• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Establishment of Metamodels for Ship Seakeeping Performance Using an Effective Approximation Modeling Method

    2016-05-16 02:41:52,,,
    船舶力學(xué) 2016年3期
    關(guān)鍵詞:南安普頓耐波性工程學(xué)院

    ,,,

    (1.School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhengjiang 212003, China;2.Fluid Structure Interactions Research Group,Faculty of Engineering and the Environment,University of Southampton,Southampton,UK,SO17 1BJ)

    Establishment of Metamodels for Ship Seakeeping Performance Using an Effective Approximation Modeling Method

    LI Dong-qin1,Philip A.WILSON2,JIANG Zhi-yong1,ZHAO Xin1

    (1.School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhengjiang 212003, China;2.Fluid Structure Interactions Research Group,Faculty of Engineering and the Environment,University of Southampton,Southampton,UK,SO17 1BJ)

    The prediction of seakeeping performance for ships is a complex calculation process because of the large number of possible ship configuration variables that will affect the seakeeping motion; high fidelity commercial software is used to forecast the ship performance such as Computational Fluid Dynamics(CFD)then there is a large overhead in both time and money to use such software. In this paper,the Latin Hypercube Design methodology is employed to explore the design space and to sample data to cover the design space.An index is introduced,namely the percentage of downtime which illustrates the short-term and long-term ship seakeeping motion,defined as the comprehensive evaluation index for ship seakeeping performance,which is to be used in the comparison process of ship design.The five motions of ship seakeeping performance were considered as roll,pitch, yaw,sway and heave.To improve the efficiency of seakeeping calculation,an effective approximation modeling method-the Single-parameter Lagrangian Support Vector Regression(SPL-SVR)was adopted and trained to establish the metamodels and predict the seakeeping performance and this algorithm was first proposed by authors in their past studies.For the Offshore Supply Vessel(OSV), the seakeeping criteria were predicted with the SPL-SVR and compared with the NAPA-based calculation results with the seakeeping manager,the Artificial Neural Network results and classical SVR results.Using two ship speeds for an Offshore Supply Vessel,the metamodels of ship seakeeping performance of short-term percentage of downtime were established;these metamodels were suitable for the practical application in ship preliminary design stage and all the numerical results show the effectiveness of the new approximation algorithms.

    metamodel;Support Vector Machine;design of experiment;seakeeping

    0 Introduction

    An accurate and effective prediction technique for the ship seakeeping performance plays an important role in the hydrodynamic-based ship design process.Specifically,it needs to en-sure two aspects.Firstly,a high-precision calculation method,i.e.,strip theory rather than empirical regression formula which has been widely used in ship seakeeping prediction[1],is required to calculate the ship motions in waves at the preliminary ship design stage.Secondly, and perhaps the most important part,is that the computational cost for seakeeping performance will be minimised.The authors have already performed initial research in the ship multidisciplinary design integrated with the ship resistance and ship seakeeping performance[2],the calculation seemed to be computationally expensive,time consuming and not of a great practical use.Although,the running speed of computers is now greatly enhanced,the cost of high precision computation for ship seakeeping performance in the preliminary stage is still too expensive and limits the progress of ship design.So far,the approximation model(metamodel or surrogate model)was adopted to solve this kind of problem in complex engineering system design and earned great progress[3].Referencing the same ideas,this paper makes an effort to improve a new simple and effective algorithm of Support Vector Machines and apply it to establish the metamodels of ship seakeeping performance.

    1 Theoretical background of SPL-SVR

    In real world design problems,there are often several disciplines in ship design.There are disciplines which may be studied with different software tools,or the disciplines may be searching for other solutions with different teams of engineers.With the increasing complexity of ship design problems,accuratly calculating ship performance has become increasingly difficult in the design process.Discovering a simple,accurate approximation model to replace the specific simulation calculation is the one way to satisfy the growing needs of computation.In the last century,researchers have successively proposed a variety of metamodeling techniques such as the neural network,the response surface method[4]and Kriging methods[5]to aid forecasting estimates for engineering computing needs.The use of metamodeling techniques to reduce the time spent on computational analyses is well known and will obviously increase the efficiency of the design process.

    However,how do we improve the accuracy and robustness performance of metamodeling techniques is the really important question,especially when the sample size becomes small, limited and scarce and the established metamodels for ship performance will affect the final optimization solution.As a novel method of modern artificial intelligence technology,Support Vector Machines(SVM)[6-7]is proposed to aim at the limited samples problem and has a good generalization performance as well as global optimal extremum which have been proved by many researchers[8].

