• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validity and Redundancy of Spectral Data in the Detection Algorithm of Sucrose-Doped Content in Tea

    2022-11-07 08:39:54LIUMengxuanWUQiongWANGXuquanCHENQiZHANGYonggangHUANGSongleiFANGJiaxiong
    光譜學與光譜分析 2022年11期

    LIU Meng-xuan, WU Qiong, WANG Xu-quan, CHEN Qi,ZHANG Yong-gang, HUANG Song-lei*, FANG Jia-xiong*

    1. State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai 200083, China 2. Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai 200083, China 3. ShanghaiTech University, Shanghai 201210, China 4. University of Chinese Academy of Sciences, Beijing 100049, China 5. Technology Center of Hefei Customs District, Hefei 245000, China

    Abstract Near-infrared spectroscopy (NIRS) technology integrated with Genetic Algorithm-Back Propagation (GA-BP) neural network was used to spectral sucrose-doped content in 162 tea samples in the NIR wavelength range of 1~2.5 μm. The parameters of the GA and BP neural network were optimized by the sample set to analyze the validity and redundancy of spectral bands. The raw data in the range of 1~2.5 μm was divided into 1~1.7, 1~1.3, 1.3~1.7, 1.7~2.5 and 2~2.2 μm sets. The established quantitative detection model was used to conduct model training on different wavelength bands at the same resolution. The prediction results show that, for the target content, data redundancy appears in both 1~1.7 and 1~2.5 μm bands. The model could be effectively extracted using only 1.3~1.7 or 1.7~2.5 μm band. The prediction model was also conducted using different spectral resolutions from 2 to 20 nm in the same band. In the wavelength range of 1~2.5 μm, the R was between 0.9 and 0.95 when the RMSEP ranged from 1.7 to 2.1. While in the wavelength range of 1~1.7 μm, the R was in the range of 0.9 to 0.93 when the RMSEP was between 1.95 and 2.25. The results indicate that, for the target content, redundancy exists in the 1~2.5 and 1~1.7 μm bands on both wavelength range and spectral resolution. Through the analysis of spectral features and modeling of the algorithm, the effectiveness of spectral data acquirement could be improved dramatically; for the detection of sucrose-doped content in tea, a much narrower wavelength range and lower spectral resolution could be adopted.

    Keywords Genetic algorithm; BP neural network; Near-infrared spectroscopy; Validity; Tea

    Introduction

    Tea is one of the world’s most popular beverages, with a special flavor and high nutritional value. For hundreds of years, tea consumption has been expanding worldwide, leading to the frequent occurrence of adulteration[1]. In particular, there is artificial adulteration of sucrose in exported green tea. Thus, it is necessary to detect the sucrose-doped content in tea. Up to the present, sensory evaluation and wet chemical analysis are still commonly used for judging whether the tea is artificially mixed with sucrose. However, both methods have disadvantages. Sensory evaluation is easily affected by many factors, such as environmental variation and personal subjectivity. It lacks reproducibility and fairness[2]. The wet chemical analysis relies on precision instruments, such as liquid chromatography-mass spectrometry and high-performance liquid chromatography[3]. Nevertheless, these methods are high cost, time-consuming and labor-intensive. Hence, developing and implementing rapid and low-cost methods would be highly beneficial to tea industries and regulatory bodies.

    NIRS is a rapid, nondestructive and large scale inspection method as a green analysis technology. Combining it with suitable chemometrics methods has been used to establish prediction models for tea categories, grades, and content of different ingredients[4-11]. Until now, there are few studies on the detection of sucrose-doped content in tea. The GA-BP neural network has the advantages of strong linear learning ability, strong feature extraction ability and strong model expression ability. The feature information of the target component in the NIR spectrum of multi-component substances can be extracted by this algorithm. Therefore, the objective of the current study is to explore the application of NIRS and the GA-BP neural network in detecting sucrose-doped content in tea.

