• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validity and Redundancy of Spectral Data in the Detection Algorithm of Sucrose-Doped Content in Tea

    2022-11-07 08:39:54LIUMengxuanWUQiongWANGXuquanCHENQiZHANGYonggangHUANGSongleiFANGJiaxiong
    光譜學與光譜分析 2022年11期

    LIU Meng-xuan, WU Qiong, WANG Xu-quan, CHEN Qi,ZHANG Yong-gang, HUANG Song-lei*, FANG Jia-xiong*

    1. State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai 200083, China 2. Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai 200083, China 3. ShanghaiTech University, Shanghai 201210, China 4. University of Chinese Academy of Sciences, Beijing 100049, China 5. Technology Center of Hefei Customs District, Hefei 245000, China

    Abstract Near-infrared spectroscopy (NIRS) technology integrated with Genetic Algorithm-Back Propagation (GA-BP) neural network was used to spectral sucrose-doped content in 162 tea samples in the NIR wavelength range of 1~2.5 μm. The parameters of the GA and BP neural network were optimized by the sample set to analyze the validity and redundancy of spectral bands. The raw data in the range of 1~2.5 μm was divided into 1~1.7, 1~1.3, 1.3~1.7, 1.7~2.5 and 2~2.2 μm sets. The established quantitative detection model was used to conduct model training on different wavelength bands at the same resolution. The prediction results show that, for the target content, data redundancy appears in both 1~1.7 and 1~2.5 μm bands. The model could be effectively extracted using only 1.3~1.7 or 1.7~2.5 μm band. The prediction model was also conducted using different spectral resolutions from 2 to 20 nm in the same band. In the wavelength range of 1~2.5 μm, the R was between 0.9 and 0.95 when the RMSEP ranged from 1.7 to 2.1. While in the wavelength range of 1~1.7 μm, the R was in the range of 0.9 to 0.93 when the RMSEP was between 1.95 and 2.25. The results indicate that, for the target content, redundancy exists in the 1~2.5 and 1~1.7 μm bands on both wavelength range and spectral resolution. Through the analysis of spectral features and modeling of the algorithm, the effectiveness of spectral data acquirement could be improved dramatically; for the detection of sucrose-doped content in tea, a much narrower wavelength range and lower spectral resolution could be adopted.

    Keywords Genetic algorithm; BP neural network; Near-infrared spectroscopy; Validity; Tea

    Introduction

    Tea is one of the world’s most popular beverages, with a special flavor and high nutritional value. For hundreds of years, tea consumption has been expanding worldwide, leading to the frequent occurrence of adulteration[1]. In particular, there is artificial adulteration of sucrose in exported green tea. Thus, it is necessary to detect the sucrose-doped content in tea. Up to the present, sensory evaluation and wet chemical analysis are still commonly used for judging whether the tea is artificially mixed with sucrose. However, both methods have disadvantages. Sensory evaluation is easily affected by many factors, such as environmental variation and personal subjectivity. It lacks reproducibility and fairness[2]. The wet chemical analysis relies on precision instruments, such as liquid chromatography-mass spectrometry and high-performance liquid chromatography[3]. Nevertheless, these methods are high cost, time-consuming and labor-intensive. Hence, developing and implementing rapid and low-cost methods would be highly beneficial to tea industries and regulatory bodies.

    NIRS is a rapid, nondestructive and large scale inspection method as a green analysis technology. Combining it with suitable chemometrics methods has been used to establish prediction models for tea categories, grades, and content of different ingredients[4-11]. Until now, there are few studies on the detection of sucrose-doped content in tea. The GA-BP neural network has the advantages of strong linear learning ability, strong feature extraction ability and strong model expression ability. The feature information of the target component in the NIR spectrum of multi-component substances can be extracted by this algorithm. Therefore, the objective of the current study is to explore the application of NIRS and the GA-BP neural network in detecting sucrose-doped content in tea.

    The NIR spectrometer with high resolution and wide wavelength range contain more information and noise. To avoid losing characteristic information, all spectral data is used to build a predictive model. However, this method may introduce more noise and have data redundancy, which cannot make the model prediction effect the best[12]. To optimize the prediction results and reduce detection cost, it is necessary to study the redundancy of the full spectral range modeling in terms of wavelength range and resolution.

