• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models

    2022-11-10 12:15:16ShangJieJinRuiQiZhuLingFengWangHaiLiLiJingFeiZhangandXinZhang
    Communications in Theoretical Physics 2022年10期

    Shang-Jie Jin,Rui-Qi Zhu,Ling-Feng Wang,Hai-Li Li,Jing-Fei Zhang and Xin Zhang,2,3

    1 Department of Physics,College of Sciences,Northeastern University,Shenyang 110819,China

    2 Frontiers Science Center for Industrial Intelligence and Systems Optimization,Northeastern University,Shenyang 110819,China

    3 Key Laboratory of Data Analytics and Optimization for Smart Industry(Northeastern University),Ministry of Education,China

    Abstract Multi-messenger gravitational wave(GW)observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the Universe.In particular,for the third-generation GW detectors,i.e.the Einstein Telescope(ET)and the Cosmic Explorer(CE),proposed to be built in Europe and the U.S.,respectively,lots of GW standard sirens with known redshifts could be obtained,which would exert great impacts on the cosmological parameter estimation.The total neutrino mass could be measured by cosmological observations,but such a measurement is model-dependent and currently only gives an upper limit.In this work,we wish to investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass,in particular in the interacting dark energy(IDE)models.We find that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models,compared to the current limit.The improvements in the IDE models are weaker than those in the standard cosmological model.Although the limit on neutrino mass can only be slightly updated,the constraints on other cosmological parameters can be significantly improved by using the GW observations.

    Keywords:gravitational-wave standard sirens,neutrino mass,interacting dark energy model,cosmological parameter estimation,Einstein telescope,cosmic explorer

    1.Introduction

    In the recent two decades,the study of cosmology has entered the era of precision cosmology.A standard model of cosmology has been established,usually called the Λ cold dark matter(ΛCDM)model.The measurements of cosmic microwave background(CMB)anisotropies from the Planck satellite mission have constrained the six primary parameters of the ΛCDM model with unprecedented precision.However,with the measurement precisions of the cosmological parameters improved,some puzzling issues appeared.For example,the inferred values of the Hubble constant from the Planck observation of the CMB anisotropies(based on the ΛCDM model)[1]and from the Cepheidsupernova distance ladder measurement[2]are inconsistent,with the tension between them more than 4σ significance[2].Namely,there is an inconsistency of measurements between the early and late universe,which is the so-called ‘Hubble tension’ problem.The Hubble tension recently has been widely discussed in the literature(see,e.g.[3–31]).Furthermore,theoretically,for the ΛCDM model,the cosmological constant Λ,which is equivalent to the density of vacuum energy,has always been suffering from serious theoretical challenges,such as the ‘fine-tuning’ and‘cosmic coincidence’ problems[32,33].Thus,it is hard to say that the ΛCDM model with only six base parameters is the eventual model of cosmology.All of these facts actually imply that the ΛCDM model needs to be further extended and some extra parameters concerning new physics need to be introduced into the new models.Of course,some novel cosmological probes should also be further developed.

    To extend the ΛCDM cosmology,the primary idea is to consider the dynamical dark energy with the dark energy density no longer a constant.In this class of models,the simplest one is the model with dark energy having a constant equation-of-state(EoS)parameter,w=pde/ρde=constant,which is usually called the wCDM model.For some popular dark energy models,see,e.g.[34–51].There is also a class of models known as the interacting dark energy(IDE)models in which some direct,non-gravitational interaction between dark energy and dark matter is considered.The interaction between dark sectors could help resolve(or alleviate)the coincidence problem of dark energy,and also can help alleviate the Hubble tension.The IDE models have been widely studied and deeply explored till now(see,e.g.[11,13,52–97]).

    Currently,the mainstream cosmological probes mainly include,e.g.the CMB anisotropies,baryon acoustic oscillations(BAO),type Ia supernovae(SN),direct determination of the Hubble constant(H0),weak gravitational lensing,redshift space distortions,and clusters of galaxies.The combinations of these cosmological data based on the electromagnetic(EM)observations have provided precise measurements for the base cosmological parameters.But for some extended parameters beyond the standard ΛCDM model,e.g.the EoS parameter of dark energy,the tensor-to-scalar ratio,and the total mass of neutrinos,they still cannot be precisely measured.Therefore,on one hand,the EM observations should be further greatly developed,and on the other hand,some novel cosmological probes are also needed to be developed in the future.In the next few decades,the gravitational wave(GW)standard siren observation is one of the most promising cosmological probes.

    The detection of the GW event GW170817[98]from the binary neutron star(BNS)merger initiated the multi-messenger astronomy era.Because in this event,not only GWs but also the EM signals in various bands were detected for the same transient source[99,100].From the analysis of the waveform of GW,one can obtain the absolute luminosity distance to the source.Furthermore,the redshift of the source can also be determined by identifying the EM counterpart of the GW source.With the known distance and redshift of a celestial source,a distance–redshift relation can be established,which can be used to explore the expansion history of the Universe[101].Such a tool for exploring the evolution of the Universe provided by GWs is called ‘standard sirens’(note here that the case having EM counterparts is usually referred to as bright sirens,to be differentiated from the case of dark sirens without EM counterparts)[102].

