• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于BP神經(jīng)網(wǎng)絡(luò)的不同時(shí)間尺度泵站前池水位預(yù)測(cè)模型

    2022-11-15 11:11:40薛萍張召雷曉輝盧龍彬顏培儒李月強(qiáng)
    南水北調(diào)與水利科技 2022年2期
    關(guān)鍵詞:前池泵站水位

    薛萍,張召,雷曉輝,盧龍彬,顏培儒,李月強(qiáng)

    (1.濟(jì)南大學(xué)水利與環(huán)境學(xué)院,濟(jì)南 250022;2.中國(guó)水利水電科學(xué)研究院水資源所,北京 100038;3.天津大學(xué)建筑工程學(xué)院,天津 300072;4.河海大學(xué)水利水電學(xué)院,南京 210098)

    明渠調(diào)水工程在進(jìn)行長(zhǎng)距離輸水調(diào)度時(shí),一般通過(guò)在渠道中設(shè)置泵站、節(jié)制閘、倒虹吸等水工建筑物解除地形條件對(duì)輸水限制的影響,同時(shí)在建筑物前設(shè)置水位計(jì)、流量計(jì)等監(jiān)測(cè)設(shè)備獲取水情信息監(jiān)控通水安全。相比于實(shí)時(shí)水位監(jiān)測(cè),高精度的水位預(yù)測(cè)更能在水量調(diào)度過(guò)程中為調(diào)度人員提供科學(xué)指導(dǎo),尤其是泵站前池水位預(yù)測(cè),對(duì)泵站調(diào)控、水量調(diào)度、渠道安全均具有重要意義。受氣候、溫度、人類活動(dòng)等多種因素影響,監(jiān)測(cè)設(shè)備采集到的水情序列往往呈現(xiàn)出非線性和不確定性的特點(diǎn),常規(guī)方法很難對(duì)其進(jìn)行規(guī)律分析和趨勢(shì)預(yù)測(cè)。學(xué)者[1-3]曾通過(guò)建立水力學(xué)模型模擬渠道水流的變化過(guò)程,但建模要求完整且準(zhǔn)確的地形資料、工程參數(shù)和實(shí)測(cè)數(shù)據(jù),糙率率定過(guò)程也較為反復(fù)和繁瑣[4],因此存在較大的局限性。隨著人工智能技術(shù)和機(jī)器學(xué)習(xí)方法的不斷進(jìn)步,采用數(shù)據(jù)驅(qū)動(dòng)的方法進(jìn)行預(yù)測(cè)可避免水力學(xué)建模的多方面要求和諸多限制,直接探索數(shù)據(jù)間的內(nèi)在規(guī)律[5]。

    到目前為止,大部分學(xué)者[6-9]通過(guò)構(gòu)建神經(jīng)網(wǎng)絡(luò)模型進(jìn)行水位預(yù)測(cè),如采用優(yōu)化后的RBF神經(jīng)網(wǎng)絡(luò)、LSTM神經(jīng)網(wǎng)絡(luò)模型、小波神經(jīng)網(wǎng)絡(luò)等應(yīng)用于地下水位預(yù)測(cè),預(yù)測(cè)精度高且預(yù)測(cè)效果處于較優(yōu)水平;雖可建立向量機(jī)RVM預(yù)測(cè)模型[10]、Mike模型[11]、相似模型[12]、統(tǒng)計(jì)模型[13]、貝葉斯模型[14]等進(jìn)行水位預(yù)測(cè),但使用時(shí)受限于一定的條件,故應(yīng)用于調(diào)水工程中水位預(yù)測(cè)時(shí)不太廣泛;因神經(jīng)網(wǎng)絡(luò)已廣泛應(yīng)用于水位預(yù)測(cè),發(fā)展逐漸趨于成熟,也有眾多學(xué)者[15-26]通過(guò)將神經(jīng)網(wǎng)絡(luò)模型、算法組合或者改進(jìn)算法的方式進(jìn)行水位預(yù)測(cè),如吳美玲[27]等將KNN、GA、BP相結(jié)合,對(duì)秦淮河的洪水位進(jìn)行預(yù)測(cè),相比于未組合的神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)精度提高但略為復(fù)雜,但未組合的神經(jīng)網(wǎng)絡(luò)模型較為簡(jiǎn)單實(shí)用,如高學(xué)平等[28]利用BP神經(jīng)網(wǎng)絡(luò)對(duì)泵站站前水位進(jìn)行預(yù)測(cè),發(fā)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)在解決非線性問(wèn)題上有很大優(yōu)勢(shì),在智能預(yù)測(cè)方面存在巨大潛力。同時(shí),常用的評(píng)價(jià)指標(biāo)有ERMS(均方根誤差)、R2(決定系數(shù))[29]等。

    綜上可知,構(gòu)建神經(jīng)網(wǎng)絡(luò)進(jìn)行水位預(yù)測(cè)是一種切實(shí)可行的研究方法。人工神經(jīng)網(wǎng)絡(luò)等智能算法在水文預(yù)測(cè)應(yīng)用中具有一定的適用性條件,如:ANN有強(qiáng)大非線性能力,但結(jié)構(gòu)簡(jiǎn)單不能保存前時(shí)信息而無(wú)法學(xué)習(xí)時(shí)間序列數(shù)據(jù);RNN能保持先前時(shí)刻的水位預(yù)測(cè),可有效處理序列數(shù)據(jù),但梯度傳遞中存在缺陷;LSTM具有長(zhǎng)短期記憶功能,在一定程度上解決梯度消失和梯度爆炸,但長(zhǎng)序列依舊存在問(wèn)題且不能并行;受信息單向流動(dòng)特點(diǎn)的限制,經(jīng)典BP神經(jīng)網(wǎng)絡(luò)考慮有限數(shù)量的歷史信息,僅適用于短時(shí)預(yù)測(cè),但結(jié)構(gòu)穩(wěn)定,具有多功能性和簡(jiǎn)便性的特征,可靈活處理非線性問(wèn)題并達(dá)到較高的預(yù)測(cè)精度,具有極強(qiáng)的非線性映射能力;而水文預(yù)測(cè)中的水情序列因受人為因素影響較大,呈現(xiàn)出較大的非線性特點(diǎn),故BP神經(jīng)網(wǎng)絡(luò)適用于水文預(yù)測(cè)。BP神經(jīng)網(wǎng)絡(luò)自1986年被Rumelhart等[30]提出后,已被廣泛應(yīng)用于水文預(yù)測(cè)領(lǐng)域的研究。本文通過(guò)建立BP神經(jīng)網(wǎng)絡(luò),利用歷史數(shù)據(jù)預(yù)測(cè)泵站前池未來(lái)時(shí)刻的水位,分析時(shí)間序列比例及影響因子對(duì)水位預(yù)測(cè)的影響,預(yù)測(cè)結(jié)果既可為泵站前池水位預(yù)測(cè)提供一種預(yù)測(cè)方式,也給泵站前池水位變化趨勢(shì)提供參考數(shù)據(jù)。

    1 研究方法

    選取泵站前池水位為研究對(duì)象,利用相關(guān)性分析確定影響因子,并將其作為輸入進(jìn)行BP神經(jīng)網(wǎng)絡(luò)模型構(gòu)建,預(yù)測(cè)結(jié)果用各指標(biāo)參數(shù)情況評(píng)判優(yōu)劣。