    The NIR spectrometer with high resolution and wide wavelength range contain more information and noise. To avoid losing characteristic information, all spectral data is used to build a predictive model. However, this method may introduce more noise and have data redundancy, which cannot make the model prediction effect the best[12]. To optimize the prediction results and reduce detection cost, it is necessary to study the redundancy of the full spectral range modeling in terms of wavelength range and resolution.

    The methods that can be used to study spectral band redundancy has two ways. One is to divide the spectral band based on the wavelength range of the portable NIR spectrometer. Then, study the spectral band redundancy and resolution effects. The other is to select the band according to the characteristic band interval of the target substance with less interference from other components to build the model. Both methods were adopted to build a high predictability detection model to explore the validity and redundancy of spectral data.

    This paper used162 samples of tea mixed with sucrose, whose spectrum was collected by an FT-NIR spectrometer. A GA-BP neural network model was applied to analyze the validity and redundancy at different spectral bands and resolutions. Moreover, a further study about whether a NIR spectrometer with a narrow wavelength range and lower resolution has the potential to detect the sucrose-doped content in tea is also qualified.

    1 Experiment

    1.1 Experimental Materials

    A total of 162 experimental samples were from Huangshan export green tea, which was prepared by GB/T 8302—2013[13]to ensure consistency, while NIR spectra were measured by FT-NIR. The measurement model of diffuse reflectance absorbance was adopted. The scanning wavenumber range is 4 000~10 000 cm-1. The wavenumber interval is set to be 0.48 cm-1. The standard sucrose-doped content of the samples was in the range of 0.91%~22.6%, which was measured by high-performance liquid chromatography, according to the GB 5009.8—2016[14]standard.

    1.2 Research methods

    The original spectrum in the 1~2.5 μm was preprocessed by multivariate scattering correction[1]. Considering that the wavelength range of common handheld spectrometers adopting InGaAs device is normally in about 1~1.7 or 1.7~2.5 μm range with lower resolution, the raw data was divided into 1~1.7 and 1.7~2.5 μm bands. It could be seen from the NIR spectrum of the sample that there was a characteristic peak around 1.4 μm, respectively. However, there may also be the influence of moisture around 1.4 μm. In order to easily distinguish whether the characteristic peak was the interference of the target content or other components and to further study the redundancy of the 1~1.7 μm band, the 1~1.7 μm band was divided into 1~1.3 and 1.3~1.7 μm. The spectrum of tea samples contains other mixed substances, especially moisture. For the second band, the characteristic range band of 2~2.2 μm was selected by relative value analysis. The entire research schematic diagram is shown in Fig.1. The investigation includes the effectiveness of each spectral band under the same resolution and spectral resolution effects of the same wavelength range by the GA-BP neural network quantitative detection model. The 162 experimental samples were divided into the training set and prediction set approximately at the ratio of 3∶1, of which 120 samples were randomly used for model training, and the remaining 42 samples were only used to evaluate the model prediction results. Predictability evaluations of the detection model were based on correlation coefficient (R), and root mean square error of prediction (RMSEP).

    Fig.1 Schematic diagram of analysis of different spectral bands and resolution

    Fig.2 Parameter selection of genetic algorithm (a):Iteration parameters; (b):Population size; (c):Mutation probability; (d):Crossover probability

    1.3 Model parameters setting

    This study adopted the GA-BP neural network algorithm[16]to establish a quantitative model of sucrose-doped content in tea. Some parameters of the algorithm would affect the prediction effect of the model, which needed to be determined based on the sample set, including iteration parameters, population size, crossover probability, mutation probability in GA, as well as epochs, training target error, learning rate, training function, and node transfer function in the BP neural network.

    2 Results and discussions

    2.1 Parameters optimization selection

    The parameter selection criterion was theRand RMSEP between the predicted value and the standard value of the 42 prediction samples which did not participate in the training. Fora better prediction effect of the model, largerRand smaller RMSEP were needed. When one parameter was changed, the other parameters and the sample set remained the same. The final result is shown in Fig.2.