    The main advantage of the GW standard siren method is that the absolute luminosity distances can be measured.This is obviously superior to the SN observation,in that the latter can only measure the ratio of luminosity distances at different redshifts.In addition,the GW observation can observe much higher redshift events,compared to the SN observation.

    It is indisputable that the GW standard siren will be developed into a powerful cosmological probe in the future.The third-generation(3G)ground-based GW detectors,such as the Einstein Telescope(ET)[103,104]in Europe and the Cosmic Explorer(CE)[105,106]in the United States,have been proposed.In the 2030s,ET will be brought into operation.CE will start its observation in the mid-2030s.The 3G ground-based GW detectors have a much wider detectionfrequency range and a much better detection sensitivity,which can observe much more BNS events at much deeper redshifts.Recently,the GW standard sirens have been widely discussed in the literature[107–134](see[135]for a recent review).It is found that the GW standard siren observations from ET and CE would play an important role in the cosmological parameter estimation[136–141].

    In cosmology,neutrinos play a crucial role in helping shape the large-scale structure and the expansion history of the Universe.The phenomenon of neutrino oscillation indicates that neutrinos have masses and there are mass splittings between different neutrino species.However,it is extremely difficult to measure the absolute masses of neutrinos.Neutrino oscillation experiments cannot measure the absolute neutrino masses,but can only give the squared mass differences between the different mass eigenstates of neutrinos.The solar and reactor experiments giveand the atmospheric and accelerator beam experiments giveThus,there are two possible mass hierarchies of the neutrino mass spectrum,namely,the normal hierarchy(NH)with m1<m2?m3and the inverted hierarchy(IH)with m3?m1<m2.In addition,in some cases one also considers the cosmological models of neglecting the neutrino mass splittings,namely m1=m2=m3,which is usually called the degenerate hierarchy(DH).

    Although the neutrino masses can hardly be measured by particle physics experiments,they can be effectively constrained by cosmological observations.This is because massive neutrinos can exert some impacts on the evolution of the Universe.Using the current cosmological observations,an upper limit on the total neutrino mass ∑mνcan be obtained.So far,the most stringent limit on the total neutrino mass comes from the Planck 2018 CMB observation,and the combination CMB+BAO+SN gives the 95%CL upper limit∑mν<0.12 eV,for the DH case in the ΛCDM model.See e.g.[144–181]for studies on neutrino mass in cosmology.

    In a recent forecast[138],it was shown that the standard sirens observed by the ET can be used to improve the constraints on the total neutrino mass in the ΛCDM model.Using 1000 GW standard siren data points of the BNS merger events,it is found that the upper limits on ∑mνcan be tightened by about 10%[138].However,weighing neutrinos in cosmology depends on the cosmological model considered,and thus one would be curious about whether the role the GW data play in helping measure the neutrino mass will change if an extension to the ΛCDM model is considered.In this work,we consider the IDE models,and we wish to see what will happen on measuring neutrino mass when the IDE models are considered.

    In an IDE model,the energy conservation equations for dark energy and CDM satisfy

    where Q is the energy transfer rate,ρdeand ρcrepresent the energy densities of dark energy and CDM,respectively,H is the Hubble parameter,and a dot represents the derivative with respect to the cosmic time t.In this work,we consider the interaction form of Q=βHρc,where β is a dimensionless coupling parameter.Here,β >0 and β <0 mean CDM decaying into dark energy and dark energy decaying into CDM,respectively.

    In this work,we consider the IDE versions of the ΛCDM and wCDM models,which are called the IΛCDM and IwCDM models.We will discuss the cosmological parameter estimation in the IΛCDM+∑mνand IwCDM+∑mνmodels.Moreover,we will consider the three neutrino mass hierarchy cases,i.e.the NH,IH,DH cases.To avoid the perturbation divergence problem in the IDE models,in this work we employ the extended parameterized post-Friedmann(ePPF)framework[182,183]to calculate the perturbations of dark energy.

    We simulate the GW standard siren data observed by ET and CE,and we use these simulated GW data to investigate how well they can be used to improve the constraints on the neutrino mass as well as other cosmological parameters on the basis of the current CMB+BAO+SN constraints.

    The rest of this paper is organized as follows.In section 2.1,we introduce the methods of simulating the GW standard siren data.In section 2.2 we describe the EM cosmological observations used in this work.In section 2.3,we briefly describe the methods of constraining cosmological parameters.In section 3,we give the constraint results and make some relevant discussions.The conclusion is given in section 4.

    2.Method and data

    In this section,we first introduce the method of simulating the GW standard siren data from ET and CE.Then,we describe the current mainstream EM cosmological observations used in this work.Finally,we briefly introduce the method of constraining cosmological parameters.

    2.1.Simulation of the GW standard sirens

    The primary GW sources in the detection frequency band of the ground-based GW detectors are the mergers of BNS,binary stellar-mass black holes(BBH),and so on.The BNS mergers could produce rich EM signals[184]that can be detected by the EM observatories,thus enabling precise redshift measurements.Owing to the fact that there are no EM signals produced in the process of the BBH mergers,their redshifts could not be precisely measured through the detection of the EM counterparts.Hence,in this work,we only simulate the GW standard sirens from the BNS mergers.

    Figure 1.The redshift distribution of BNS mergers.