    1.1 影響因子識(shí)別

    受各種水力因素(斷面面積、水力比降、糙率等)影響,渠道內(nèi)斷面流量和水位之間存在對(duì)應(yīng)關(guān)系。泵站前池水位作為監(jiān)測(cè)斷面之一,與相鄰斷面的水位、泵站的流量、上游流量、流量差等均可能存在水力聯(lián)系。將這些相關(guān)的水位、流量等作為變量,對(duì)各變量與預(yù)測(cè)因子進(jìn)行相關(guān)性分析,識(shí)別出具有一定關(guān)聯(lián)度的影響因子。

    采取的影響因子識(shí)別方法有皮爾遜(Pearson)相關(guān)系數(shù)法、肯德?tīng)?Kendall)相關(guān)性系數(shù)法、斯皮爾曼(Spearman)等級(jí)相關(guān)系數(shù)法及灰關(guān)聯(lián)分析。皮爾遜相關(guān)系數(shù)法用于度量2個(gè)變量之間的相關(guān)程度,2個(gè)變量之間的皮爾遜相關(guān)系數(shù)定義為2個(gè)變量之間的協(xié)方差和標(biāo)準(zhǔn)差的商;肯德?tīng)栂嚓P(guān)性系數(shù)法是表示多列等級(jí)變量相關(guān)程度的一種方法,若n個(gè)同類的統(tǒng)計(jì)對(duì)象按特定屬性排序,其他屬性通常是亂序的,同序?qū)彤愋驅(qū)χ钆c總對(duì)數(shù)[n(n-1)/2]的比值定義為肯德?tīng)栂禂?shù);斯皮爾曼等級(jí)相關(guān)系數(shù)法是根據(jù)等級(jí)資料研究2個(gè)變量間相關(guān)關(guān)系的方法,依據(jù)2列成對(duì)等級(jí)的各對(duì)等級(jí)數(shù)之差來(lái)進(jìn)行計(jì)算,利用單調(diào)方程評(píng)價(jià)2個(gè)統(tǒng)計(jì)變量的相關(guān)性。上述3種方法的相關(guān)性指標(biāo)或相關(guān)系數(shù)為-1~1:絕對(duì)值越接近1,相關(guān)性越高;絕對(duì)值等于0時(shí),不具備相關(guān)性?;谊P(guān)聯(lián)分析是一種分析系統(tǒng)中各因子關(guān)聯(lián)程度的量化方法,根據(jù)不同變量序列間發(fā)展趨勢(shì)的相似或相異程度,衡量因素間關(guān)聯(lián)程度?;疑P(guān)聯(lián)度小于0.6時(shí),不具有相關(guān)性;灰色關(guān)聯(lián)度越趨近1,相關(guān)性程度越高。

    1.2 BP神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)是一個(gè)利用誤差反向傳播算法進(jìn)行訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),一般包括輸入層、隱含層、輸出層3部分。輸入層具有信息接入即信號(hào)接收功能,信號(hào)接收完成后將信息傳遞到隱含層,輸入層神經(jīng)元的個(gè)數(shù)為輸入影響因子的數(shù)量n;隱含層負(fù)責(zé)信息處理、信息變換,隱含層神經(jīng)元的個(gè)數(shù)為m,小于N-1(N是訓(xùn)練樣本數(shù)),在MATLAB中經(jīng)測(cè)試取值;經(jīng)隱含層后信息傳遞到輸出層,輸出層將結(jié)果對(duì)外輸出,1個(gè)3層的典型網(wǎng)絡(luò)結(jié)構(gòu)見(jiàn)圖1。

    圖1 BP神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)

    神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)參數(shù)設(shè)置有:最大訓(xùn)練次數(shù)=100,訓(xùn)練要求精度=1×10-8,學(xué)習(xí)率=0.01。參數(shù)設(shè)置完成后,網(wǎng)絡(luò)利用誤差的反向傳播自動(dòng)調(diào)整權(quán)重和閾值,驅(qū)使BP神經(jīng)網(wǎng)絡(luò)中表達(dá)函數(shù)能夠得到最優(yōu)解,最后輸出預(yù)測(cè)結(jié)果及評(píng)判結(jié)果的各項(xiàng)指標(biāo)值。

    1.3 預(yù)測(cè)結(jié)果評(píng)判標(biāo)準(zhǔn)

    以R2(決定系數(shù))、ERMS(均方根誤差)、EMA(平均絕對(duì)誤差)為評(píng)判標(biāo)準(zhǔn)對(duì)預(yù)測(cè)結(jié)果的優(yōu)劣進(jìn)行評(píng)判,R2越趨近1,ERMS和EMA越趨近0,說(shuō)明預(yù)測(cè)精度越高。

    2 研究區(qū)概況

    膠東調(diào)水工程是山東省水利建設(shè)的重要組成部分,包括引黃調(diào)水工程和引黃濟(jì)青工程2條輸水線路。引黃濟(jì)青工程于1986年4月15日開(kāi)工興建,1989年11月25日正式通水;引黃調(diào)水工程于2003年12月19日開(kāi)工,2013年7月全線貫通,2013年12月主體工程建成通水。其中,引黃調(diào)水工程包括明渠段和管道段兩部分,明渠段以宋莊分水閘為起點(diǎn),以黃水河泵站為終點(diǎn),途經(jīng)灰埠、東宋、辛莊3座泵站及若干倒虹吸、渡槽等輸水建筑物,全長(zhǎng)約160 km。本文所選研究區(qū)為引黃調(diào)水工程明渠段,具體研究區(qū)域?yàn)闁|宋泵站前后,其上游控制節(jié)點(diǎn)為灰埠泵站,下游控制節(jié)點(diǎn)為埠上節(jié)制閘,該渠段及沿線建筑物分布情況見(jiàn)圖2。

    圖2 研究渠段及沿線建筑物分布

    3 結(jié)果與討論

    3.1 影響因子識(shí)別結(jié)果

    研究東宋泵站未來(lái)時(shí)刻的前池水位時(shí),考慮到水位流量間關(guān)系及人為因素影響,除選取相鄰斷面水位作為影響因子外,還選取東宋泵站流量、灰埠泵站流量、灰埠-東宋2級(jí)泵站流量差為影響因子進(jìn)行預(yù)測(cè),且影響因子均為當(dāng)前時(shí)刻的影響因子。表1為不同方法下的各因子與前池水位間的相關(guān)性分析結(jié)果。

    表1 影響因子相關(guān)性分析結(jié)果

    由表1可知,影響因子相關(guān)性排序從高到低依次為東宋泵站站前水位、2級(jí)泵站流量差、海鄭河倒虹下游水位、海鄭河倒虹上游水位、泵站流量、東宋泵站流量及上游泵站流量。前4項(xiàng)影響因子的各系數(shù)均為0.8~0.9,識(shí)別為相關(guān)性較高的影響因子,建模時(shí)優(yōu)先考慮;后3項(xiàng)影響因子的指標(biāo)中僅灰色關(guān)聯(lián)度表明其相關(guān)性程度較高,故識(shí)別為相關(guān)性較低的影響因子,建模時(shí)可考慮在內(nèi),但不重點(diǎn)考慮。