    The SVM is based on Statistical Learning Theory(SLT),and has been recognized as a powerful machine learning technique.It offers a united framework for the limited-sample learning problem and can solve those practical problems such as model-choosing,limited samples, multiple dimensions,non-linear problems and local minima.By learning the training samples,it can obtain the black box which describes the complicated mapping relation without knowing the connection between the dependent variables and independent ones.Thus it has been used to construct metamodels and an excellent result has been achieved[9].

    In this paper,we will use an effective approximation modelling method named Singleparameter Lagrangian Support Vector Regression(SPL-SVR),which is a new support vector regression algorithm proposed by the authors[10-11]to construct the implicit metamodels of ship resistance performance.It is worth mentioning that construction of metamodels of ship seakeeping performance in this paper is a continuation of the work in Ref.[10-11].These two references gave all details required.Here,we will briefly recall the mathematical theory of this algorithm for the readers’convenience.The methodology in short is given below:

    In order to reduce complexity,the new algorithm of SVR has only one parameter ξ to control the errors instead of two parameters ξ,ξ*in the classical SVR,adds b2/2 to the item of confidence interval at the same time,and adopts the Laplace loss function.Hence we arrive at the formulation stated as follows:

    The solution of Eq.(1)can be transformed into the dual optimization problem.A Lagrange function can be constructed and with the associated kernel functionwhich correspond to dot product in a feature space given by a nonlinear transformation φ of the data vectors in the input space.The Eq.(1)can be transferred into the dual optimization problem shown as follows:

    Thus,the estimation function is calculated as follows:

    In a sense,the complexity of a function’s representation by Support Vectors(SVs)only depends on the number of SVs.In this paper,we select a normal kernel function-the Radial Basis Function(RBF)[12].

    2 Distributions of ship samples

    To make the model simpler and computational feasible,some design parameters were fixed. At the same time,obtained from many shipping companies and design institutions,plenty of data about the offshore supply vessels were gathered.It was stipulated that the OSV would have two propellers and large block coefficient.The distributions of main principal characteristics are showed in Fig.1,in which the black round points represent the 30 training ship data from DOE method.

    Fig.1 Distribution of vessels’principal characteristics

    In fact,there are many variables which will affect the ship seakeeping performance.However,the addition of more variables to the model would hamper the result evaluation and the methodology validation.It could be that the performance criteria are based on ship wash and bow shape[13-15].Eventually,we chose the length between perpendiculars,the breadth,depth, the design draught,the block coefficient,the longitudinal prismatic coefficient,longitudinal centre of buoyancy,ship speed and wave angle as the design variables,and these nine parameters can show the geometrical characteristics of ship hull.Once the fixed parameters are established,the design variables are chosen and listed in the Tab.1.

    Tab.1 Range of design variables in DOE

    Here,we use the standard model-based calibration toolbox from commercial software Matlab to establish the training data set with Latin Hypercube Design proposed by Ref.[16].The training sample couples are taken from the DOE.A total of 30 ships were used in the test with the details listed in Tab.2 and one of the ship hulls is shown in Fig.2.

    Fig.2 Transverse section and 3D lay-out of the ship hull

    Tab.2 Design variables of selected 30 training ship data

    Continue Tab.2

    3 Calculation of ship seakeeping performance

    Before establishing the metamodels of seakeeping performance and its effects in the ship design process,we should first decide which calculation method for the ship seakeeping performance of offshore supply vessel should be used.

    3.1 The actual wave conditions

    It is important to realize that the wave spectra are attempts to describe the ocean wave spectra in very special conditions,namely the conditions after a wind with constant velocity has been blowing for a long time.A typical ocean wave spectrum will be much more complicated and variable.Here,the JONSWAP spectrum for North Sea and South Sea of China is capable of giving the safe analysis results of ship motions in wave.

    The JONSWAP spectrum is a Pierson-Moskowitz spectrum multiplied by an extra peak enhancement factor and is used to represent a fetch limited sea spectrum as for the two sea areas previous mentioned.

    3.2 Wave scatter table in South Sea of China

    Considering the actual wave influence in design,we often need to know the maximum of wave parameters which will happen over a period of several years.In order to establish longterm forecasts,we also need to know the joint probability distribution of the significant wave height and average zero crossing period,usually expressed by the use of the wave scatter table. The wave information in South Sea of China was collected in Ref.[17],where the area ranges is 105°-125°east longitude,0.5°-23°north latitude.

    Actually,based on the need of ship performance prediction and ship hull design,muchmore emphasis should be laid on the collection of basic environmental information about the wind,wave and current in navigation area.The wave scatter table in South Sea of China is listed as Tab.3.