    Following[107,185],the redshift distribution of the BNS mergers takes the form

    where dC(z)is the comoving distance at the redshift z,and R(z)represents the redshift evolution of the burst rate,which takes the form[107,186,187]

    In figure 1,we show the redshift distribution of BNS mergers.

    Considering the transverse-traceless gauge,the strain h(t)in the GW interferometers can be described by two independent polarization amplitudes,h+(t)and h×(t)

    where F+and F×are the antenna response functions,θ and φ describe the location of the GW source relative to the GW detector,and ψ is the polarization angle.

    The antenna response functions of ET are[185]However,in this work,we simulate GW events by detecting short γ-ray bursts(SGRBs)to determine sources’ redshifts.Owing to the fact that SGRBs are strongly beamed[197],the detectable inclination angle is about ι ≤20°[192,198].Hence,in the present work,we set the inclination angle to be in the range of[0,20°].This is an ideal treatment,but for this work,since the number of simulated GW standard sirens is fixed,it has little effect on showing the impact of GW standard sirens on breaking cosmological parameter degeneracies and improving constraints on the cosmological parameters.

    Figure 2.Distribution of as a function of redshift.The color indicates the SNR of the simulated GW standard sirens.Upper:1000 GW standard sirens from a 10-year observation of ET.Lower:1000 GW standard sirens from a 10-year observation of CE.

    In figure 3,we show the simulated GW standard sirens from ET and CE.In the left panel,we show the standard siren data points without Gaussian randomness,where the central value of the luminosity distance is calculated by the fiducial cosmological model.In the right panel,in order to reflect the fluctuations in measured values resulting from actual observations,we show the standard siren data points with Gaussian randomization(the central values are populated according to a Gaussian distribution with mean being dLand standard deviation beingσdL).In principle,the right panel is more representative of actual observational data,but the central values of dLhave no effect on determining the absolute errors of cosmological parameters.Therefore,we use the data points in the left panel to constrain the cosmological models,because this is more helpful in investigating how the parameter degeneracies are broken to improve measurement precisions of cosmological parameters.We can clearly see that the measurement errors of dLfrom CE are smaller than those from ET,because CE has a better sensitivity than ET.

    2.2.Other cosmological observations

    In this work,we consider three current mainstream EM cosmological observations,including CMB,BAO,and SN.For the CMB data,we consider the Planck TT,TE,EE spectra at? ≥30,the low-? temperature Commander likelihood,and the low-? SimAll EE likelihood from the Planck 2018 release[1].For the BAO data,we consider the measurements from 6dFGS(zeff=0.106)[199],SDSS-MGS(zeff=0.15)[200],and BOSS DR12(zeff=0.38,0.51,and 0.61)[201].For the SN data,we use the latest Pantheon sample,which is comprised of 1048 data points from the Pantheon compilation[202].

    2.3.Method of constraining cosmological parameters

    To resolve the large-scale instability problem in the IDE cosmology[203],we apply the ePPF approach[182,183]for the IDE scenario so that the whole parameter space of IDE models can be explored without any divergence of the dark energy perturbation.In this work,we employ the modified version of the available Markov-Chain Monte Carlo package CosmoMC[204],with the ePPF code[182,183]inserted,to constrain the neutrino mass and other cosmological parameters.In order to show the impacts of GW data from ET and CT on constraining cosmological parameters,we use CMB+BAO+SN,CMB+BAO+SN+ET,and CMB+BAO+SN+CE to make our analysis.For convenience,we use CBS to standard for CMB+BAO+SN in the following.

    For the GW standard siren observation with N data points,the χ2function can be written as

    Figure 3.The simulated GW standard siren data points observed by ET and CE.The blue data points represent the 1000 standard sirens from the 10-year observation of ET and the orange data points represent the 1000 standard sirens from the 10-year observation of CE.Left:the standard siren data points without Gaussian randomness,where the central values of the luminosity distances are calculated by the fiducial cosmological model,and the solid green line represents the dL(z)curve predicted by the fiducial model.Right:the standard siren data points with Gaussian randomization,reflecting the fluctuations in measured values resulting from actual observations.

    Figure 4.Two-dimensional marginalized contours(68.3% and 95.4% confidence level)in the ∑mν–H0 and Ωm–H0 planes using the CBS,CBS+ET,and CBS+CE data.Here CBS stands for CMB+BAO+SN.

    3.Results and discussion

    In this section,we report the constraint results of cosmological parameters in the ΛCDM+∑mν,IΛCDM+∑mν,and IwCDM+∑mνmodels.In these models,the three mass hierarchy cases of neutrinos,i.e.the NH,IH,and DH cases,have been considered.The constraint results of the NH case are shown as representative in figures 4–6 and the constraint results are summarized in tables 1–3.Note that for the constraints on the total neutrino mass,the 2σ upper limits are given.Note also that using the squared mass differences derived from the neutrino oscillation experiments,one can obtain the lower limits for the total neutrino mass,i.e.0.05 eV for NH and 0.1 eV for IH;in the case of DH,the smallest value of the total neutrino mass is zero.For a parameter ξ,we use σ(ξ)and ε(ξ)to represent its absolute and relative errors,respectively,with ε(ξ)defined as ε(ξ)=σ(ξ)/ξ.