    It could be seen from Fig.2 that the iteration parameter of GA was 60. The population size was 30. The mutation probability was 0.003 5. The crossover probability was 0.99.

    The BP neural network training algorithm mainly included the gradient descent method, quasi-Newton algorithm, L-M algorithm, and Bayesian regularization algorithm, which was related to the training set, the complexity of the research object, and the size of the network. Some representative training algorithms were selected to test.

    Table 1 Test results of different training functions

    As shown in Table 1,the training function was trainbr.

    The BP neural network had different node transfer functions, which contains three main types: logsig, tansig, and purelin. The different combination of the hidden layer and output layer node transfer functions would affect the model prediction result. The test results are shown in Table 2.

    TheR, RMSEP, and the model training time were comprehensively considered. The node transfer function of the hidden layer and the output layer of the neural network were purelin and tansig.

    Other parameters in the BP neural network were determined by model training. The number of neurons in the hidden layer was 16. The epochs were 100. The learning rate was 0.01. The training target error was 0.000 001.

    Table 2 Test results of different node transfer function

    2.2 Spectral bands analysis results

    A GA-BP neural network model was established after optimizing the parameters. The resolution of different spectral bands was 2 nm. The training set and prediction set were randomly selected for multiple testing. Record theRand RMSEP respectively. The average value of 100 times was used as the final value. The prediction results of each spectral band are shown in Fig.3.

    Fig.3 Model prediction results of differentspectral bands at the same resolution

    Fig. 3 showed that the R of the 1~1.3 μm spectral band was the smallest, and RMSEP was the largest. It demonstrated that the 1~1.3 μm spectral band could not be used for quantitative detecting sucrose-doped content in tea. The prediction results of the models in the 1~2.5, 1~1.7, 1.3~1.7 and 1.7~2.5 μm sets indicated that these sets could be used alone to establish the sucrose-doped content detection model. The differences between the model prediction results of the four sets were minimal. Through analyzing the difference among the model prediction results in the 1~1.3, 1.3~1.7 and 1~1.7 μm sets, the 1~1.7 μm spectral band was less effective and had redundancy. The 1~1.3 μm spectral band was invalid, which negatively impacted the model and decreased model accuracy. Comparing the results in the 1.7~2.5 and 2~2.2 μm bands, the 2~2.2 μm band could be used to establish the model, while its accuracy needed to be improved.

    2.3 Spectral resolution analysis results

    By averaging point values, change the resolution of the spectral band in 1~2.5 μm from 2 to 20 nm by averaging point values. The model was trained 100 times at each resolution and recorded the average value, as shown in Fig.4.

    Fig.4 Model prediction results of different resolution at 1~2.5 μm spectral band

    Fig.4 showed thatRranged from 0.9 to 0.95, and RMSEP was 1.7 to 2.1 at the different spectral resolutions. To further study the application of the portable NIR spectrometer, the 1~1.7 μm spectral band data was also used for the resolution experiment. Similarly, change the spectral resolution from 2 to 10 nm. The experimental results showed that the R was in the interval of 0.9~0.93, and RMSEP was between 1.95 and 2.25. The model prediction results of the two spectral bands indicated that the resolution had little effect on the detection model of sucrose-doped content in tea. However, the model results at low resolution were better than those at high resolution. The phenomenon may be differences in tea samples, spectral acquisition error, excessive noise in the raw data, neural network over fitting, and the method of altering the spectral resolution.

    3 Conclusions

    This paper mainly analyzed the validity and redundancy of spectral data by the GA-BP neural network detection algorithm of sucrose-doped content in tea. Analyze the different spectral bands at the same resolution. The prediction results showed that 1~2.5, 1~1.7, 1.3~1.7, 1.7~2.5 and 2~2.2 μm spectral bands could be used to establish a detection model, and the modeling effect of 1.3~1.7 μm was better, which conformed to the wavelength range of the portable NIR spectrometer. Analyze the different spectral resolutions at the same band. The prediction results indicated that the resolution had little effect on the model and the spectral resolution of 10~20 nm was enough for the portable NIR spectrometer. Through the analysis of different spectral bands and resolutions, the redundancy exists in 1.3~1.7 and 1~2.5 μm on both wavelength range and spectral resolution. It is of great significance to further explore the application of low spectral resolution portable NIR spectrometer in tea.