    The methods that can be used to study spectral band redundancy has two ways. One is to divide the spectral band based on the wavelength range of the portable NIR spectrometer. Then, study the spectral band redundancy and resolution effects. The other is to select the band according to the characteristic band interval of the target substance with less interference from other components to build the model. Both methods were adopted to build a high predictability detection model to explore the validity and redundancy of spectral data.

    This paper used162 samples of tea mixed with sucrose, whose spectrum was collected by an FT-NIR spectrometer. A GA-BP neural network model was applied to analyze the validity and redundancy at different spectral bands and resolutions. Moreover, a further study about whether a NIR spectrometer with a narrow wavelength range and lower resolution has the potential to detect the sucrose-doped content in tea is also qualified.

    1 Experiment

    1.1 Experimental Materials

    A total of 162 experimental samples were from Huangshan export green tea, which was prepared by GB/T 8302—2013[13]to ensure consistency, while NIR spectra were measured by FT-NIR. The measurement model of diffuse reflectance absorbance was adopted. The scanning wavenumber range is 4 000~10 000 cm-1. The wavenumber interval is set to be 0.48 cm-1. The standard sucrose-doped content of the samples was in the range of 0.91%~22.6%, which was measured by high-performance liquid chromatography, according to the GB 5009.8—2016[14]standard.

    1.2 Research methods

    The original spectrum in the 1~2.5 μm was preprocessed by multivariate scattering correction[1]. Considering that the wavelength range of common handheld spectrometers adopting InGaAs device is normally in about 1~1.7 or 1.7~2.5 μm range with lower resolution, the raw data was divided into 1~1.7 and 1.7~2.5 μm bands. It could be seen from the NIR spectrum of the sample that there was a characteristic peak around 1.4 μm, respectively. However, there may also be the influence of moisture around 1.4 μm. In order to easily distinguish whether the characteristic peak was the interference of the target content or other components and to further study the redundancy of the 1~1.7 μm band, the 1~1.7 μm band was divided into 1~1.3 and 1.3~1.7 μm. The spectrum of tea samples contains other mixed substances, especially moisture. For the second band, the characteristic range band of 2~2.2 μm was selected by relative value analysis. The entire research schematic diagram is shown in Fig.1. The investigation includes the effectiveness of each spectral band under the same resolution and spectral resolution effects of the same wavelength range by the GA-BP neural network quantitative detection model. The 162 experimental samples were divided into the training set and prediction set approximately at the ratio of 3∶1, of which 120 samples were randomly used for model training, and the remaining 42 samples were only used to evaluate the model prediction results. Predictability evaluations of the detection model were based on correlation coefficient (R), and root mean square error of prediction (RMSEP).

    Fig.1 Schematic diagram of analysis of different spectral bands and resolution

    Fig.2 Parameter selection of genetic algorithm (a):Iteration parameters; (b):Population size; (c):Mutation probability; (d):Crossover probability

    1.3 Model parameters setting

    This study adopted the GA-BP neural network algorithm[16]to establish a quantitative model of sucrose-doped content in tea. Some parameters of the algorithm would affect the prediction effect of the model, which needed to be determined based on the sample set, including iteration parameters, population size, crossover probability, mutation probability in GA, as well as epochs, training target error, learning rate, training function, and node transfer function in the BP neural network.

    2 Results and discussions

    2.1 Parameters optimization selection

    The parameter selection criterion was theRand RMSEP between the predicted value and the standard value of the 42 prediction samples which did not participate in the training. Fora better prediction effect of the model, largerRand smaller RMSEP were needed. When one parameter was changed, the other parameters and the sample set remained the same. The final result is shown in Fig.2.

    It could be seen from Fig.2 that the iteration parameter of GA was 60. The population size was 30. The mutation probability was 0.003 5. The crossover probability was 0.99.

    The BP neural network training algorithm mainly included the gradient descent method, quasi-Newton algorithm, L-M algorithm, and Bayesian regularization algorithm, which was related to the training set, the complexity of the research object, and the size of the network. Some representative training algorithms were selected to test.