    3.2 水位預(yù)測(cè)結(jié)果分析

    利用BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行泵站前池水位預(yù)測(cè),預(yù)測(cè)結(jié)果從時(shí)間序列、影響因子2個(gè)方面進(jìn)行分析。

    3.2.1時(shí)間序列

    將不同時(shí)間尺度的數(shù)據(jù)按照一定的比例進(jìn)行訓(xùn)練和驗(yàn)證,對(duì)比訓(xùn)練時(shí)長(zhǎng)和預(yù)測(cè)精度。結(jié)果表明,訓(xùn)練期和預(yù)見(jiàn)期的最優(yōu)比例為7∶3,減小該比例會(huì)使預(yù)測(cè)精度降低,增大該比例預(yù)測(cè)精度與之相差無(wú)幾,且數(shù)據(jù)需求量大幅提升。

    采用3 600個(gè)數(shù)據(jù)預(yù)測(cè)未來(lái)2 h的水位變化,7∶3比例下的R2、ERMS、EMA分別維持在0.95、0.04、0.03左右。增大該比例時(shí)各指標(biāo)預(yù)測(cè)效果略有提高,但相差不大,高于5∶1時(shí)其預(yù)測(cè)精度基本不提高。具體對(duì)比見(jiàn)圖3和圖4。

    圖3 未來(lái)2 h水位預(yù)測(cè)結(jié)果(7∶3)

    圖4 未來(lái)2 h水位預(yù)測(cè)結(jié)果(5∶1)

    以7∶3的比例分別對(duì)3組3個(gè)月的數(shù)據(jù)進(jìn)行訓(xùn)練和驗(yàn)證,R2維持在0.93~0.98,ERMS維持在0.02~0.05、EMA維持在0.02~0.04,預(yù)測(cè)結(jié)果見(jiàn)圖5。

    圖5 未來(lái)2 h水位預(yù)測(cè)結(jié)果(7∶3)

    以7∶3的比例對(duì)1個(gè)月的數(shù)據(jù)進(jìn)行驗(yàn)證,驗(yàn)證結(jié)果表明該比例對(duì)1個(gè)月的數(shù)據(jù)量依舊適用,具體見(jiàn)圖6。

    圖6 未來(lái)2 h水位預(yù)測(cè)結(jié)果(7∶3)

    由上述可知,最優(yōu)比例適用于不同時(shí)間尺度的數(shù)據(jù),且最優(yōu)比例的確定既可節(jié)省神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)的時(shí)間,又能提高預(yù)測(cè)精度,在模型中具有較大影響力。

    3.2.2影響因子

    影響因子數(shù)量。當(dāng)影響因子與預(yù)測(cè)因子之間都具有較高相關(guān)性時(shí),影響因子數(shù)量越多,預(yù)測(cè)結(jié)果越精確。但影響因子的數(shù)量會(huì)增加訓(xùn)練期的數(shù)據(jù)需求量,為減少數(shù)據(jù)需求量且保證預(yù)測(cè)精度,利用不同數(shù)量的影響因子進(jìn)行訓(xùn)練和驗(yàn)證,驗(yàn)證結(jié)果表明:短期(1~3個(gè)月)內(nèi)至少選擇3~5個(gè)影響因子進(jìn)行訓(xùn)練,3個(gè)月至1 a的數(shù)據(jù)量則至少需要5~7個(gè)相關(guān)性最大的影響因子。

    影響因子種類。研究表明,選取相關(guān)性最高的影響因子構(gòu)建模型,預(yù)測(cè)精度更高。由影響因子相關(guān)性分析結(jié)果可知,相關(guān)性最高的3個(gè)影響因子為泵站當(dāng)前時(shí)刻的水位、上游相鄰節(jié)點(diǎn)的水位、流量差。采用3個(gè)影響因子對(duì)1個(gè)月的數(shù)據(jù)進(jìn)行訓(xùn)練和預(yù)測(cè),上述3個(gè)影響因子的預(yù)測(cè)效果最佳,具體見(jiàn)圖7。

    圖7 3個(gè)因子水位預(yù)測(cè)結(jié)果(7∶3)

    影響因子的時(shí)間間隔。數(shù)據(jù)間隔均為2 h時(shí),對(duì)東宋泵站未來(lái)時(shí)刻的水位進(jìn)行預(yù)測(cè):未來(lái)2 h的水位預(yù)測(cè)結(jié)果較穩(wěn)定,R2結(jié)果均在0.9以上,ERMS和EMA也較??;未來(lái)4 h的水位預(yù)測(cè)結(jié)果一般,R2為0.8~0.9,ERMS和EMA比2 h預(yù)測(cè)略大;未來(lái)6 h的水位預(yù)測(cè)結(jié)果較差,R2不穩(wěn)定且變化區(qū)間較大,結(jié)果較好時(shí)也僅為0.7左右,ERMS和EMA則預(yù)測(cè)結(jié)果偏大,分別在0.11和0.09左右。即訓(xùn)練期內(nèi)數(shù)據(jù)不發(fā)生改變時(shí),預(yù)測(cè)時(shí)間越長(zhǎng),預(yù)測(cè)精度越低。對(duì)3個(gè)月的數(shù)據(jù)進(jìn)行篩選,使2 h間隔轉(zhuǎn)為4 h間隔,并預(yù)測(cè)東宋泵站未來(lái)4 h的水位,預(yù)測(cè)結(jié)果見(jiàn)圖8。

    圖8 未來(lái)4 h水位變化結(jié)果(7∶3)

    對(duì)10個(gè)月的數(shù)據(jù)進(jìn)行4 h間隔的篩選并預(yù)測(cè)未來(lái)4 h水位,預(yù)測(cè)結(jié)果見(jiàn)圖9。

    圖9 未來(lái)4 h水位變化結(jié)果(7∶3)

    研究結(jié)果表明,與采用2 h間隔的數(shù)據(jù)直接預(yù)測(cè)相比,采用4 h間隔的數(shù)據(jù)預(yù)測(cè)泵站未來(lái)4 h的水位,其預(yù)測(cè)精度更高,R2變化基本維持在0.82~0.93,ERMS和EMA分別維持在0.05~0.06、0.04~0.05。

    對(duì)1 a的數(shù)據(jù)進(jìn)行篩選,使2 h間隔轉(zhuǎn)為6 h間隔,并預(yù)測(cè)東宋泵站未來(lái)6 h的水位。預(yù)測(cè)結(jié)果表明,篩選后進(jìn)行預(yù)測(cè)比用2 h的數(shù)據(jù)直接預(yù)測(cè)其預(yù)測(cè)效果更差。經(jīng)分析,上述現(xiàn)象是由6 h的時(shí)間間隔太長(zhǎng)不能完全反映各因子變化規(guī)律導(dǎo)致,所以篩選后進(jìn)行預(yù)測(cè)的結(jié)果比直接采用2 h間隔的數(shù)據(jù)進(jìn)行預(yù)測(cè)結(jié)果更差。

    4 結(jié) 論

    時(shí)間序列比例對(duì)水位預(yù)測(cè)結(jié)果的影響:訓(xùn)練期和預(yù)測(cè)期的最佳比例為7∶3,提高比例其預(yù)測(cè)精度無(wú)明顯變化,降低比例則預(yù)測(cè)效果變差。