    欧美另类亚洲清纯唯美| 老汉色av国产亚洲站长工具| 99久国产av精品| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| 黄色成人免费大全| 久久精品91无色码中文字幕| 国产精品99久久久久久久久| 亚洲九九香蕉| 国产亚洲精品综合一区在线观看| 琪琪午夜伦伦电影理论片6080| 最新美女视频免费是黄的| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免费看| 男人舔奶头视频| 一个人看视频在线观看www免费 | 又黄又粗又硬又大视频| 人妻丰满熟妇av一区二区三区| 成人18禁在线播放| 日本黄色视频三级网站网址| 久久欧美精品欧美久久欧美| 好男人在线观看高清免费视频| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 小说图片视频综合网站| 午夜免费激情av| 国产午夜福利久久久久久| 亚洲欧美日韩高清专用| 老熟妇仑乱视频hdxx| 国产成人aa在线观看| 成人特级av手机在线观看| 香蕉丝袜av| 制服丝袜大香蕉在线| 中文资源天堂在线| 舔av片在线| 亚洲最大成人中文| 久久精品91无色码中文字幕| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 亚洲成人久久性| 别揉我奶头~嗯~啊~动态视频| 午夜福利高清视频| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 91麻豆av在线| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 国产一区二区激情短视频| 黑人操中国人逼视频| 日本免费a在线| 免费av不卡在线播放| 亚洲欧美日韩高清专用| 神马国产精品三级电影在线观看| aaaaa片日本免费| 国产又色又爽无遮挡免费看| 亚洲天堂国产精品一区在线| 麻豆国产97在线/欧美| 天堂av国产一区二区熟女人妻| 成在线人永久免费视频| 久久久久国产精品人妻aⅴ院| 怎么达到女性高潮| 老汉色av国产亚洲站长工具| 真人做人爱边吃奶动态| 精品国产乱码久久久久久男人| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 国内少妇人妻偷人精品xxx网站 | 国产在线精品亚洲第一网站| 国产一区二区激情短视频| 无限看片的www在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| xxxwww97欧美| 一区福利在线观看| 夜夜躁狠狠躁天天躁| 久久久久性生活片| 男女下面进入的视频免费午夜| 精品一区二区三区av网在线观看| 亚洲性夜色夜夜综合| 免费av不卡在线播放| 免费av不卡在线播放| 99视频精品全部免费 在线 | 丰满人妻一区二区三区视频av | 国产激情久久老熟女| 天天躁日日操中文字幕| 国产一区二区激情短视频| 热99在线观看视频| 日韩大尺度精品在线看网址| 一个人免费在线观看电影 | 九九热线精品视视频播放| 亚洲午夜精品一区,二区,三区| 麻豆国产av国片精品| 午夜a级毛片| 国产激情偷乱视频一区二区| 久久久久久久精品吃奶| 久久精品人妻少妇| 精品人妻1区二区| ponron亚洲| 在线国产一区二区在线| 亚洲第一欧美日韩一区二区三区| 国产高清有码在线观看视频| 99热只有精品国产| 亚洲成av人片在线播放无| 欧美乱妇无乱码| 久久久成人免费电影| 成人永久免费在线观看视频| 成人性生交大片免费视频hd| 日韩欧美一区二区三区在线观看| 老司机深夜福利视频在线观看| 麻豆国产av国片精品| 国产伦精品一区二区三区视频9 | 日本精品一区二区三区蜜桃| 又黄又爽又免费观看的视频| 