    We first take a look at the results in the ΛCDM+∑mνmodel.In figure 4,we show the constraints on the ΛCDM+∑mνmodel in the ∑mν–H0and Ωm–H0planes from the CBS,CBS+ET,and CBS+CE data.We find that the addition of the GW data to the CBS data could lead to the reduction of the upper limits of ∑mνto some extent.The CBS+CE data give slightly smaller upper limits on ∑mνthan those from the CBS+ET data.Concretely,when adding the ET data to the CBS data,the upper limits on ∑mνcould be reduced by 2.7%–12.4% in the three hierarchy cases.While for CE,the upper limits on ∑mνcould be reduced by 4.3%–14.0%in the three hierarchy cases.Here the results of ET are consistent with the previous results in[138].

    Figure 5.Two-dimensional marginalized contours(68.3%and 95.4%confidence level)in the ∑mν–β and Ωm–H0 planes using the CBS,CBS+ET,and CBS+CE data.Here CBS stands for CMB+BAO+SN.

    Figure 6.Two-dimensional marginalized contours(68.3%and 95.4%confidence level)in the ∑mν–w and w–β planes using the CBS,CBS+ET,and CBS+CE data.Here CBS stands for CMB+BAO+SN.

    Table 1.The absolute and relative errors of cosmological parameters in the ΛCDM+∑mν model using the CBS,CBS+ET,and CBS+CE data.Note that H0 is in units of km s-1 Mpc-1 and CBS stands for CMB+BAO+SN.Here,2σ upper limits on ∑mν are given.

    Although using the GW data could only slightly improve the limits on the neutrino mass,they can significantly help improve the constraints on other cosmological parameters.We find that the constraints on Ωmand H0could be improvedby 29.0%–32.8% and 30.4%–34.7%,respectively,when adding the ET data to the CBS data,and by 40.3%–43.8%and 43.5%–46.9%,respectively,for the case of CE.

    Table 2.The absolute and relative errors of cosmological parameters in the IΛCDM+∑mν model using the CBS,CBS+ET,and CBS+CE data.Note that H0 is in units of km s-1 Mpc-1 and CBS stands for CMB+BAO+SN.Here,2σ upper limits on ∑mν are given.

    Table 3.The absolute and relative errors of cosmological parameters in the IwCDM+∑mν model using the CBS,CBS+ET,and CBS+CE data.Note that H0 is in units of km s-1 Mpc-1 and CBS stands for CMB+BAO+SN.Here,2σ upper limits on ∑mν are given.

    In figure 5,we show the constraints on the IΛCDM+∑mνmodel in the ∑mν–β and Ωm–H0planes from the CBS,CBS+ET,and CBS+CE data.We can clearly see that when considering the interaction between vacuum energy and dark matter,the improvement of the limits on ∑mνby adding GW data is rather not evident.In the case of ET,the improvement of the limits on ∑mνis only 0.7%–1.8%,and in the case of CE,the improvement is 1.8%–4.1%.Therefore,we find that compared with the standard ΛCDM model,in its interaction version,the IΛCDM model,the improvement of the limits on ∑mνby GW data from ET and CE becomes weaker.This is because the IΛCDM model considers an extra cosmological parameter β compared with the ΛCDM model,which will degenerate with other cosmological parameters when the CBS data are used to constrain the IΛCDM model.Hence,compared with the ΛCDM model,the addition of the GW data to the CBS data for its interaction version leads to weaker improvement.

    We also find that the constraints on the coupling parameter β can be improved by using the GW data to a certain extent.In the IΛCDM+∑mνmodel,the constraints on β are improved by 19.2%–20.8% and 22.3%–26.2%,respectively,when the GW data of ET and CE are added on the basis of the CBS case.

    In figure 6,we show the constraints on the IwCDM+∑mνmodel in the ∑mν–w and w–β planes from the CBS,CBS+ET,and CBS+CE data.We find that in this case,the improvement of the limits on the neutrino mass is better than in the previous case.For ET,the improvement of the limit on ∑mνis 2.0%–5.4%,and for CE,the improvement is 5.3%–8.7%.

    We find that in this case the constraints on the coupling parameter β and the EoS parameter of dark energy w can both be significantly improved by considering the addition of GW data.The constraints on β and w are improved by 2.4%–8.0%and 10.8%–13.2%,respectively,when considering the ET data,and by 7.1%–10.2% and 18.9%–21.1%,respectively,when considering the CE data.

    In this work,we discuss the cosmological constraints on the IDE models in the cases of considering the GW standard siren observations from 3G ground-based GW detectors ET and CE.The results show that the limits on the neutrino mass can only be slightly improved with the help of the GW data,on the basis of the CBS constraint.Since the GW data can precisely constrain the Hubble constant H0,the addition of them in the cosmological fit can help break the cosmological parameter degeneracies formed by other cosmological observations.Therefore,the consideration of GW standard siren data can help significantly improve the constraints on the most cosmological parameters.However,the effect of massive neutrinos in the late universe and on large scales cannot be distinctively distinguished from that of the cold dark matter,leading to the improvement of the limits on the neutrino mass by considering GW data is not obvious.Anyway,even though the impact on constraining the neutrino mass is not apparent,the GW standard sirens are rather useful in helping improve the constraints on the most cosmological parameters including the EoS of dark energy and the coupling between dark energy and dark matter.