    影響因子對(duì)預(yù)測(cè)結(jié)果的影響:數(shù)據(jù)量與影響因子數(shù)量呈對(duì)應(yīng)關(guān)系,3個(gè)月的數(shù)據(jù)量需3~5個(gè)影響因子進(jìn)行訓(xùn)練,3個(gè)月至1 a的數(shù)據(jù)量則需5~7個(gè)影響因子確保相同預(yù)測(cè)效果。

    數(shù)據(jù)的時(shí)間間隔對(duì)預(yù)測(cè)結(jié)果的影響:一般情況下,數(shù)據(jù)間隔不變,預(yù)測(cè)精度隨預(yù)測(cè)時(shí)間的增加而逐漸降低;但當(dāng)數(shù)據(jù)能夠反映各因子變化規(guī)律時(shí),數(shù)據(jù)間隔和預(yù)測(cè)時(shí)間相同,預(yù)測(cè)效果更佳。

    Prediction model for forebay water level of pumping stations with different time scales based on BP neural networks

    XUE Ping1,ZHANG Zhao2,LEI Xiaohui2,LU Longbin1,YAN Peiru3,LI Yueqiang4

    (1.School of Water Conservancy and Environment,University of Jinan,Jinan 250022,China;2.Institute of Water Resources,China Institute of Water Resources and Hydropower Research,Beijing 100038,China;3.School of Civil Engineering,Tianjin University,Tianjin 300072,China;4.College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China)

    Abstract:Considering the difficulty in water level prediction under building control,a water level prediction model for the forebay of a pumping station was built on the basis of back-propagation(BP)neural networks,and the influence of time series and impact factors on the accuracy of water level prediction was analyzed under different time scales.The constructed model was applied to the Dongsong Pumping Station of the Jiaodong Water Transfer Project.The research results revealed that:when the total amount of data was fixed,and the ratio of the training period to the prediction period was 7∶3,the prediction result was good;a larger amount of data was accompanied by a greater number of positively correlated impact factors required for certain prediction accuracy;in a short period of time,when the prediction time interval was the same as the time interval of the data itself,the prediction effect was better.The constructed model can meet the demand for dynamic prediction of the water level in the forebay of the open channel water transfer project and can achieve the 2 h accurate prediction of the forebay water level of the pumping station and the 4 h general accurate prediction.Additionally,it can be popularized and applied in other similar open channel water transfer projects.

    Keywords:forebay of pump station;water level prediction;BP neural network;time series;proportion

    Received:2021-07-04Revised:2021-09-30Onlinepublishing:2021-10-11

    Onlinepublishingaddress:https://kns.cnki.net/kcms/detail/13.1430.TV.20211009.1638.002.html

    Fund:National Natural Science Foundation of China(51779268)

    Author′sbrief:XUE Ping(1998-),female,Weifang Shandong Province,mainly engaged in research on hydrology and water resources.E-mail:2857487127@qq.com

    Correspondingauthor:LEI Xiaohui(1974-),male,Weinan Shaanxi Province,Ph.D.,professor-level senior engineer,mainly engaged in research on hydrology and water resources,reservoir dispatching,and hydraulic control.E-mail:lxh@iwhr.com

    DOI:10.13476/j.cnki.nsbdqk.2022.0040

    For the long-distance water dispatching of an open channel water transfer project,hydraulic structures such as pumping stations,control gates,and inverted siphons are generally set up in the channel to relieve the influence of terrain conditions on water transfer restrictions.Meanwhile,monitoring equipment such as water level meters and flow meters are installed in front of buildings to obtain water information and monitor water safety.Compared with real-time water level monitoring,high-precision water level prediction can provide more scientific guidance for dispatchers in the process of water dispatching,especially the water level prediction in the forebay of pumping stations,which is of great significance to the regulation of pumping stations,water dispatching,and channel safety.Affected by various factors such as climate,temperature,and human activities,the hydrological sequence collected by monitoring equipment often presents the characteristics of nonlinearity and uncertainty,and it is difficult to analyze the laws and predict the trend by conventional methods.Scholars[1-3]have built hydraulic models to simulate the changing process of channel water flow,but the modeling requires complete and accurate topographic data,engineering parameters,and measured data;moreover,the calibration process of the roughness rate is also repetitive and cumbersome[4],and thus there are huge limitations.With the continuous progress of artificial intelligence technology and machine learning methods,the data-driven methods used for the prediction can avoid many requirements and limitations of hydraulic modeling and directly explore the inherent laws between data[5].

    Up to now,most scholars[6-9]have built neural network models for water level prediction,such as the optimized RBF neural network,LSTM neural network model,and wavelet neural network applied in groundwater level prediction,with high prediction accuracy and an excellent prediction effect.Although the relevance vector machine(RVM)prediction model[10],Mike model[11],similarity model[12],statistical model[13],and Bayesian model[14]can be constructed for water level prediction,their applications are limited to a certain extant,and hence they are not widely used in water level prediction for water transfer projects.As the neural network has been commonly used in water level prediction,and its development has gradually matured,many scholars[15-26]have made water level predictions by combining neural network models and algorithms or improving algorithms.For instance,Wu et al.[27]combined KNN,GA,and BP to predict the flood level of the Qinhuai River,and compared with the neural network model without combination,the combined method has higher prediction accuracy but is slightly more complicated.In other words,the uncombined neural network models are simple and practical.For example,Gao et al.[28]used the BP neural network to predict the water level in front of the pumping station and found that the BP neural network has great advantages in solving nonlinear problems and has significant potential in intelligent prediction.In addition,the commonly used evaluation indicators include the root mean square error(ERMS)and determination coefficient(R2)[29].

    In summary,it is a feasible research method to construct a neural network for water level prediction.Moreover,intelligent algorithms such as artificial neural networks have certain applicability conditions in hydrological prediction applications.For example,ANN has a strong nonlinear ability,but due to its simple structure,previous information can not be saved,and time series data can not be learned.RNN can retain the water level prediction at the previous moment and can effectively process sequence data,but there are defects in gradient transfer.LSTM has long and short-term memory functions and can solve gradient disappearance and gradient explosion to a certain extent,but there are still problems in long sequences,and it can not be parallelized.Restricted by the one-way flow of information,the classical BP neural network considers a limited amount of historical information and is only suitable for short-term prediction,but it has a stable structure and features versatility and simplicity,which can flexibly deal with nonlinear problems,achieve high prediction accuracy,and has strong nonlinear mapping ability.As the hydrological sequence in hydrological forecasting is greatly affected by human factors and presents a prominent nonlinear characteristic,and the BP neural network is suitable for hydrological forecasting.Since BP neural network was proposed by Rumelhart et al.[30]in 1986,it has been widely used in research on hydrological prediction.In this paper,a BP neural network was established.We used historical data to predict the water level in the forebay of the pumping station and analyzed the influence of the time series proportion and impact factors on the water level prediction.The research results can provide a new method for water level prediction and reference data for the changing trend of the water level in the forebay of the pumping station.

    1 Research method

    The water level in the forebay of the pumping station is selected as the research object.The impact factors are determined by correlation analysis and are used as the input to construct the BP neural network model,and then the prediction results are judged by the parameters of each indicator.