午夜激情欧美在线| 精品乱码久久久久久99久播| 亚洲最大成人中文| 国内精品久久久久久久电影| 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一级毛片孕妇| 国产成人av激情在线播放| 黄片大片在线免费观看| 一a级毛片在线观看| 亚洲成av人片在线播放无| 久久午夜亚洲精品久久| 最新中文字幕久久久久 | 亚洲自偷自拍图片 自拍| 亚洲国产色片| 宅男免费午夜| 国产毛片a区久久久久| 99久久精品国产亚洲精品| 国产成人系列免费观看| 99热精品在线国产| 午夜福利在线观看吧| 欧美av亚洲av综合av国产av| 波多野结衣巨乳人妻| 禁无遮挡网站| 欧美午夜高清在线| 婷婷亚洲欧美| www国产在线视频色| 欧美日韩中文字幕国产精品一区二区三区| 在线观看免费视频日本深夜| 91麻豆av在线| 欧美日韩乱码在线| 日本五十路高清| 啦啦啦韩国在线观看视频| 日韩高清综合在线| 国产麻豆成人av免费视频| 色综合欧美亚洲国产小说| 精品99又大又爽又粗少妇毛片 | 波多野结衣巨乳人妻| 麻豆成人午夜福利视频| 亚洲av美国av| 亚洲专区国产一区二区| 精品99又大又爽又粗少妇毛片 | 日韩精品中文字幕看吧| 日本黄色片子视频| 噜噜噜噜噜久久久久久91| 久久久久久九九精品二区国产| 男女那种视频在线观看| 午夜福利在线观看吧| 99久久精品热视频| 亚洲专区国产一区二区| 色尼玛亚洲综合影院| 91久久精品国产一区二区成人 | 中文字幕精品亚洲无线码一区| 亚洲精品国产精品久久久不卡| av在线蜜桃| 日韩大尺度精品在线看网址| 亚洲欧美日韩高清在线视频| 免费看十八禁软件| 国产免费av片在线观看野外av| 亚洲午夜精品一区,二区,三区| 成人三级做爰电影| 国产成人精品无人区| 午夜a级毛片| 一级黄色大片毛片| 精品久久久久久久久久久久久| a级毛片在线看网站| 一进一出好大好爽视频| 亚洲中文字幕日韩| 两个人看的免费小视频| 免费观看的影片在线观看| 亚洲欧美精品综合久久99| 最新在线观看一区二区三区| 这个男人来自地球电影免费观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品美女久久av网站| 制服丝袜大香蕉在线| 少妇丰满av| 99视频精品全部免费 在线 | 亚洲乱码一区二区免费版| 不卡av一区二区三区| 日韩欧美在线二视频| 久久性视频一级片| 国产三级黄色录像| 亚洲精品在线观看二区| 欧美乱色亚洲激情| svipshipincom国产片| 国产成人av教育| 淫妇啪啪啪对白视频| av黄色大香蕉| 狂野欧美激情性xxxx| 成年免费大片在线观看| xxxwww97欧美| 最新在线观看一区二区三区| 欧美大码av| 久久午夜亚洲精品久久| 精品国产乱子伦一区二区三区| 99riav亚洲国产免费| 麻豆国产97在线/欧美| 男人舔女人的私密视频| 中文资源天堂在线| 色尼玛亚洲综合影院| 麻豆国产av国片精品| 国内毛片毛片毛片毛片毛片| 一区福利在线观看| 999久久久精品免费观看国产| 亚洲中文日韩欧美视频| 欧美一级毛片孕妇| 国产亚洲精品久久久com| 亚洲av日韩精品久久久久久密| 色在线成人网| 网址你懂的国产日韩在线| 日韩大尺度精品在线看网址| 久久中文字幕人妻熟女| 伊人久久大香线蕉亚洲五| 看免费av毛片| 性欧美人与动物交配| a级毛片在线看网站| 麻豆国产97在线/欧美| 18禁黄网站禁片免费观看直播| 久久香蕉精品热| 国产成人精品久久二区二区免费| 精品久久蜜臀av无| 男插女下体视频免费在线播放| 中文字幕熟女人妻在线| av欧美777| 午夜福利高清视频| 亚洲色图av天堂| 成人一区二区视频在线观看| 欧美一级毛片孕妇| 1024手机看黄色片| 两个人视频免费观看高清| 十八禁网站免费在线| 久久久国产欧美日韩av| 