    Table 1 Test results of different training functions

    As shown in Table 1,the training function was trainbr.

    The BP neural network had different node transfer functions, which contains three main types: logsig, tansig, and purelin. The different combination of the hidden layer and output layer node transfer functions would affect the model prediction result. The test results are shown in Table 2.

    TheR, RMSEP, and the model training time were comprehensively considered. The node transfer function of the hidden layer and the output layer of the neural network were purelin and tansig.

    Other parameters in the BP neural network were determined by model training. The number of neurons in the hidden layer was 16. The epochs were 100. The learning rate was 0.01. The training target error was 0.000 001.

    Table 2 Test results of different node transfer function

    2.2 Spectral bands analysis results

    A GA-BP neural network model was established after optimizing the parameters. The resolution of different spectral bands was 2 nm. The training set and prediction set were randomly selected for multiple testing. Record theRand RMSEP respectively. The average value of 100 times was used as the final value. The prediction results of each spectral band are shown in Fig.3.

    Fig.3 Model prediction results of differentspectral bands at the same resolution

    Fig. 3 showed that the R of the 1~1.3 μm spectral band was the smallest, and RMSEP was the largest. It demonstrated that the 1~1.3 μm spectral band could not be used for quantitative detecting sucrose-doped content in tea. The prediction results of the models in the 1~2.5, 1~1.7, 1.3~1.7 and 1.7~2.5 μm sets indicated that these sets could be used alone to establish the sucrose-doped content detection model. The differences between the model prediction results of the four sets were minimal. Through analyzing the difference among the model prediction results in the 1~1.3, 1.3~1.7 and 1~1.7 μm sets, the 1~1.7 μm spectral band was less effective and had redundancy. The 1~1.3 μm spectral band was invalid, which negatively impacted the model and decreased model accuracy. Comparing the results in the 1.7~2.5 and 2~2.2 μm bands, the 2~2.2 μm band could be used to establish the model, while its accuracy needed to be improved.

    2.3 Spectral resolution analysis results

    By averaging point values, change the resolution of the spectral band in 1~2.5 μm from 2 to 20 nm by averaging point values. The model was trained 100 times at each resolution and recorded the average value, as shown in Fig.4.

    Fig.4 Model prediction results of different resolution at 1~2.5 μm spectral band

    Fig.4 showed thatRranged from 0.9 to 0.95, and RMSEP was 1.7 to 2.1 at the different spectral resolutions. To further study the application of the portable NIR spectrometer, the 1~1.7 μm spectral band data was also used for the resolution experiment. Similarly, change the spectral resolution from 2 to 10 nm. The experimental results showed that the R was in the interval of 0.9~0.93, and RMSEP was between 1.95 and 2.25. The model prediction results of the two spectral bands indicated that the resolution had little effect on the detection model of sucrose-doped content in tea. However, the model results at low resolution were better than those at high resolution. The phenomenon may be differences in tea samples, spectral acquisition error, excessive noise in the raw data, neural network over fitting, and the method of altering the spectral resolution.

    3 Conclusions

    This paper mainly analyzed the validity and redundancy of spectral data by the GA-BP neural network detection algorithm of sucrose-doped content in tea. Analyze the different spectral bands at the same resolution. The prediction results showed that 1~2.5, 1~1.7, 1.3~1.7, 1.7~2.5 and 2~2.2 μm spectral bands could be used to establish a detection model, and the modeling effect of 1.3~1.7 μm was better, which conformed to the wavelength range of the portable NIR spectrometer. Analyze the different spectral resolutions at the same band. The prediction results indicated that the resolution had little effect on the model and the spectral resolution of 10~20 nm was enough for the portable NIR spectrometer. Through the analysis of different spectral bands and resolutions, the redundancy exists in 1.3~1.7 and 1~2.5 μm on both wavelength range and spectral resolution. It is of great significance to further explore the application of low spectral resolution portable NIR spectrometer in tea.