    1.1 Impact factor identification

    Under the influence of various hydraulic factors(section area,hydraulic gradient,roughness,etc.),there is a corresponding relationship between the section flow and the water level in the channel.As one of the monitoring sections,the water level in the forebay of the pumping station may have a hydraulic connection with the water level of the adjacent section,the flow of the pumping station,the upstream flow,and the flow difference.Taking these relevant water levels and flow as variables,we conduct a correlation analysis of each variable and the predictor,and the impact factors with a certain degree of correlation are identified.

    The impact factor identification methods adopted include Pearson′s correlation coefficient,Kendall′s correlation coefficient,Spearman′s rank correlation coefficient,and grey relational analysis(GRA).Pearson′s correlation coefficient is used to measure the degree of correlation between two variables,and Pearson′s correlation coefficient between two variables is defined as the quotient of the covariance and standard deviation between the two variables.Kendall′s correlation coefficient is a method to represent the degree of correlation of multi-column rank variables.Ifnsimilar statistical objects are sorted by a specific attribute,other attributes are usually out of order,and the ratio of the difference between same-order pairs and out-of-order pairs to the total number of pairs[n(n-1)/2]is defined as Kendall′s coefficient.Spearman′s rank correlation coefficient is a method to study the correlation between two variables according to the rank data;in other words,it is calculated according to the rank difference between each pair of two-column paired ranks,and the monotone equation is used to evaluate the correlation of the two statistical variables.The range of the correlation indicator or correlation coefficient of the above three methods is from-1 to 1:When the absolute value of the correlation coefficient is closer to 1,the correlation is higher;when it is equal to zero,there is no correlation.GRA is a quantitative method for analyzing the correlation degree of each factor in the system,which measures the degree of correlation between factors according to the degree of similarity or dissimilarity in development trends among different variable sequences.When GRA is less than 0.6,it is considered that there is no correlation,and when it is closer to 1,the correlation degree is higher.

    1.2 BP neural networks

    A BP neural network is a multilayer feedforward neural network trained by an error back-propagation algorithm,generally including the input layer,hidden layer,and output layer.The input layer has the function of information access,i.e.,signal reception.When the signal reception is completed,the information is transmitted to the hidden layer,and the number of neurons in the input layer is the numbernof input impact factors.The hidden layer is responsible for information processing and information transformation,and the number of neurons in the hidden layer ism,which is less thanN-1(Nis the number of training samples),whose value is tested in MATLAB.Then,the information is transmitted from the hidden layer to the output layer,and the output layer outputs the results.The typical structure of a three-layer network is shown in Fig.1.

    Fig.1 BP neural network model structure

    The neural network structure parameters are set as follows:maximum training times=100;required accuracy of training=1×10-8;learning rate=0.01.Upon the parameter setting,the network automatically adjusts the weights and thresholds by the back-propagation of errors,which drives the expression function in the BP neural network to obtain the optimal solution,and finally,it outputs the prediction results and the indicator values of the evaluation results.

    1.3 Evaluation criteria of prediction results

    R2,ERMS,and the mean absolute error(EMA)are used as the evaluation criteria to judge the strengths and weaknesses of the prediction results.WhenR2is closer to 1,andERMSandEMAare closer to zero,the prediction accuracy is higher.

    2 Overview of study area

    The Jiaodong Water Transfer Project is an important part of the water conservancy construction in Shandong Province,including two water transmission lines:the Yellow River Transfer Project and the Water Transfer Project from the Yellow River to Qingdao.The latter started on April 15,1986,and it was officially put into operation on November 25,1989;the Yellow River Water Transfer Project started on December 19,2003,and the whole line was completed in July 2013,with the main project put into operation in December.The Yellow River Transfer Project includes two parts:the open channel section and the pipeline section.The open channel section starts from the Songzhuang Transfer Gate and terminates at the Huangshuihe Pumping Station,passing through three pumping stations in Huibu,Dongsong,and Xinzhuang,several inverted siphons,aqueducts,and other water transfer structures,with a total length of about 160 km.The study area selected in this paper is the open channel section of the Yellow River Water Transfer Project.Specifically,the study area is around the Dongsong Pumping Station,with the upstream control node as the Huibu Pumping Station and the downstream control node as the control gate on the port.The building distribution of this section and buildings along the line are shown in Fig.2.

    Fig.2 Canal section and building along the distribution

    3 Results and discussion

    3.1 Identification results of impact factors

    The relationship between the water level and flow rate and the influence of human factors were considered when studying the water level in the forebay of the Dongsong Pumping Station in the future.In addition to the water level of the adjacent section,the flow of the Dongsong Pumping Station,the flow of the Huibu Pumping Station,and the flow difference between the two pumping stations were also selected as the impact factors for prediction.The impact factors are all the impact factors at the current time.Tab.1 shows the correlation analysis results between each factor and the water level of the forebay under different methods.

    Tab.1 Correlation analysis of impact factors

    It can be seen from Tab.1 that the order of the correlation of impact factors from high to low is the water level in front of the Dongsong Pumping Station,the flow difference of the two pumping stations,downstream water level of the Haizheng River inverted siphon,upstream water level of the Haizheng River inverted siphon,the flow of the pumping station,flow of the Dongsong Pumping Station,and upstream flow of the pumping station.The coefficients of the first four impact factors are all between 0.8 and 0.9,which are identified as impact factors with a high correlation and are given priority when modeling.Considering the indicators of the last three impact factors,only GRA indicates that the degree of correlation is high,and thus they are identified as impact factors with a low correlation,which can be considered in modeling but are not importantly considered.

    3.2 Analysis of water level prediction results

    The BP neural network model was used to predict the water level in the forebay of pumping stations,and the prediction results were analyzed from the aspects of time series and impact factors.

    3.2.1Timeseries

    The data of different time scales were trained and verified according to a certain proportion,and the training duration and prediction accuracy were compared.The results indicate that the optimal ratio of the training period to the prediction period is 7∶3.Reducing the ratio will lessen the prediction accuracy,while increasing the ratio almost does not change the prediction accuracy,and the required data volume is significantly raised.

    We used 3 600 data to predict the water level change in the next two hours,andR2,ERMS,andEMAat the ratio of 7∶3 were maintained at about 0.95,0.04,and 0.03,respectively.When the ratio was increased,the prediction effect of each indicator was slightly improved,but the difference was not large;when the ratio was higher than 5∶1,the prediction accuracy basically would not see a rise.The specific comparison is shown in Fig.3 and Fig.4.

    Fig.3 The result of water level forecast in the next 2 h(7∶3)

    Fig.4 The result of water level forecast in the next 2 h(5∶1)

    Three groups of three-month data were trained and validated at a ratio of 7∶3.R2was maintained at 0.93-0.98,ERMSat 0.02-0.05,andEMAat 0.02-0.04.The prediction results are shown in Fig.5.

    Fig.5 The result of water forecast change in the next 2 h(7∶3)

    The data of one month was verified at a ratio of 7∶3,and the verification results indicated that the ratio could still be applied to the amount of data of one month,as shown in Fig.6.

    Fig.6 The result of water level forecast in the next 2 h(7∶3)

    It can be seen from the above that the optimal ratio is suitable for data of different time scales,and the determination of the optimal ratio can not only save the learning time of the neural network but also improve the prediction accuracy,which has a great influence on the model.

