一区二区三区在线| 男女国产视频网站| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 最后的刺客免费高清国语| 97超碰精品成人国产| 国产成人免费观看mmmm| 性色av一级| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 97超碰精品成人国产| 美女国产视频在线观看| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 好男人视频免费观看在线| 99热这里只有是精品在线观看| 国产精品一二三区在线看| 美女脱内裤让男人舔精品视频| 国产亚洲91精品色在线| 在线观看www视频免费| 久久久久久久久久人人人人人人| 久久ye,这里只有精品| 亚洲第一av免费看| av免费观看日本| 啦啦啦视频在线资源免费观看| 久久这里有精品视频免费| 亚洲美女视频黄频| 国产成人aa在线观看| 老司机影院毛片| 日韩中文字幕视频在线看片| 国产视频内射| 久久鲁丝午夜福利片| 一区在线观看完整版| 亚洲国产精品一区三区| 精品人妻熟女av久视频| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区 | 蜜桃在线观看..| 26uuu在线亚洲综合色| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜| 国产视频首页在线观看| 韩国高清视频一区二区三区| 黄色日韩在线| 亚洲精品国产成人久久av| 久久久久久久久久久丰满| 欧美亚洲 丝袜 人妻 在线| 精华霜和精华液先用哪个| 成人国产av品久久久| 夜夜骑夜夜射夜夜干| 久久久久久久久久成人| 男女边吃奶边做爰视频| 97在线人人人人妻| 欧美bdsm另类| 国产一级毛片在线| 亚洲av国产av综合av卡| 久久午夜福利片| 岛国毛片在线播放| 一级二级三级毛片免费看| 日韩精品免费视频一区二区三区 | 亚洲精品国产av蜜桃| 久久久欧美国产精品| 在线播放无遮挡| 草草在线视频免费看| 狂野欧美激情性bbbbbb| 国产精品久久久久久久电影| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| a级毛片免费高清观看在线播放| av在线老鸭窝| 久久精品国产自在天天线| 国产美女午夜福利| 制服丝袜香蕉在线| 最后的刺客免费高清国语| 性高湖久久久久久久久免费观看| 免费大片18禁| 精品一品国产午夜福利视频| 桃花免费在线播放| 亚洲美女搞黄在线观看| 日本午夜av视频| 国产乱来视频区| a级毛片在线看网站| 高清欧美精品videossex| h日本视频在线播放| 久久97久久精品| 亚洲在久久综合| 久久ye,这里只有精品| 人妻 亚洲 视频| 国产精品人妻久久久影院| 丁香六月天网| 亚洲国产精品专区欧美| 在线观看www视频免费| 国产黄色免费在线视频| 性色avwww在线观看| 国产黄片美女视频| 观看美女的网站| 国产精品国产av在线观看| 97在线人人人人妻| 欧美精品一区二区免费开放| 免费黄色在线免费观看| 边亲边吃奶的免费视频| av不卡在线播放| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站 | 丰满迷人的少妇在线观看| 成年人免费黄色播放视频 | 国产毛片在线视频| √禁漫天堂资源中文www| av女优亚洲男人天堂| 国产精品一二三区在线看| 久久久久久久久久久免费av| 日韩制服骚丝袜av| 国产精品女同一区二区软件| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 亚洲国产精品一区三区| 免费看光身美女| 91在线精品国自产拍蜜月| 久久久久久久久久成人| 欧美日韩视频高清一区二区三区二| 欧美激情国产日韩精品一区| 精品少妇久久久久久888优播| 精品人妻熟女毛片av久久网站| 国产精品女同一区二区软件| 午夜视频国产福利| av一本久久久久| 亚洲丝袜综合中文字幕| 日本vs欧美在线观看视频 | 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 国产精品国产av在线观看| 成人影院久久| 亚洲欧美成人精品一区二区| 少妇人妻 视频| 国产成人aa在线观看| 精品视频人人做人人爽| 亚洲精品,欧美精品| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看 | 国产av码专区亚洲av| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 午夜91福利影院| .国产精品久久| 日韩欧美精品免费久久| 免费观看av网站的网址| 在现免费观看毛片| 久久久亚洲精品成人影院| 少妇人妻精品综合一区二区| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 国产黄色免费在线视频| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| 91成人精品电影| 五月玫瑰六月丁香| 精品一区二区三卡| 狂野欧美激情性xxxx在线观看| 不卡视频在线观看欧美| 王馨瑶露胸无遮挡在线观看| 欧美xxⅹ黑人| 久久久久精品性色| 男女边摸边吃奶| 亚洲精品中文字幕在线视频 | 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 国产淫片久久久久久久久| 2022亚洲国产成人精品| 91精品国产九色| 欧美日韩视频精品一区| 久久久久久人妻| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 精品久久久久久久久av| 欧美人与善性xxx| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 国产一区二区三区av在线| 国产无遮挡羞羞视频在线观看| 日本午夜av视频| 国产爽快片一区二区三区| www.色视频.com| av在线app专区| 亚洲精品乱久久久久久| 日韩视频在线欧美| 一级a做视频免费观看| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频 | 久久狼人影院| 狂野欧美激情性xxxx在线观看| 中国美白少妇内射xxxbb| 久久午夜综合久久蜜桃| 久久av网站| 国产成人91sexporn| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 在线看a的网站| 人妻少妇偷人精品九色| 国产精品国产av在线观看| 看非洲黑人一级黄片| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看 | 国产日韩欧美亚洲二区| 久久人人爽人人爽人人片va| 亚洲欧美成人精品一区二区| 国产成人免费无遮挡视频| 日本免费在线观看一区| 国产成人aa在线观看| 亚洲欧美精品专区久久| 久久久国产一区二区| 老女人水多毛片| 各种免费的搞黄视频| 久热这里只有精品99| 综合色丁香网| 免费av不卡在线播放| 中文字幕精品免费在线观看视频 | 国产精品久久久久成人av| 久久免费观看电影| 国产69精品久久久久777片| 又大又黄又爽视频免费| 国产日韩欧美亚洲二区| 五月玫瑰六月丁香| 国产伦理片在线播放av一区| 美女内射精品一级片tv| 永久免费av网站大全| 99热这里只有是精品在线观看| 成人国产麻豆网| 午夜影院在线不卡| av一本久久久久| 十八禁网站网址无遮挡 | 久久久久久久久久久免费av| 亚洲av免费高清在线观看| 久久99蜜桃精品久久| av黄色大香蕉| av一本久久久久| 国产成人精品福利久久| 国产精品熟女久久久久浪| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 桃花免费在线播放| 人妻 亚洲 视频| 久久97久久精品| 国产av码专区亚洲av| 男人爽女人下面视频在线观看|