    Tab.3 Wave scatter table in South Sea of China(Annual)

    3.3 Determination of seakeeping criteria

    The limitation of the ship motion was estimated from data gleaned from OSV operators and the weight for seakeeping criteria in different condition are given in Tab.4.The velocity of 0 kn is the normal working condition,and the velocity of 14.5 kns is the normal operating speed for the vessel from harbor to working area for the OSV.

    Tab.4 Seakeeping criteria values or allowed probabilities for OSV

    3.4 Comprehensive evaluation index for seakeeping performance

    There are many factors influencing the ship seakeeping performance especially for different types of deep-sea vessels,it is difficult to decide the optimum design with good seakeeping performance according to one or more basic seakeeping factors.It is necessary to find a proper comprehensive evaluation index for ship seakeeping performance.There are now two types of evaluation index:one is the percentage of working time,the other is the percentage of desired speed.Here,we propose a new index of long term forecast percentage of downtime, which aims to show the ability of ship working in the prescribed conditions(environment andtime)and is an effective evaluation index of seakeeping quality.Specific calculation steps are listed as follows:

    Step 1:According to the working requirement,choose the navigation speed and working speed of OSV.Calculate the frequency response functions in regular wave under specific velocities Vsand wave angles μm.

    Step 2:Choose the ocean wave spectrum,predict the ship motion responses and accelerations of the unit significant wave height under the irregular wave.

    Step 3:Gather the ocean wave statistics information around the ship working area,the actual ocean wave environmental condition and wave statistics probability(Scatter Diagrams),determine the various seakeeping criteria factors k and establish the seakeeping criteria group Ck.

    Step 4:Calculate motion response RAO ra()1/3for various seakeeping criteria factors under the specific speed Vs,wave angles μmand different wave period Tjin the irregular wave. Then calculate the limited wave height Hsmjkand the percentage of downtime POTsmkfor different seakeeping criteria factors k under the specific speed Vsand wave angles μm.

    Step 5:Based on the importance distribution αk(or weight coefficient)of each seakeeping criteria factor k in the seakeeping criteria group Ck,calculate the comprehensive evaluation index POTshortfor seakeeping performance which is called the ship short-term percentage of downtime and this index indicate the ultimate working capacity of ship under the given speed and wave angle.

    Step 6:Considering the speed frequency distributionand wave angle frequency distributionin the real voyage,the comprehensive evaluation index POTlongfor seakeeping performance which is called the ship long-term percentage of downtime can be calculated as below:

    4 Establishment of ship seakeeping metamodel

    Hydrodynamic design of ships involves several stages,from preliminary and early-stage design to late-stage and final design.As the objective of this study is to develop a practical metamodel of an offshore supply vessel at the early stage of the hydrodynamic-based ship design,a practical calculation tool,based on the strip theory called Seakeeping Manager from the commercial software NAPA,is used to compute the ship motion in irregular wave including roll, pitch,yaw,sway and heave motions.

    Fig.3 Response functions for the seakeeping criterias(Vs=0 kns)

    Firstly,we consider that the working speed for the offshore supply vessel is 0 kns and navigation speed is 14.5 kns,and the wave angles are 0°,30°,60°,90°,120°,150°and 180°. We choose one of the 30 ship training data above to calculate the seakeeping performance as an example.As mentioned above,we choose seven seakeeping criteria to evaluate the ship seakeeping performance:roll,pitch,slam,heave,propeller emergence,deck wetness and vertical acceleration at bow.Further,some of the response functions of these seakeeping criteria under different wave angles are shown as Fig.3.

    Considering the wave scatter table in South Sea of China,the percentage of downtime (which means non-working time)is shown in Fig.4 which indicates the comprehensive evaluation index for the seakeeping criteria will meet the permission of design requirements.

    Further,the benchmarking methodology presented here can be used in a wider setting to analyze how the performance is affected by certain design decisions.Hence,this approach can support the design process with performance estimated at an early stage,without running expensive model tests or time consuming CFD calculations.Here,we construct the metamodels of ship seakeeping performance based on the theory of Support Vector Machine and set up the program in Matlab.

    Fig.5 Approximation results of downtime POTshortfor ship type 20 to 30(Vs=0 kns)

    Fig.6 Approximation results of downtime POTshortfor ship type 20 to 30(Vs=14.5 kns)

    Here,the first 20 ship types created with the DOE method are selected as training data set and the last 10 ship types as test data set.The chosen variables are the length between perpendiculars,the breadth,depth,the design draught,the block coefficient,the longitudinal prismatic coefficient,longitudinal centre of buoyancy,ship speed and wave angle as the design variables,and the ship short-term percentage of downtime POTshortbased on the importance distribution weight for seven seakeeping criteria under the circumstance of the working speed and navigation speed as the output variable.The calculation results with velocity 0 kns and 14.5 kns were compared with Seakeeping Manager,ANN and classic SVR which were shown as Fig.5 and Fig.6.