    3.2.2Impactfactors

    The number of impact factors.When there is a high correlation between impact factors and predictors,a higher number of impact factors leads to more accurate prediction results.However,the increase in the number of impact factors can elevate the data demand during the training period.Therefore,to reduce the data demand and ensure prediction accuracy,we employed different numbers of impact factors for training and verification.The verification results revealed that at least three to five impact factors should be selected for training in the short term(one to three months),and at least five to seven impact factors with the greatest correlation were required for the data volume of three months to a year.

    Types of impact factors.Studies have shown that higher prediction accuracy can be achieved when the most relevant impact factors are selected for modeling.According to the correlation analysis results of the impact factors,the three impact factors with the highest correlation are the water level of the pumping station at the current moment,the water level of the upstream adjacent nodes,and the flow difference.Three impact factors were applied to train and predict data of one month,and the above three impact factors registered the best prediction effect,as shown in Fig.7.

    Fig.7 3-factor water level prediction result map(7∶3)

    The time interval of the impact factors.When the data interval was 2 h,the water level of the Dongsong Pumping Station in the future was predicted:The water level prediction results in the next two hours were relatively stable,withR2greater than 0.9 and smallERMSandEMA;the prediction results of water levels in the next four hours were general,withR2of 0.8-0.9 andERMSandEMAslightly larger than those predicted in two hours;the prediction results of the water level in the next six hours were poor:R2was unstable and had a large variation range,and it was only about 0.7 when the results were good,whileERMSandEMAwere overly great.In other words,when the data does not change during the training period,a longer prediction time is accompanied by lower prediction accuracy.The three-month data were screened to change the interval from 2 h to 4 h,and the water level of the Dongsong Pumping Station in the next 4 h was predicted.The prediction results are shown in Fig.8.

    Fig.8 The result of water level change in the next 4 h(7∶3)

    The ten-month data were screened at an interval of 4 h,and the water level in the next 4 h was predicted.The prediction results are shown in Fig.9.

    Fig.9 The result of water level change in the next 4 h(7∶3)

    The research results demonstrate that compared with the direct prediction using the data at an interval of 2 h,the prediction using the data at an interval of 4 h registers higher accuracy in predicting the water level of the pumping station in the next 4 h,withR2,ERMS,andEMAin the range of 0.82-0.93,0.05-0.06,and 0.04-0.05,respectively.

    The one-year data were screened to convert the interval from 2 h to 6 h,and the water level of the Dongsong Pumping Station in the next 6 h was predicted.The prediction results show that the prediction effect after screening is worse than that of the direct prediction using data at an interval of 2 h.Upon analysis,the above phenomenon is caused by the overly long interval of 6 h,which can not fully reflect the changing laws of each factor.Therefore,the prediction result after screening is worse than that using the data at an interval of 2 h directly.

    4 Conclusion

    The influence of the time series ratio on the water level prediction results:The optimal ratio of the training period to the prediction period is 7∶3,and the increase in the ratio cannot significantly change the prediction accuracy,while the decrease in the ratio can lead to a worse prediction effect.

    The effect of impact factors on the prediction results:The amount of data corresponds to the number of impact factors.The data volume of three months requires three to five impact factors for training,and the data volume of three months to a year requires five to seven impact factors to ensure the same prediction effect.

    The influence of the data interval on the prediction results:In general,when the data interval remains unchanged,the prediction accuracy gradually decreases with the increase in the prediction time,but when the data can reflect the changing laws of each factor,the data interval and the prediction time are the same,and the prediction effect is better.