    久久久久久久亚洲中文字幕| 美女主播在线视频| 国产国拍精品亚洲av在线观看| 在线观看美女被高潮喷水网站| 日本欧美国产在线视频| 成年av动漫网址| 日日摸夜夜添夜夜添av毛片| 1000部很黄的大片| 色综合亚洲欧美另类图片| 久久综合国产亚洲精品| 亚洲欧美一区二区三区国产| 夜夜爽夜夜爽视频| 身体一侧抽搐| 国产亚洲91精品色在线| 午夜福利视频1000在线观看| 中文字幕亚洲精品专区| 十八禁网站网址无遮挡 | 嘟嘟电影网在线观看| 国产伦精品一区二区三区四那| 人体艺术视频欧美日本| 久久久久久伊人网av| 最近中文字幕高清免费大全6| 最近的中文字幕免费完整| 久久久久久久亚洲中文字幕| 永久免费av网站大全| 国产 亚洲一区二区三区 | 久久综合国产亚洲精品| 国产精品伦人一区二区| 欧美+日韩+精品| 男女边摸边吃奶| 天堂√8在线中文| 国模一区二区三区四区视频| 亚洲在线观看片| 亚洲色图av天堂| 日韩欧美精品v在线| 一级毛片电影观看| 午夜激情欧美在线| 国产精品人妻久久久久久| 欧美精品一区二区大全| 夫妻午夜视频| 韩国高清视频一区二区三区| 亚洲国产日韩欧美精品在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久久午夜电影| 最近2019中文字幕mv第一页| 97超碰精品成人国产| 亚洲av中文av极速乱| 色综合站精品国产| 久久99热6这里只有精品| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 精品久久国产蜜桃| 国产精品一区www在线观看| 日韩视频在线欧美| 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 免费看av在线观看网站| 亚洲精华国产精华液的使用体验| 亚洲精品日韩av片在线观看| 美女内射精品一级片tv| 又黄又爽又刺激的免费视频.| 美女脱内裤让男人舔精品视频| 又大又黄又爽视频免费| 精品久久久精品久久久| 中文字幕久久专区| 日韩精品青青久久久久久| 久久久精品94久久精品| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 亚洲国产成人一精品久久久| 成人高潮视频无遮挡免费网站| 久久99蜜桃精品久久| 国产精品女同一区二区软件| 国产69精品久久久久777片| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 少妇猛男粗大的猛烈进出视频| 999久久久国产精品视频| 十八禁网站网址无遮挡| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 欧美在线黄色| 最新的欧美精品一区二区| 成人影院久久| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 日韩中字成人| 一级毛片黄色毛片免费观看视频| 免费久久久久久久精品成人欧美视频| 久久人人爽人人片av| 热99久久久久精品小说推荐| 午夜av观看不卡| 校园人妻丝袜中文字幕| 欧美 日韩 精品 国产| 九草在线视频观看| av片东京热男人的天堂| 国产在视频线精品| 久久这里有精品视频免费| 久久免费观看电影| 我的亚洲天堂| 免费黄网站久久成人精品| 色94色欧美一区二区| 国产国语露脸激情在线看| 日日爽夜夜爽网站| 99re6热这里在线精品视频| 麻豆av在线久日| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 国产欧美日韩综合在线一区二区| av电影中文网址| 欧美av亚洲av综合av国产av | 亚洲一级一片aⅴ在线观看| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 一级,二级,三级黄色视频| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 国产熟女午夜一区二区三区| 国产成人av激情在线播放| 飞空精品影院首页| 色94色欧美一区二区| 一级毛片 在线播放| 亚洲一区中文字幕在线| 久久精品国产亚洲av涩爱| 五月伊人婷婷丁香| 精品国产国语对白av| 久久久国产欧美日韩av| 91午夜精品亚洲一区二区三区| 久久午夜综合久久蜜桃| av线在线观看网站| 男女啪啪激烈高潮av片| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡| 男女啪啪激烈高潮av片| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 五月天丁香电影| 午夜福利一区二区在线看| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 国产乱人偷精品视频| 熟女电影av网| 9色porny在线观看| 老女人水多毛片| 亚洲国产精品一区二区三区在线| 精品少妇久久久久久888优播| 自线自在国产av| 日本-黄色视频高清免费观看| 