久久香蕉精品热| 香蕉久久夜色| 九色国产91popny在线| 亚洲一区高清亚洲精品| 国产精华一区二区三区| 我要搜黄色片| 亚洲精品色激情综合| 久久久国产欧美日韩av| 不卡一级毛片| 757午夜福利合集在线观看| 国内精品久久久久精免费| 色综合欧美亚洲国产小说| 可以在线观看的亚洲视频| 久久久久久久精品吃奶| 久久久久久大精品| 国产精品久久久人人做人人爽| 日韩免费av在线播放| h日本视频在线播放| 日韩欧美在线乱码| 亚洲欧洲精品一区二区精品久久久| 久久这里只有精品19| a在线观看视频网站| 搡老妇女老女人老熟妇| 成年女人永久免费观看视频| 久久天堂一区二区三区四区| 国产av在哪里看| 中文字幕av在线有码专区| 99久久精品国产亚洲精品| a在线观看视频网站| 亚洲av第一区精品v没综合| 久久久久久久午夜电影| 欧美激情在线99| 欧美国产日韩亚洲一区| 精品一区二区三区视频在线观看免费| 欧美绝顶高潮抽搐喷水| 国产伦精品一区二区三区四那| 欧美国产日韩亚洲一区| 亚洲精品456在线播放app | 999久久久精品免费观看国产| 激情在线观看视频在线高清| 亚洲无线观看免费| 国产精品野战在线观看| 久久人妻av系列| 成人亚洲精品av一区二区| 日本撒尿小便嘘嘘汇集6| 午夜精品在线福利| 嫁个100分男人电影在线观看| 亚洲熟妇中文字幕五十中出| 国产不卡一卡二| 此物有八面人人有两片| 1000部很黄的大片| 中文亚洲av片在线观看爽| 色老头精品视频在线观看| 国产亚洲精品一区二区www| 麻豆一二三区av精品| 亚洲无线观看免费| 国产高清视频在线播放一区| 免费在线观看影片大全网站| 午夜福利在线在线| 男人舔女人下体高潮全视频| 九色成人免费人妻av| 中文字幕熟女人妻在线| АⅤ资源中文在线天堂| 一二三四社区在线视频社区8| 亚洲精品色激情综合| 99热只有精品国产| 草草在线视频免费看| 一个人看的www免费观看视频| 中文字幕久久专区| 精品午夜福利视频在线观看一区| 欧美丝袜亚洲另类 | 国产男靠女视频免费网站| 亚洲国产精品999在线| 国产成人精品久久二区二区91| 色视频www国产| 成人欧美大片| 成人国产综合亚洲| 人妻夜夜爽99麻豆av| 五月玫瑰六月丁香| 精品国产乱码久久久久久男人| 亚洲精品中文字幕一二三四区| 成年人黄色毛片网站| 特大巨黑吊av在线直播| 国产aⅴ精品一区二区三区波| 不卡av一区二区三区| 国产视频一区二区在线看| 欧美日韩黄片免| 精品电影一区二区在线| 日本免费一区二区三区高清不卡| 一区二区三区高清视频在线| 伊人久久大香线蕉亚洲五| 免费看a级黄色片| 久久久国产欧美日韩av| 美女免费视频网站| 一区福利在线观看| 免费av毛片视频| 美女黄网站色视频| 亚洲精品美女久久久久99蜜臀| 九色成人免费人妻av| 噜噜噜噜噜久久久久久91| 叶爱在线成人免费视频播放| 国产精品女同一区二区软件 | 波多野结衣高清无吗| 在线观看美女被高潮喷水网站 | 麻豆一二三区av精品| 免费在线观看日本一区| 免费一级毛片在线播放高清视频| 亚洲av片天天在线观看| 91在线观看av| 岛国在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文字幕日韩| 国产爱豆传媒在线观看| 欧美+亚洲+日韩+国产| 18禁黄网站禁片免费观看直播| 国产伦精品一区二区三区视频9 | svipshipincom国产片| 久久人妻av系列| 99国产精品99久久久久| 一个人看视频在线观看www免费 | 国产精品久久电影中文字幕| www.