    4.Conclusion

    In the era of 3G ground-based GW detectors,a lot of GW standard siren data with known redshifts could be obtained by the multi-messenger observation for BNS merger events.Obviously,these standard sirens would exert great impacts on the cosmological parameter estimation.Since the GW standard sirens can tightly constrain the Hubble constant,the consideration of them in a joint cosmological fit can lead to the cosmological parameter degeneracies formed by other cosmological observations being well broken.The GW standard sirens can thus be used to help significantly improve the constraints on cosmological parameters in the future.

    It is of great interest to investigate whether the limits on the total neutrino mass can also be effectively improved by considering the GW standard siren data.In particular,the cosmological constraints on the neutrino mass are strongly model-dependent,and so the cases in different cosmological scenarios need to be discussed in detail.In this work,we discuss the issue of weighing neutrinos in the IDE models by using the GW standard siren observations by ET and CE.

    We consider the simplest IDE models,namely the IΛCDM and IwCDM models with Q=βHρc.We simulate the GW standard siren data of the BNS mergers observed by ET and CE(in a way of multi-messenger detection).We investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass in the IDE models.

    It is found that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models,compared to the current limit given by CMB+BAO+SN.This is mainly because the effect of massive neutrinos in the late universe and on the large scales cannot be distinctively distinguished from that of the CDM,leading to the improvement of the limits on the neutrino mass by considering GW data is not obvious.Although the limit on neutrino mass can only be slightly updated by considering the GW standard sirens,they are fairly useful in helping improve the constraints on the most cosmological parameters including the EoS of dark energy and the coupling between dark energy and dark matter.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Grants Nos.11 975072,11835009,11875102,and 11690021),the Liaoning Revitalization Talents Program(Grant No.XLYC1905011),the Fundamental Research Funds for the Central Universities(Grant No.N2005030),the National 111 Project of China(Grant No.B16009),and the Science Research Grants from the China Manned Space Project(Grant No.CMS-CSST-2021-B01).