色哟哟·www| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 一级毛片 在线播放| 下体分泌物呈黄色| 在线天堂中文资源库| 日本vs欧美在线观看视频| 高清欧美精品videossex| 精品一区二区三卡| av福利片在线| 久久久久国产精品人妻一区二区| 国产一区二区激情短视频 | 秋霞伦理黄片| 69精品国产乱码久久久| 国产片特级美女逼逼视频| 国产毛片在线视频| 成人国语在线视频| 青春草国产在线视频| 岛国毛片在线播放| av一本久久久久| 精品国产超薄肉色丝袜足j| 看十八女毛片水多多多| 男女国产视频网站| 飞空精品影院首页| 久久久久久久久久久久大奶| 国产精品久久久久久av不卡| 一区福利在线观看| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 高清视频免费观看一区二区| 成人国语在线视频| 婷婷成人精品国产| 永久免费av网站大全| 人人澡人人妻人| 丝瓜视频免费看黄片| av网站免费在线观看视频| 亚洲国产精品一区三区| 一级爰片在线观看| 亚洲美女黄色视频免费看| 午夜91福利影院| 久久这里有精品视频免费| 多毛熟女@视频| 久久影院123| 女人被躁到高潮嗷嗷叫费观| 母亲3免费完整高清在线观看 | 一二三四在线观看免费中文在| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 欧美精品av麻豆av| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜制服| 青春草亚洲视频在线观看| 熟妇人妻不卡中文字幕| 国产男女内射视频| 久久精品国产亚洲av天美| 欧美精品一区二区大全| 精品卡一卡二卡四卡免费| 18+在线观看网站| 免费播放大片免费观看视频在线观看| 99热全是精品| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 香蕉国产在线看| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 日本免费在线观看一区| 啦啦啦视频在线资源免费观看| 亚洲美女搞黄在线观看| 亚洲精品久久久久久婷婷小说| 亚洲婷婷狠狠爱综合网| 亚洲久久久国产精品| 国产精品人妻久久久影院| 黄网站色视频无遮挡免费观看| 一级毛片黄色毛片免费观看视频| 啦啦啦在线免费观看视频4| av在线老鸭窝| 国产国语露脸激情在线看| 在线免费观看不下载黄p国产| 国产免费现黄频在线看| 色视频在线一区二区三区| 在线观看一区二区三区激情| 一区二区av电影网| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 在线观看国产h片| 国产亚洲av片在线观看秒播厂| 国产极品天堂在线| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| 又大又黄又爽视频免费| 免费看av在线观看网站| 免费高清在线观看视频在线观看| 老司机影院成人| 久久久久精品人妻al黑| 欧美少妇被猛烈插入视频| 国产亚洲精品第一综合不卡| 免费播放大片免费观看视频在线观看| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 久久热在线av| av视频免费观看在线观看| 国产成人91sexporn| 一区二区三区激情视频| 久久久亚洲精品成人影院| 久久韩国三级中文字幕| 久久久久精品人妻al黑| 亚洲国产精品一区三区| 免费看不卡的av| 一本色道久久久久久精品综合| 久久久久久免费高清国产稀缺| 久久99一区二区三区| 亚洲色图综合在线观看| 人妻一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 人人妻人人澡人人爽人人夜夜| 黑人猛操日本美女一级片| 亚洲少妇的诱惑av| 看非洲黑人一级黄片| 狂野欧美激情性bbbbbb| 欧美xxⅹ黑人| 国产在视频线精品| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 午夜福利一区二区在线看| 国产97色在线日韩免费| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 青春草国产在线视频| 永久免费av网站大全| av国产久精品久网站免费入址| 久久av网站| 亚洲av福利一区| 伊人久久大香线蕉亚洲五| 免费人妻精品一区二区三区视频| 欧美国产精品va在线观看不卡| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 亚洲三级黄色毛片| 一级毛片 在线播放| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 好男人视频免费观看在线| 亚洲在久久综合| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 