    Here,the calculated results for the working speed with wave angle 60°and navigation speed with wave angle 120°are listed in Tab.5 and Tab.6.The Relative Error(RE)and Mean Relative Error(MRE)are applied as performance indexes:

    Tab.5 Calculation results with Relative Error(RE)for downtime POTshortwith wave angle 60°(Vs=0 kns)

    Tab.6 Calculation results with Relative Error(RE)for downtime POTshortwith wave angle 120°(Vs=14.5 kns)

    Continue Tab.6

    The comparison of relative errors for different wave angles and velocities is listed in Tab. 7.The maximum MRE within the different wave angles and velocities comparing to the result of seakeeping Manager for ANN is 10.155%and the minimum MRE is 6.315%;the maximum MRE for SVR is 7.465%and the minimum MRE is 4.443%;the maximum MRE for SPL-SVR is 4.531%and the minimum MRE is 2.653%.It can be seen that the results are acceptable and agree well with each other.Obviously,if the training ships data set,the kernel parameters and the calculation method for seakeeping criteria are chosen properly,we can use these metamodels to predict the ship seakeeping performance in the preliminary ship design stage.

    Tab.7 Comparison of downtime errors POTshortfor the two ship speed(Unit:%)

    Considering the two kinds of circumstances,the proposed SPL-SVR algorithm shows a good approximation and prediction performance,so we can also find that this new algorithm of Support Vector Machine is suitable for the nonlinear approximation problem whether in the running time or accuracy.Obviously,we can obtain high fitting precision calculation results for seakeeping performance in the CFD-based preliminary ship design process.That is to say,we can use these metamodels to calculate the ship short-term seakeeping performance POTshortinstead of CFD method in the preliminary ship design stage.Considering the ship speeds and wave angle frequency distributions in the real voyage,the comprehensive evaluation index POT for long-term seakeeping performance can be also evaluated.

    5 Conclusions

    In this paper,a new SVR-based algorithm was proposed and used to establish metamodels for predicting the ship seakeeping performance of Offshore Supply Vessel.Comparing to ANN and classic SVR,the proposed SPL-SVR can achieve the most accurate calculation results.In the meantime,these metamodels were also quite precise compared to the expensive simulation tool for the complete analysis and calculation of ship seakeeping performance together with dramatic reductions in processing time at preliminary design stages.In order to train this new algorithm,the RBF kernel function was adopted and its parameters should be considered carefully.This indicates that the SPL-SVR-based metamodels can be used to evaluate the ship seakeeping performance accurately and less time-consuming at the preliminary design of offshore supply vessel.

    Further developments using this techniques are currently being considered include the use of SPL-SVR to establish the surrogate models of ship resistance and manoeuvring performance,and the integration of three kinds of surrogate models with multidisciplinary design optimization in the preliminary design of offshore supply vessel.Under these circumstances the development of MDO frameworks for Offshore Supply Vessel which combines these less costly analysis metamodels with global optimization algorithms will be successful.

    Acknowledgments

    The authors wish to thank The National Natural Science Foundation of China(Grant No. 51509114),The Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012-696)and the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)for their financial support.

    [1]?züm S,■ener B,Yilmaz H.A parametric study on seakeeping assessment of fast ships in conceptual design stage[J].O-cean Engineering,2011,38(13):1439-1447.

    [2]Li Dongqin,Jiang Zhiyong,Yang Yongxiang.Multidisciplinary and multi-objective design optimization based on adaptive weighted-sum method[J].Shipbuilding of China,2012,53(4):75-83.

    [3]Leifsson L,Koziel S.Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction[J].Journal of Computational Science,2010,1(2):98-106.

    [4]Balabanov O.Development of approximations for HSCT wing bending material weight using response surface methodology [D].Dissertation Virginia Polytechnic Institute and State University,Blacksburg(VA),1997.

    [5]Zhang Guanyu,Wang Guoqiang,Li Xuefei,Ren Yunpeng.Global optimization of reliability design for large ball mill gear transmission based on the Kriging model and genetic algorithm[J].Mechanism and Machine Theory,2013,69:321-336.

    [6]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.

    [7]Smola A J,Sch?lkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.

    [8]Vapnik V N.Universal learning technology:Support Vector Machines[J].NEC Journal of Advanced Technology,2005,2 (2):137-144.