    丝袜美足系列| 国产精品1区2区在线观看. | 日本a在线网址| 精品少妇内射三级| 波多野结衣一区麻豆| 日韩欧美一区视频在线观看| 美国免费a级毛片| 国产黄频视频在线观看| 国产一卡二卡三卡精品| 国产成人a∨麻豆精品| 欧美精品一区二区大全| 国产日韩欧美亚洲二区| 亚洲国产av影院在线观看| 伊人久久大香线蕉亚洲五| 欧美亚洲 丝袜 人妻 在线| 亚洲久久久国产精品| 麻豆乱淫一区二区| 成人国语在线视频| 日韩精品免费视频一区二区三区| 另类精品久久| 人妻人人澡人人爽人人| 日本猛色少妇xxxxx猛交久久| 亚洲美女黄色视频免费看| 精品国产一区二区三区久久久樱花| 男女无遮挡免费网站观看| 亚洲五月色婷婷综合| av国产精品久久久久影院| 极品人妻少妇av视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精品粉嫩美女一区| 国产老妇伦熟女老妇高清| 一区二区三区精品91| 女人久久www免费人成看片| 国产精品香港三级国产av潘金莲| 啦啦啦视频在线资源免费观看| 女警被强在线播放| 亚洲精华国产精华精| 久久女婷五月综合色啪小说| 国产又色又爽无遮挡免| 99国产极品粉嫩在线观看| 久久久久国产精品人妻一区二区| 欧美精品av麻豆av| 亚洲欧洲日产国产| 欧美少妇被猛烈插入视频| 女性被躁到高潮视频| 中文字幕人妻熟女乱码| 亚洲,欧美精品.| 国产日韩欧美视频二区| av网站在线播放免费| cao死你这个sao货| 亚洲全国av大片| 日韩免费高清中文字幕av| 亚洲国产欧美在线一区| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品 国内视频| 国产淫语在线视频| 少妇的丰满在线观看| av网站免费在线观看视频| 另类亚洲欧美激情| 久久久久国产精品人妻一区二区| 不卡av一区二区三区| 91av网站免费观看| 一区二区日韩欧美中文字幕| 黄网站色视频无遮挡免费观看| 亚洲va日本ⅴa欧美va伊人久久 | 色婷婷久久久亚洲欧美| 国产一区二区 视频在线| 日本vs欧美在线观看视频| 久久九九热精品免费| 日韩欧美免费精品| 99国产精品免费福利视频| 一区福利在线观看| 极品少妇高潮喷水抽搐| 999久久久精品免费观看国产| 老司机影院成人| 午夜老司机福利片| 亚洲中文av在线| 日韩一区二区三区影片| 精品少妇内射三级| 十八禁网站网址无遮挡| 一级黄色大片毛片| av福利片在线| 亚洲精品久久久久久婷婷小说| 精品国产一区二区三区久久久樱花| 天天影视国产精品| 久久热在线av| av又黄又爽大尺度在线免费看| 久热爱精品视频在线9| 久久影院123| 免费av中文字幕在线| 首页视频小说图片口味搜索| 亚洲一码二码三码区别大吗| 成年人免费黄色播放视频| 1024香蕉在线观看| 国产xxxxx性猛交| 国产在线观看jvid| av在线app专区| 亚洲伊人色综图| 悠悠久久av| 好男人电影高清在线观看| 男女高潮啪啪啪动态图| 精品熟女少妇八av免费久了| 精品熟女少妇八av免费久了| 精品免费久久久久久久清纯 | 亚洲成人免费电影在线观看| 国精品久久久久久国模美| 丰满人妻熟妇乱又伦精品不卡| 最近中文字幕2019免费版| 国产精品麻豆人妻色哟哟久久| 97精品久久久久久久久久精品| 91大片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品999| 纯流量卡能插随身wifi吗| 在线观看www视频免费| 一级毛片精品| 久久国产亚洲av麻豆专区| 国产亚洲欧美精品永久| 美女扒开内裤让男人捅视频| 国产一区二区在线观看av| 日韩大码丰满熟妇| 母亲3免费完整高清在线观看| 麻豆国产av国片精品| 丝袜美腿诱惑在线| 五月开心婷婷网| 日韩三级视频一区二区三区| 99精品欧美一区二区三区四区| 1024香蕉在线观看| 在线永久观看黄色视频| 日韩欧美一区视频在线观看| 国产真人三级小视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 妹子高潮喷水视频| 国产精品国产三级国产专区5o| 777久久人妻少妇嫩草av网站| 啦啦啦中文免费视频观看日本| 人人澡人人妻人| 国产一区二区 视频在线| 久久午夜综合久久蜜桃| 男女高潮啪啪啪动态图| 高潮久久久久久久久久久不卡| 男女国产视频网站| 婷婷丁香在线五月| 欧美日韩一级在线毛片| 午夜老司机福利片| 最黄视频免费看| 欧美在线一区亚洲| 性色av乱码一区二区三区2| www.av在线官网国产| 日本黄色日本黄色录像| 大香蕉久久网| 国产一区二区三区在线臀色熟女 | 亚洲视频免费观看视频| 国产高清视频在线播放一区 | 91成年电影在线观看| 伊人亚洲综合成人网| 免费看十八禁软件| 久久精品国产亚洲av高清一级| 亚洲精品自拍成人| 国产福利在线免费观看视频| 岛国毛片在线播放| 亚洲国产精品999| 蜜桃在线观看..| 久久天堂一区二区三区四区| 韩国精品一区二区三区| 亚洲伊人色综图| 国产精品影院久久| 飞空精品影院首页| 日韩制服丝袜自拍偷拍| 一级a爱视频在线免费观看| 在线观看舔阴道视频| 欧美中文综合在线视频| 国产高清国产精品国产三级| 日日摸夜夜添夜夜添小说| 搡老乐熟女国产| 久久人人爽av亚洲精品天堂| 久久人人爽av亚洲精品天堂| 一级毛片女人18水好多| 日本wwww免费看| 日本欧美视频一区| 国产欧美日韩一区二区三 | 视频区欧美日本亚洲| 久久久水蜜桃国产精品网| videosex国产| 久久精品人人爽人人爽视色| 丝袜美腿诱惑在线| 国产成人精品久久二区二区91| 天天操日日干夜夜撸| 这个男人来自地球电影免费观看| 久久九九热精品免费| 日本一区二区免费在线视频| 色婷婷av一区二区三区视频| 一本色道久久久久久精品综合| 亚洲精品国产一区二区精华液| √禁漫天堂资源中文www| 国产高清videossex| 国产一区二区 视频在线| 啦啦啦在线免费观看视频4| 久久精品国产综合久久久| 亚洲欧美清纯卡通| 777久久人妻少妇嫩草av网站| 黄网站色视频无遮挡免费观看| 免费在线观看影片大全网站| 老熟女久久久| 波多野结衣av一区二区av| tube8黄色片| 日韩欧美一区二区三区在线观看 | 亚洲精品一区蜜桃| 欧美精品av麻豆av| 亚洲欧美成人综合另类久久久| 欧美在线一区亚洲| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全免费视频| 美女大奶头黄色视频| 热re99久久国产66热| 一级片'在线观看视频| 正在播放国产对白刺激| av在线播放精品| 亚洲成人手机| 国产老妇伦熟女老妇高清| 亚洲三区欧美一区| 成人国产一区最新在线观看| 无遮挡黄片免费观看| 考比视频在线观看| 19禁男女啪啪无遮挡网站| 香蕉丝袜av| av福利片在线| 欧美成狂野欧美在线观看| 91国产中文字幕| 久久这里只有精品19| 伦理电影免费视频| 欧美一级毛片孕妇| 欧美一级毛片孕妇| 看免费av毛片| 国产成+人综合+亚洲专区| 亚洲精品成人av观看孕妇| 亚洲国产成人一精品久久久| 亚洲第一av免费看| 亚洲,欧美精品.