熟女人妻精品国产| 亚洲欧美日韩高清在线视频| netflix在线观看网站| 日本熟妇午夜| 亚洲熟女毛片儿| 久久久久久九九精品二区国产| 午夜福利18| 一进一出好大好爽视频| 变态另类丝袜制服| 极品教师在线免费播放| 亚洲精华国产精华精| 国产淫片久久久久久久久 | 99riav亚洲国产免费| 国产成人av教育| 欧美日韩亚洲国产一区二区在线观看| 久久人妻av系列| 午夜日韩欧美国产| 国语自产精品视频在线第100页| 999精品在线视频| 亚洲成a人片在线一区二区| 欧美另类亚洲清纯唯美| 中文字幕久久专区| 搞女人的毛片| 国产一级毛片七仙女欲春2| 欧美日本亚洲视频在线播放| 黄色女人牲交| or卡值多少钱| 丝袜人妻中文字幕| 亚洲人与动物交配视频| 精品久久久久久成人av| 高潮久久久久久久久久久不卡| 99久久99久久久精品蜜桃| 国产精品99久久99久久久不卡| 免费在线观看影片大全网站| 日韩欧美精品v在线| 深夜精品福利| 91av网站免费观看| 日韩高清综合在线| av片东京热男人的天堂| 观看免费一级毛片| 香蕉久久夜色| 国产精品久久久久久久电影 | 欧美高清成人免费视频www| 老司机在亚洲福利影院| 伊人久久大香线蕉亚洲五| 国产伦精品一区二区三区视频9 | 国内精品久久久久精免费| 国产精品99久久久久久久久| 国产午夜福利久久久久久| 久久久国产欧美日韩av| 亚洲av成人av| 欧美成人性av电影在线观看| 欧美日韩福利视频一区二区| 色视频www国产| 免费在线观看日本一区| 亚洲色图av天堂| 国产精品影院久久| 亚洲av免费在线观看| 岛国在线免费视频观看| 国产精品美女特级片免费视频播放器 | av视频在线观看入口| 别揉我奶头~嗯~啊~动态视频| 欧美中文综合在线视频| 中文字幕高清在线视频| 88av欧美| 成年女人永久免费观看视频| bbb黄色大片| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看 | 亚洲,欧美精品.| 两个人视频免费观看高清| 久久这里只有精品19| 亚洲欧美日韩高清在线视频| 国产精品一区二区精品视频观看| 美女高潮喷水抽搐中文字幕| 亚洲精品乱码久久久v下载方式 | 亚洲av中文字字幕乱码综合| 欧美日本视频| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清在线视频| 亚洲美女视频黄频| 美女扒开内裤让男人捅视频| av国产免费在线观看| 女警被强在线播放| 欧美一区二区精品小视频在线| 午夜精品在线福利| 熟女电影av网| 男女视频在线观看网站免费| 亚洲av成人一区二区三| 在线免费观看的www视频| 国产成人啪精品午夜网站| 男人舔女人下体高潮全视频| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 又大又爽又粗| 日本成人三级电影网站| 欧美性猛交黑人性爽| 小蜜桃在线观看免费完整版高清| 亚洲精品国产精品久久久不卡| 男女那种视频在线观看| 午夜a级毛片| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 久久精品人妻少妇| 免费在线观看亚洲国产| www.自偷自拍.com| 国产美女午夜福利| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 悠悠久久av| 久久久色成人| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区精品| 午夜福利在线观看免费完整高清在 | 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| 久久精品亚洲精品国产色婷小说| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 亚洲av成人不卡在线观看播放网| av视频在线观看入口| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久大精品| 