欧美日韩一级在线毛片| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 又黄又粗又硬又大视频| 丝袜美腿诱惑在线| 精品久久久精品久久久| 亚洲成人av在线免费| 国产1区2区3区精品| 18+在线观看网站| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人97超碰香蕉20202| 亚洲天堂av无毛| 九色亚洲精品在线播放| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 久久久久久久久久人人人人人人| 亚洲色图综合在线观看| 美女高潮到喷水免费观看| 国产综合精华液| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 在现免费观看毛片| h视频一区二区三区| 母亲3免费完整高清在线观看 | 999精品在线视频| 波野结衣二区三区在线| 可以免费在线观看a视频的电影网站 | 高清av免费在线| 亚洲欧美精品综合一区二区三区 | 99热网站在线观看| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 侵犯人妻中文字幕一二三四区| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 精品视频人人做人人爽| 国产黄频视频在线观看| 日日爽夜夜爽网站| 久久久久久久国产电影| 欧美黄色片欧美黄色片| 欧美少妇被猛烈插入视频| 国产精品久久久av美女十八| 成年女人毛片免费观看观看9 | 毛片一级片免费看久久久久| 久久久国产精品麻豆| 校园人妻丝袜中文字幕| www.av在线官网国产| 久久久久久久久免费视频了| 国产av一区二区精品久久| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 精品久久久精品久久久| 精品人妻熟女毛片av久久网站| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 制服诱惑二区| 999久久久国产精品视频| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区| 免费高清在线观看视频在线观看| 亚洲精品在线美女| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 中国三级夫妇交换| 国产又爽黄色视频| 男女高潮啪啪啪动态图| a级片在线免费高清观看视频| 伦理电影免费视频| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 日韩欧美一区视频在线观看| 欧美中文综合在线视频| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 少妇的逼水好多| 丰满乱子伦码专区| 国产不卡av网站在线观看| 亚洲欧洲精品一区二区精品久久久 | 免费黄网站久久成人精品| 日韩不卡一区二区三区视频在线| 精品亚洲乱码少妇综合久久| xxx大片免费视频| 国产色婷婷99| 黑人猛操日本美女一级片| 1024香蕉在线观看| xxxhd国产人妻xxx| 久久国产精品大桥未久av| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| a 毛片基地| 男女啪啪激烈高潮av片| 国产精品久久久久久精品古装| 亚洲色图 男人天堂 中文字幕| 久久久久久久大尺度免费视频| 国产国语露脸激情在线看| 亚洲少妇的诱惑av| 日韩av免费高清视频| 日韩一区二区视频免费看| 欧美另类一区| 深夜精品福利| 国产成人免费无遮挡视频| 看十八女毛片水多多多| 超碰成人久久| 午夜福利网站1000一区二区三区| 观看av在线不卡| 麻豆乱淫一区二区| 欧美bdsm另类| 亚洲伊人色综图| 色吧在线观看| 男女无遮挡免费网站观看| 免费av中文字幕在线| 亚洲精品一区蜜桃| 亚洲色图 男人天堂 中文字幕| 如何舔出高潮| 亚洲综合色惰| 久久这里有精品视频免费| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区综合在线观看| 亚洲成人手机| 最近中文字幕2019免费版| 卡戴珊不雅视频在线播放| 国产有黄有色有爽视频| 日本欧美国产在线视频| 亚洲精品自拍成人| 女的被弄到高潮叫床怎么办| 久久这里只有精品19| 国产亚洲av片在线观看秒播厂| 久久久久国产一级毛片高清牌| 丁香六月天网| 激情五月婷婷亚洲| 亚洲成av片中文字幕在线观看 | 成年动漫av网址| 国产人伦9x9x在线观看 | 美国免费a级毛片| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 国产av码专区亚洲av| 老司机影院成人| 亚洲精品视频女| 日韩中文字幕欧美一区二区 | 91国产中文字幕| 在线免费观看不下载黄p国产| 欧美亚洲 丝袜 人妻 在线| 国产乱来视频区| 欧美日韩视频精品一区| 18禁观看日本| 啦啦啦在线观看免费高清www| 成人午夜精彩视频在线观看| 