| 日韩欧美免费精品| 如日韩欧美国产精品一区二区三区| 在线av久久热| 久久青草综合色| 午夜激情av网站| 成人国产一区最新在线观看| 1024香蕉在线观看| 亚洲,欧美精品.| 国产伦理片在线播放av一区| 欧美日韩亚洲综合一区二区三区_| 日韩大码丰满熟妇| 精品欧美一区二区三区在线| 极品人妻少妇av视频| 成年女人毛片免费观看观看9 | 亚洲精品久久午夜乱码| 不卡av一区二区三区| 国产成+人综合+亚洲专区| 啦啦啦啦在线视频资源| 日韩制服丝袜自拍偷拍| 精品亚洲成国产av| 国产精品香港三级国产av潘金莲| 成人亚洲精品一区在线观看| 成年美女黄网站色视频大全免费| 国产精品偷伦视频观看了| 精品久久久久久电影网| 成年女人毛片免费观看观看9 | 日日爽夜夜爽网站| 国产精品1区2区在线观看. | 考比视频在线观看| 成人亚洲精品一区在线观看| 在线看a的网站| 成人手机av| 久久久久久亚洲精品国产蜜桃av| 夫妻午夜视频| 亚洲av成人一区二区三| 999久久久精品免费观看国产| 在线观看人妻少妇| 巨乳人妻的诱惑在线观看| 深夜精品福利| 久久99一区二区三区| 精品熟女少妇八av免费久了| 法律面前人人平等表现在哪些方面 | 91精品伊人久久大香线蕉| 欧美精品亚洲一区二区| 亚洲 国产 在线| 一区二区日韩欧美中文字幕| 精品久久久久久久毛片微露脸 | 十分钟在线观看高清视频www| 欧美日韩亚洲国产一区二区在线观看 | 国产国语露脸激情在线看| 日韩有码中文字幕| 国产成人免费观看mmmm| 国产一区二区 视频在线| 岛国在线观看网站| 人人妻,人人澡人人爽秒播| 日本黄色日本黄色录像| 丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 美女福利国产在线| 啦啦啦啦在线视频资源| 人妻 亚洲 视频| 色94色欧美一区二区| 两性夫妻黄色片| 亚洲精品国产一区二区精华液| 99国产精品一区二区三区| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 丝袜人妻中文字幕| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 婷婷成人精品国产| 午夜福利一区二区在线看| 91成年电影在线观看| 如日韩欧美国产精品一区二区三区| 久久ye,这里只有精品| av不卡在线播放| 精品国产超薄肉色丝袜足j| 91麻豆av在线| 欧美国产精品一级二级三级| 亚洲国产欧美网| 成年av动漫网址| 日本91视频免费播放| 性高湖久久久久久久久免费观看| 最新的欧美精品一区二区| 热99re8久久精品国产| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品电影小说| 亚洲av成人不卡在线观看播放网 | 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 悠悠久久av| 久久国产精品男人的天堂亚洲| 欧美激情高清一区二区三区| 久久久精品国产亚洲av高清涩受| 人人澡人人妻人| 午夜两性在线视频| 亚洲国产毛片av蜜桃av| 亚洲av日韩精品久久久久久密| 亚洲色图 男人天堂 中文字幕| 欧美精品av麻豆av| 777久久人妻少妇嫩草av网站| 亚洲第一av免费看| 午夜福利,免费看| 亚洲中文av在线| 欧美日韩视频精品一区| 高潮久久久久久久久久久不卡| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区 | 国产免费av片在线观看野外av| 人成视频在线观看免费观看| 婷婷丁香在线五月| 又黄又粗又硬又大视频| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 99精品久久久久人妻精品| 丰满迷人的少妇在线观看| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 爱豆传媒免费全集在线观看| 亚洲精品国产av成人精品| 亚洲精品一区蜜桃| 色94色欧美一区二区| 国产极品粉嫩免费观看在线| 久久久久久久精品精品| 亚洲成人免费电影在线观看| 蜜桃在线观看..| 18在线观看网站| av天堂久久9| 亚洲中文字幕日韩| 欧美黄色片欧美黄色片| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 777久久人妻少妇嫩草av网站| 精品视频人人做人人爽| 天天操日日干夜夜撸| 亚洲国产中文字幕在线视频| 日韩一区二区三区影片| 精品国产一区二区三区四区第35| 免费观看人在逋| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影小说| 欧美97在线视频| 嫁个100分男人电影在线观看| xxxhd国产人妻xxx| 丁香六月天网| 久久精品国产亚洲av高清一级| 国产区一区二久久| 91麻豆av在线| 黄色视频在线播放观看不卡| 91麻豆精品激情在线观看国产 | 国内毛片毛片毛片毛片毛片| av又黄又爽大尺度在线免费看| 黄色视频在线播放观看不卡| 久久精品熟女亚洲av麻豆精品| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 久久久久国产一级毛片高清牌| 一级a爱视频在线免费观看| 亚洲精品一二三| 亚洲美女黄色视频免费看| 王馨瑶露胸无遮挡在线观看| 亚洲成人免费av在线播放| 国产免费福利视频在线观看| 久久久精品94久久精品| 悠悠久久av| 午夜福利免费观看在线| 精品久久蜜臀av无| 国产精品一区二区精品视频观看| 老汉色av国产亚洲站长工具| 成人国产av品久久久| e午夜精品久久久久久久| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 