国产伦精品一区二区三区四那| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 欧美大码av| 黄片小视频在线播放| 免费电影在线观看免费观看| 亚洲无线在线观看| 午夜日韩欧美国产| a级毛片a级免费在线| 麻豆一二三区av精品| 欧美一区二区国产精品久久精品| 国产1区2区3区精品| 视频区欧美日本亚洲| 日韩欧美在线乱码| 国产精品av久久久久免费| 香蕉久久夜色| 性色av乱码一区二区三区2| 超碰成人久久| 两个人视频免费观看高清| 欧美激情久久久久久爽电影| 免费观看人在逋| 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 亚洲黑人精品在线| 精品福利观看| 免费看十八禁软件| 精品国产亚洲在线| 俺也久久电影网| 亚洲中文字幕一区二区三区有码在线看 | 宅男免费午夜| 最近最新中文字幕大全电影3| 日韩欧美一区二区三区在线观看| 国产视频内射| 1024手机看黄色片| 中文字幕高清在线视频| 18禁黄网站禁片免费观看直播| 一个人观看的视频www高清免费观看 | 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 免费看光身美女| 国产精品一及| 亚洲人成电影免费在线| 亚洲国产高清在线一区二区三| 日本 欧美在线| 国产精品98久久久久久宅男小说| 日日干狠狠操夜夜爽| 在线国产一区二区在线| 亚洲av成人av| 国产高清三级在线| 九九久久精品国产亚洲av麻豆 | 最近最新中文字幕大全电影3| 91av网一区二区| 国产日本99.免费观看| 国产极品精品免费视频能看的| 欧美成人一区二区免费高清观看 | 国产黄色小视频在线观看| www日本在线高清视频| 日韩三级视频一区二区三区| 中出人妻视频一区二区| 国产极品精品免费视频能看的| 欧美性猛交╳xxx乱大交人| 久久久久精品国产欧美久久久| 日本免费一区二区三区高清不卡| 国产成人精品无人区| 一级毛片女人18水好多| av国产免费在线观看| 国产淫片久久久久久久久 | 精品久久久久久久久久免费视频| 免费看a级黄色片| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 国产私拍福利视频在线观看| 看免费av毛片| 婷婷精品国产亚洲av在线| 日本 欧美在线| 日韩欧美在线乱码| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 看免费av毛片| 婷婷六月久久综合丁香| 99热6这里只有精品| 免费av不卡在线播放| 听说在线观看完整版免费高清| 制服人妻中文乱码| 91av网一区二区| 国产成人aa在线观看| 在线观看免费视频日本深夜| 免费看美女性在线毛片视频| 精品国产乱子伦一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产麻豆成人av免费视频| 国产精品一区二区精品视频观看| or卡值多少钱| 中文字幕久久专区| 久久99热这里只有精品18| 成人鲁丝片一二三区免费| ponron亚洲| 男人的好看免费观看在线视频| 757午夜福利合集在线观看| 久久精品综合一区二区三区| 亚洲天堂国产精品一区在线| 亚洲真实伦在线观看| 两性夫妻黄色片| 激情在线观看视频在线高清| 亚洲性夜色夜夜综合| 国产激情欧美一区二区| 精品乱码久久久久久99久播| 精品99又大又爽又粗少妇毛片 | 欧美日韩亚洲国产一区二区在线观看| www.自偷自拍.com| 后天国语完整版免费观看| 变态另类成人亚洲欧美熟女| 搡老妇女老女人老熟妇| 久久精品国产综合久久久| 亚洲18禁久久av| 级片在线观看| 男女下面进入的视频免费午夜| 最新在线观看一区二区三区| 亚洲 国产 在线|