久久久久久久久免费视频了| 久久女婷五月综合色啪小说| 亚洲精品日本国产第一区| 久久99精品国语久久久| 久热久热在线精品观看| 成人国产麻豆网| 日韩视频在线欧美| 亚洲情色 制服丝袜| 成人亚洲精品一区在线观看| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| 国产精品99久久99久久久不卡 | 9色porny在线观看| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 桃花免费在线播放| 久久久精品免费免费高清| 欧美日韩视频高清一区二区三区二| 国产免费现黄频在线看| 老司机影院成人| 街头女战士在线观看网站| 国产深夜福利视频在线观看| 精品午夜福利在线看| 久久av网站| 99久久综合免费| 亚洲av日韩在线播放| 侵犯人妻中文字幕一二三四区| av免费观看日本| 国产一区有黄有色的免费视频| 欧美中文综合在线视频| 日本黄色日本黄色录像| 春色校园在线视频观看| 男女边摸边吃奶| 国产爽快片一区二区三区| 成年女人毛片免费观看观看9 | 亚洲精品成人av观看孕妇| 欧美日韩一级在线毛片| 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂| 久久久久久久久久人人人人人人| 九色亚洲精品在线播放| 亚洲欧洲国产日韩| 在线观看免费视频网站a站| 校园人妻丝袜中文字幕| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 久久久久精品久久久久真实原创| 国产色婷婷99| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃| 黄网站色视频无遮挡免费观看| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 校园人妻丝袜中文字幕| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的| 精品久久久久久电影网| 午夜免费观看性视频| 日韩成人av中文字幕在线观看| 免费观看在线日韩| 丰满饥渴人妻一区二区三| 日本wwww免费看| 午夜福利乱码中文字幕| 一二三四中文在线观看免费高清| 男女免费视频国产| 性色av一级| 成人国产av品久久久| 满18在线观看网站| 成人二区视频| 国产精品人妻久久久影院| 亚洲精品美女久久久久99蜜臀 | 午夜日韩欧美国产| 91午夜精品亚洲一区二区三区| 午夜精品国产一区二区电影| 亚洲欧洲日产国产| 五月开心婷婷网| 777久久人妻少妇嫩草av网站| 欧美日韩一级在线毛片| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜爱| 纵有疾风起免费观看全集完整版| 999久久久国产精品视频| 日韩av免费高清视频| 久久久久国产网址| 亚洲欧美一区二区三区国产| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 黄色毛片三级朝国网站| 欧美精品人与动牲交sv欧美| 久久精品国产a三级三级三级| 激情五月婷婷亚洲| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 爱豆传媒免费全集在线观看| 99国产精品免费福利视频| 一本大道久久a久久精品| 青草久久国产| 久久久久久久亚洲中文字幕| 我的亚洲天堂| 最近最新中文字幕大全免费视频 | 人妻系列 视频| 国产97色在线日韩免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品香港三级国产av潘金莲 | 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 国产亚洲一区二区精品| 各种免费的搞黄视频| 欧美黄色片欧美黄色片| 成年人午夜在线观看视频| 99热国产这里只有精品6| 国产精品国产av在线观看| 丰满少妇做爰视频| 亚洲天堂av无毛| 日韩电影二区| 看免费av毛片| 男的添女的下面高潮视频| 熟妇人妻不卡中文字幕| 久久影院123| 免费女性裸体啪啪无遮挡网站| 中文字幕制服av| 日韩av免费高清视频| 久久久国产精品麻豆| 天堂俺去俺来也www色官网| 爱豆传媒免费全集在线观看| 国产在线免费精品| 久久久久国产精品人妻一区二区| 色婷婷av一区二区三区视频| 亚洲精品美女久久久久99蜜臀 | 免费在线观看视频国产中文字幕亚洲 | www日本在线高清视频| 亚洲天堂av无毛| 少妇被粗大的猛进出69影院| 亚洲婷婷狠狠爱综合网| 制服诱惑二区| 秋霞伦理黄片| 婷婷色综合www| av福利片在线| 午夜免费男女啪啪视频观看| 国语对白做爰xxxⅹ性视频网站| 如日韩欧美国产精品一区二区三区| 午夜福利乱码中文字幕| 久久精品国产综合久久久| 免费观看a级毛片全部| 80岁老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 国产欧美日韩综合在线一区二区|