这个男人来自地球电影免费观看| 91大片在线观看| 国产高清视频在线播放一区 | 国产日韩一区二区三区精品不卡| 麻豆乱淫一区二区| 亚洲av美国av| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 亚洲精品粉嫩美女一区| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 久久女婷五月综合色啪小说| 欧美黄色淫秽网站| 亚洲欧美日韩另类电影网站| 久久女婷五月综合色啪小说| 中文精品一卡2卡3卡4更新| 国产日韩欧美视频二区| 久久国产精品大桥未久av| 国产精品 欧美亚洲| 久久久久久人人人人人| 亚洲九九香蕉| 黑人猛操日本美女一级片| 女人被躁到高潮嗷嗷叫费观| 满18在线观看网站| 制服人妻中文乱码| 亚洲专区中文字幕在线| 香蕉丝袜av| 淫妇啪啪啪对白视频 | 97精品久久久久久久久久精品| 亚洲国产精品999| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 欧美 日韩 精品 国产| 午夜福利在线免费观看网站| 美女扒开内裤让男人捅视频| 啦啦啦啦在线视频资源| 午夜福利在线免费观看网站| 2018国产大陆天天弄谢| 婷婷成人精品国产| 欧美激情高清一区二区三区| 中文字幕最新亚洲高清| 自线自在国产av| 欧美精品人与动牲交sv欧美| 久久青草综合色| 日本欧美视频一区| 欧美成狂野欧美在线观看| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 99精品欧美一区二区三区四区| 国产成人免费观看mmmm| 99热全是精品| 最近中文字幕2019免费版| 成人影院久久| 精品人妻一区二区三区麻豆| 最近最新免费中文字幕在线| 热re99久久国产66热| 亚洲精品一二三| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 可以免费在线观看a视频的电影网站| 国产成人欧美| 欧美在线一区亚洲| 国产成人精品久久二区二区免费| 成年动漫av网址| 18禁黄网站禁片午夜丰满| a 毛片基地| 视频区欧美日本亚洲| 多毛熟女@视频| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 黄片播放在线免费| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 大片电影免费在线观看免费| 亚洲精品国产av蜜桃| 日韩人妻精品一区2区三区| 国产成人精品久久二区二区免费| 亚洲视频免费观看视频| 国产精品亚洲av一区麻豆| 999精品在线视频| 精品福利永久在线观看| 国产免费一区二区三区四区乱码| 国产av一区二区精品久久| 一区二区av电影网| 欧美性长视频在线观看| 亚洲精品粉嫩美女一区| 搡老乐熟女国产| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲午夜精品一区,二区,三区| 十八禁网站网址无遮挡| av网站在线播放免费| 人人妻,人人澡人人爽秒播| 久久精品亚洲av国产电影网| 欧美精品啪啪一区二区三区 | 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 在线天堂中文资源库| 91大片在线观看| 久久精品熟女亚洲av麻豆精品| 色婷婷av一区二区三区视频| 午夜视频精品福利| 大香蕉久久成人网| 97人妻天天添夜夜摸| 国内毛片毛片毛片毛片毛片| 91精品国产国语对白视频| 亚洲,欧美精品.| 精品一区二区三区av网在线观看 | 黄色毛片三级朝国网站| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 自线自在国产av| 中文字幕人妻熟女乱码| 欧美精品啪啪一区二区三区 | 欧美精品人与动牲交sv欧美| 91九色精品人成在线观看| 女性生殖器流出的白浆| 欧美少妇被猛烈插入视频| 国产精品久久久久久精品古装| 老鸭窝网址在线观看| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 精品国内亚洲2022精品成人 | 国内毛片毛片毛片毛片毛片| 一区二区三区四区激情视频| 女性生殖器流出的白浆| 丝袜美足系列| 性高湖久久久久久久久免费观看| 天天躁日日躁夜夜躁夜夜| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 亚洲精品美女久久av网站| 黑人欧美特级aaaaaa片| 考比视频在线观看| svipshipincom国产片| h视频一区二区三区| 少妇的丰满在线观看| 精品亚洲乱码少妇综合久久| 国产成人av教育| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 最近最新免费中文字幕在线| a级毛片黄视频| 久久99一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 99热国产这里只有精品6| 黄色 视频免费看| 亚洲美女黄色视频免费看| 午夜两性在线视频| 18在线观看网站| 水蜜桃什么品种好| 亚洲av欧美aⅴ国产| 美女国产高潮福利片在线看| 男女之事视频高清在线观看| 亚洲精品国产av成人精品| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 女人久久www免费人成看片| 脱女人内裤的视频| 日本黄色日本黄色录像| 一区二区三区四区激情视频| 黄色视频不卡| 中文字幕高清在线视频| 黑丝袜美女国产一区| 丰满少妇做爰视频| 日韩熟女老妇一区二区性免费视频| 一区二区三区乱码不卡18| 午夜福利在线免费观看网站| 午夜91福利影院| 少妇裸体淫交视频免费看高清 | 日本欧美视频一区| 国产精品免费大片| 少妇被粗大的猛进出69影院| 久久久久精品国产欧美久久久 | av超薄肉色丝袜交足视频| 一级a爱视频在线免费观看| 亚洲av国产av综合av卡| 久久人人爽人人片av| 一区二区三区精品91| 麻豆乱淫一区二区| 91国产中文字幕| 国产成人欧美| 亚洲人成电影免费在线| 成人av一区二区三区在线看 | 亚洲精品第二区| 欧美日韩成人在线一区二区| 久久久精品区二区三区| 免费高清在线观看视频在线观看| 国产亚洲av高清不卡| 免费看十八禁软件| 天堂俺去俺来也www色官网| 香蕉国产在线看|