    猜你喜歡
    前池泵站水位
    泵站非常規(guī)進(jìn)水前池的優(yōu)化設(shè)計(jì)
    側(cè)邊機(jī)組故障對(duì)泵站前池流態(tài)的影響
    張家邊涌泵站建設(shè)難點(diǎn)及技術(shù)創(chuàng)新實(shí)踐
    水泵進(jìn)水前池及流道的三維數(shù)值模擬研究
    中小型水電站壓力前池安全運(yùn)行探討
    2016年河南省己建成泵站數(shù)量
    全省已建成泵站數(shù)量
    基于MFAC-PID的核電站蒸汽發(fā)生器水位控制
    河南省2014年已建成泵站數(shù)量
    基于PLC的水位控制系統(tǒng)的設(shè)計(jì)與研究
    河南科技(2014年4期)2014-02-27 14:07:11
    深爱激情五月婷婷| 赤兔流量卡办理| 三级经典国产精品| 日韩欧美精品v在线| 中文精品一卡2卡3卡4更新| 一二三四中文在线观看免费高清| 又爽又黄无遮挡网站| 午夜免费男女啪啪视频观看| 永久网站在线| 亚洲自偷自拍三级| 成人无遮挡网站| 亚洲精品成人av观看孕妇| 乱码一卡2卡4卡精品| 久久久久国产网址| 热99在线观看视频| 国精品久久久久久国模美| 韩国高清视频一区二区三区| 国产成人午夜福利电影在线观看| 国产黄频视频在线观看| 国产黄色小视频在线观看| 三级毛片av免费| 欧美97在线视频| 高清午夜精品一区二区三区| 欧美精品国产亚洲| 国产成人aa在线观看| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 欧美高清性xxxxhd video| 内射极品少妇av片p| av在线观看视频网站免费| 亚洲精品色激情综合| 国产av不卡久久| videossex国产| 亚洲四区av| 日本三级黄在线观看| 女人久久www免费人成看片| 亚洲精品日韩av片在线观看| 欧美激情在线99| 免费看日本二区| 熟妇人妻久久中文字幕3abv| 深夜a级毛片| 久久综合国产亚洲精品| 久久久久久久国产电影| 人体艺术视频欧美日本| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 国产综合懂色| 午夜福利高清视频| 我要看日韩黄色一级片| 99久国产av精品| 亚洲,欧美,日韩| 中文在线观看免费www的网站| 大香蕉久久网| 日韩大片免费观看网站| 国产精品久久久久久精品电影小说 | 只有这里有精品99| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品| 成年版毛片免费区| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 成人美女网站在线观看视频| 男女边摸边吃奶| 精品一区在线观看国产| 99久国产av精品| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 日韩视频在线欧美| 国产黄频视频在线观看| 性插视频无遮挡在线免费观看| 九九爱精品视频在线观看| 免费无遮挡裸体视频| 成人国产麻豆网| 嫩草影院入口| 青春草视频在线免费观看| 成人毛片a级毛片在线播放| 高清av免费在线| 简卡轻食公司| 国产伦在线观看视频一区| 中文欧美无线码| 久久99热这里只频精品6学生| 特大巨黑吊av在线直播| 夜夜看夜夜爽夜夜摸| 亚洲一级一片aⅴ在线观看| 国内精品宾馆在线| 亚洲精华国产精华液的使用体验| 婷婷色综合大香蕉| 春色校园在线视频观看| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| 国产精品女同一区二区软件| 国产久久久一区二区三区| 久久久久国产网址| 国产成年人精品一区二区| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 男女边摸边吃奶| 18禁在线播放成人免费| 国产乱人偷精品视频| 熟女电影av网| 中国国产av一级| 成人二区视频| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 男女那种视频在线观看| 蜜臀久久99精品久久宅男| 一个人免费在线观看电影| 免费看日本二区| 亚洲av二区三区四区| 99热网站在线观看| 日韩 亚洲 欧美在线| 中国美白少妇内射xxxbb| 五月伊人婷婷丁香| 亚洲最大成人手机在线| 亚洲性久久影院| 久久精品国产自在天天线| 能在线免费看毛片的网站| 国产精品麻豆人妻色哟哟久久 | 建设人人有责人人尽责人人享有的 | 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 国产 一区精品| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲在线观看片| 中文字幕av成人在线电影| 免费看美女性在线毛片视频| 国产综合懂色| 男女啪啪激烈高潮av片| 国产高清有码在线观看视频| 国产色婷婷99| 日本午夜av视频| 好男人视频免费观看在线| 午夜精品一区二区三区免费看| 亚洲精品视频女| 视频中文字幕在线观看| 国产一区有黄有色的免费视频 | 国产在视频线精品| 欧美日本视频| 色吧在线观看| 青春草国产在线视频| 岛国毛片在线播放| 国产成人福利小说| 狠狠精品人妻久久久久久综合| 人体艺术视频欧美日本| 免费大片18禁| 黄色欧美视频在线观看| 精品久久久久久久久亚洲| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 最近手机中文字幕大全| 色5月婷婷丁香| 久久这里只有精品中国| 久久人人爽人人片av| 少妇熟女aⅴ在线视频| 高清日韩中文字幕在线| 99热6这里只有精品| 看免费成人av毛片| 色哟哟·www| 婷婷色av中文字幕| 国产免费一级a男人的天堂| 嫩草影院精品99| 午夜精品国产一区二区电影 | 亚洲精品日韩在线中文字幕| 亚洲内射少妇av| 亚洲欧美清纯卡通| 精品少妇黑人巨大在线播放| 国产极品天堂在线| 丝袜美腿在线中文| 80岁老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 人妻少妇偷人精品九色| 国产探花极品一区二区| 黑人高潮一二区| a级毛色黄片| 亚洲成色77777| 久久久国产一区二区| 亚洲精品456在线播放app| 九九在线视频观看精品| 国产黄色小视频在线观看| 国产高清三级在线| eeuss影院久久| 老司机影院成人| 国产午夜精品论理片| 国产精品久久久久久精品电影| 国产人妻一区二区三区在| 少妇熟女aⅴ在线视频| 男的添女的下面高潮视频| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆| 亚洲自拍偷在线| 免费观看的影片在线观看| 在线播放无遮挡| 久久久成人免费电影| 国产精品美女特级片免费视频播放器| 精品国产一区二区三区久久久樱花 | 国内精品一区二区在线观看| 成人特级av手机在线观看| 丝瓜视频免费看黄片| 国产爱豆传媒在线观看| 亚洲综合精品二区| 亚洲无线观看免费| 床上黄色一级片| 亚洲国产成人一精品久久久| 午夜日本视频在线| 国产精品熟女久久久久浪| 国产伦一二天堂av在线观看| 国产亚洲午夜精品一区二区久久 | 网址你懂的国产日韩在线| 亚洲av成人av| 精品人妻一区二区三区麻豆| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 中国美白少妇内射xxxbb| 美女黄网站色视频| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 亚洲欧美清纯卡通| 搞女人的毛片| 免费电影在线观看免费观看| 国产精品熟女久久久久浪| 一级毛片 在线播放| 亚洲18禁久久av| 好男人在线观看高清免费视频| 午夜久久久久精精品| 国产大屁股一区二区在线视频| 少妇的逼水好多| 1000部很黄的大片| 国产成人免费观看mmmm| 一区二区三区乱码不卡18| 久久精品国产鲁丝片午夜精品| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 舔av片在线| 成年人午夜在线观看视频 | 国产精品99久久久久久久久| 亚洲精品日韩av片在线观看| 嫩草影院新地址| 欧美3d第一页| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 久久久久网色| 欧美区成人在线视频| 我要看日韩黄色一级片| 欧美潮喷喷水| 亚洲怡红院男人天堂| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 97热精品久久久久久| 中文资源天堂在线| 亚洲av免费在线观看| 午夜福利成人在线免费观看| av播播在线观看一区| 日本欧美国产在线视频| 一个人看的www免费观看视频| 91久久精品国产一区二区三区| 国产高清三级在线| 亚洲国产av新网站| 免费看av在线观看网站| 日日啪夜夜撸| 国产黄色视频一区二区在线观看| 午夜福利在线观看免费完整高清在| 视频中文字幕在线观看| 日韩成人伦理影院| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 日韩中字成人| 建设人人有责人人尽责人人享有的 | 69人妻影院| 国产在线男女| 777米奇影视久久| 狠狠精品人妻久久久久久综合| 久久久午夜欧美精品| 老司机影院成人| 三级男女做爰猛烈吃奶摸视频| 美女xxoo啪啪120秒动态图| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| 亚洲自拍偷在线| 久久99热这里只频精品6学生| 久久韩国三级中文字幕| 久久这里只有精品中国| 卡戴珊不雅视频在线播放| 免费看日本二区| 国产探花极品一区二区| av免费在线看不卡| 在线免费十八禁| 成人午夜精彩视频在线观看| 亚洲精品日韩在线中文字幕| 18禁在线播放成人免费| 丝瓜视频免费看黄片| 欧美xxⅹ黑人| 99九九线精品视频在线观看视频| 晚上一个人看的免费电影| 精品一区二区三卡| 免费观看在线日韩| 免费av毛片视频| 99久久精品国产国产毛片| 成人欧美大片| 国产乱人视频| 欧美日韩视频高清一区二区三区二| 色视频www国产| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄| 久久久色成人| 午夜免费男女啪啪视频观看| 亚洲熟女精品中文字幕| 嫩草影院入口| 秋霞伦理黄片| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 联通29元200g的流量卡| 亚洲电影在线观看av| 男插女下体视频免费在线播放| 最近手机中文字幕大全| 亚洲不卡免费看| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 亚洲国产精品成人久久小说| 久久久久久久亚洲中文字幕| freevideosex欧美| 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 亚洲精品第二区| 国产精品.久久久| 亚洲18禁久久av| 亚洲国产色片| 午夜免费男女啪啪视频观看| 久久国产乱子免费精品| 欧美日韩国产mv在线观看视频 | 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 日本爱情动作片www.在线观看| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| 丝袜喷水一区| 精品人妻偷拍中文字幕| 青青草视频在线视频观看| 午夜精品国产一区二区电影 | 免费看光身美女| 亚洲一级一片aⅴ在线观看| 99热6这里只有精品| 看免费成人av毛片| 九色成人免费人妻av| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av日韩在线播放| 大香蕉97超碰在线| 亚洲av日韩在线播放| 一本一本综合久久| 午夜福利高清视频| 国产乱来视频区| 国产黄色免费在线视频| 色视频www国产| 日本与韩国留学比较| 日韩一区二区三区影片| 黄片无遮挡物在线观看| 成人亚洲精品av一区二区| 亚洲国产精品sss在线观看| 亚洲成人一二三区av| 国产真实伦视频高清在线观看| 亚洲精品456在线播放app| 日本色播在线视频| 中文字幕免费在线视频6| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕制服av| 五月伊人婷婷丁香| 别揉我奶头 嗯啊视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久久久丰满| 亚洲怡红院男人天堂| 又爽又黄a免费视频| 高清日韩中文字幕在线| 亚洲三级黄色毛片| 国产亚洲最大av| 欧美日本视频| 一区二区三区四区激情视频| 国产精品1区2区在线观看.| 亚洲国产最新在线播放| 精品一区二区三区人妻视频| 国产麻豆成人av免费视频| 天天躁夜夜躁狠狠久久av| 非洲黑人性xxxx精品又粗又长| 亚洲av国产av综合av卡| 久热久热在线精品观看| 精品国产三级普通话版| 精品人妻一区二区三区麻豆| 亚洲av成人av| 97超碰精品成人国产| 免费看美女性在线毛片视频| 伦理电影大哥的女人| 午夜福利在线观看吧| 在线天堂最新版资源| 精品欧美国产一区二区三| 午夜福利高清视频| 成年免费大片在线观看| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 亚洲av.av天堂| 精品久久久噜噜| 国产一区二区亚洲精品在线观看| 国产伦在线观看视频一区| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 亚洲精品国产av成人精品| 国产精品一区二区性色av| 亚洲成人久久爱视频| 日日啪夜夜撸| 中文字幕制服av| 精品一区二区免费观看| 亚洲三级黄色毛片| 欧美性猛交╳xxx乱大交人| 日韩国内少妇激情av| 一个人观看的视频www高清免费观看| 国产老妇女一区| 五月天丁香电影| 日韩av在线免费看完整版不卡| 韩国高清视频一区二区三区| 成人国产麻豆网| 免费黄频网站在线观看国产| 久久精品综合一区二区三区| 伦精品一区二区三区| 欧美激情在线99| 人体艺术视频欧美日本| 亚洲精品国产av成人精品| 在线a可以看的网站| 男女边吃奶边做爰视频| 97人妻精品一区二区三区麻豆| 成人性生交大片免费视频hd| 欧美区成人在线视频| 一二三四中文在线观看免费高清| 高清视频免费观看一区二区 | 别揉我奶头 嗯啊视频| av天堂中文字幕网| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 人人妻人人看人人澡| xxx大片免费视频| a级毛色黄片| 日本免费在线观看一区| 毛片一级片免费看久久久久| 国产精品不卡视频一区二区| 欧美精品国产亚洲| 国产乱人偷精品视频| 日韩欧美精品v在线| 欧美xxxx性猛交bbbb| 亚洲成人av在线免费| 噜噜噜噜噜久久久久久91| av线在线观看网站| 国产黄频视频在线观看| 51国产日韩欧美| 寂寞人妻少妇视频99o| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 亚洲最大成人av| 精品不卡国产一区二区三区| 插阴视频在线观看视频| 久久精品人妻少妇| 国产91av在线免费观看| 亚洲18禁久久av| 在线播放无遮挡| 久久韩国三级中文字幕| 日韩欧美 国产精品| 美女高潮的动态| 国产精品福利在线免费观看| 成年免费大片在线观看| 日本午夜av视频| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 成人一区二区视频在线观看| 精品久久国产蜜桃| 少妇熟女aⅴ在线视频| 春色校园在线视频观看| 只有这里有精品99| 极品少妇高潮喷水抽搐| 亚洲精品国产成人久久av| 国内精品一区二区在线观看| 久久久色成人| 精品人妻视频免费看| 国产大屁股一区二区在线视频| 丰满乱子伦码专区| 国产黄片美女视频| 成人性生交大片免费视频hd| 3wmmmm亚洲av在线观看| 一级爰片在线观看| 免费大片18禁| 你懂的网址亚洲精品在线观看| 三级毛片av免费| 久久久久精品久久久久真实原创| 免费人成在线观看视频色| 国产黄色小视频在线观看| 熟女电影av网| 色视频www国产| 高清日韩中文字幕在线| 日韩成人伦理影院| 一本久久精品| 日本与韩国留学比较| 中文在线观看免费www的网站| av一本久久久久| 白带黄色成豆腐渣| av福利片在线观看| 国产中年淑女户外野战色| 又大又黄又爽视频免费| 可以在线观看毛片的网站| 日本av手机在线免费观看| 欧美三级亚洲精品| 美女高潮的动态| 国产 亚洲一区二区三区 | 十八禁国产超污无遮挡网站| 欧美一区二区亚洲| 在线天堂最新版资源| 久久99热6这里只有精品| 一级毛片 在线播放| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 国产精品国产三级专区第一集| 尤物成人国产欧美一区二区三区| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 99热全是精品| 免费电影在线观看免费观看| 伦精品一区二区三区| 99久久精品国产国产毛片| 国产一区二区三区av在线| 国产在线一区二区三区精| 国产精品爽爽va在线观看网站| 夫妻性生交免费视频一级片| 久久久久性生活片| 免费电影在线观看免费观看| 麻豆成人av视频| 亚洲欧美清纯卡通| 美女大奶头视频| 成人综合一区亚洲| 91久久精品国产一区二区成人| 中文天堂在线官网| av线在线观看网站| 国产精品精品国产色婷婷| 亚洲国产高清在线一区二区三| 久久精品久久久久久久性| 亚洲一级一片aⅴ在线观看| 久久久久久久久久成人| 亚洲综合精品二区| 免费看a级黄色片| 乱码一卡2卡4卡精品| 在线观看美女被高潮喷水网站| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 精品久久国产蜜桃| 老司机影院毛片| 国产亚洲一区二区精品| 亚洲国产欧美在线一区| 少妇熟女aⅴ在线视频| 精品人妻熟女av久视频| 男女下面进入的视频免费午夜| 免费黄频网站在线观看国产| 国产黄a三级三级三级人| 国产成人午夜福利电影在线观看| 欧美性猛交╳xxx乱大交人| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 岛国毛片在线播放| 好男人视频免费观看在线| 看十八女毛片水多多多| 成人无遮挡网站| 亚洲电影在线观看av| 成年人午夜在线观看视频 | 一级a做视频免费观看| 18+在线观看网站| 国产综合精华液| 黄色配什么色好看| 国模一区二区三区四区视频| 你懂的网址亚洲精品在线观看| 精品一区二区三区视频在线| 国产永久视频网站| 久久久久性生活片| av国产免费在线观看| 直男gayav资源| 丰满人妻一区二区三区视频av| 亚洲在线自拍视频| 亚洲欧洲日产国产| 伦精品一区二区三区| 91精品伊人久久大香线蕉| 国内精品一区二区在线观看| 亚洲va在线va天堂va国产| 我的老师免费观看完整版| 亚洲欧美一区二区三区国产| 亚洲欧美精品专区久久| 成年av动漫网址| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看| 亚洲欧美日韩卡通动漫| 日韩av在线免费看完整版不卡| 丝袜喷水一区| 丝袜美腿在线中文| 亚洲真实伦在线观看| 国产成人a区在线观看| 男女视频在线观看网站免费| 自拍偷自拍亚洲精品老妇| 国产淫语在线视频| 一区二区三区乱码不卡18| eeuss影院久久|