    [9]Yun Yeboon,Yoon Min,Nakayama H.Multi-objective optimization based on meta-modeling by using support vector regression[J].Optimization Engineer,2009,10:167-181.

    [10]Li Dongqin,Guan Yifeng,Wang Qingfeng,Chen Zhitong.Support vector regression-based multidisciplinary design optimization for ship design[C]//Proceedings of the 31th International Conference on Ocean,Offshore and Arctic Engineering,June 10-15,2012.Rio de Janeiro,Brazil,2012.

    [11]Li Dongqin,Philip A.Wilson,Guan Yifeng,Zhao Xin.An effective approximation modeling method for ship resistance in multidisciplinary ship design optimization[C]//Proceedings of the 33th International Conference on Ocean,Offshore and Arctic Engineering,June 8-13,2014.San Francisco,California,USA,2014.

    [12]Liu Zhiliang,Zuo Ming J,Xu Hongbing.Parameter selection for Gaussian radial basis function in support vector machine classification[C].Proceedings of 2012 International Conference on Quality,Reliability,Risk,Maintenance,and Safety Engineering,2012:576-581.

    [13]Doyle R,Whittaker T J T,Elasaber B.A study of fast ferry wash in shallow water[C]//FAST 2001.Southampton,2001: 90-96.

    [14]Doctors L J,Phillips S J,Day A.Focussing the wave-wash system of a high speed marine ferry[C]//FAST 2001.Southampton,2001:97-106,.

    [15]Keuning J A,Pinkster J.The effect of bow shape on the seakeeping performance of a fast monohull[C]//FAST 2001. Southampton,2001:197-212.

    [16]McKay M D,Conover W J,Beckman R J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics,1979,21(2):34-42.

    [17]Hogben N,Dacunha N,Oliver G.Global wave statistics[M].British Maritime Technology,1986.

    Philip A.WILSON(1954-),男,英國南安普頓大學(xué)流體結(jié)構(gòu)耦合研究小組教授;

    蔣志勇(1956-),男,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授;

    趙 欣(1990-),女,江蘇科技大學(xué)船舶與海洋工程學(xué)院碩士生。

    一種有效近似建模方法及船舶耐波性代理模型構(gòu)建

    李冬琴1,Philip A.WILSON2,蔣志勇1,趙 欣1

    (1.江蘇科技大學(xué) 船舶與海洋工程學(xué)院,江蘇鎮(zhèn)江212003;2.南安普頓大學(xué) 工程與環(huán)境學(xué)院,流體結(jié)構(gòu)耦合研究組,英國南安普頓 SO17 1BJ)

    船舶耐波性能預(yù)報計算過程復(fù)雜,會受到諸多設(shè)計變量的影響;且采用高精度商業(yè)軟件如CFD預(yù)報船舶性能的計算代價非常高。文章采用拉丁超立方方法進行了設(shè)計空間抽樣。定義了一個新的綜合衡準指標來表達船舶耐波性能,即短期和長期作用下船舶非工作時間百分數(shù)。考慮了船舶耐波性能中的五個運動方向:橫搖、縱搖、轉(zhuǎn)艏、橫蕩和升沉。為提高船舶耐波性能計算效率,一種有效的近似建模方法—單參數(shù)Lagrangian支持向量回歸算法被用于訓(xùn)練并構(gòu)建代理模型以預(yù)報船舶耐波性能,且該算法是由作者在過去的研究工作中首次提出。以海洋平臺支援船(OSV)為例,采用SPL-SVR算法預(yù)報船舶耐波性能,并與基于NAPA計算仿真結(jié)果、人工神經(jīng)網(wǎng)絡(luò)和經(jīng)典支持向量回歸算法進行對比。該文考慮OSV的兩種速度,建立了海洋平臺支援船短期作用下非工作時間百分數(shù)的耐波性能響應(yīng)面模型,結(jié)果顯示采用SPL-SVR算法建立的船舶耐波性能響應(yīng)面模型比較適合船型初步設(shè)計的工程實際應(yīng)用,并具有較高的計算效率。

    代理模型;支持向量機;實驗設(shè)計;船舶耐波性

    U661.73

    :A

    李冬琴(1979-),女,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;

    U661.32

    :A

    10.3969/j.issn.1007-7294.2016.03.002

    1007-7294(2016)03-0243-15

    Received date:2015-08-20

    Foundation item:Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012696); the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

    Biography:LI Dong-qin(1979-),female,associate professor,E-mail:mandy_ldq@163.com; Philip A.WILSON(1954-),male,professor.

    猜你喜歡
    南安普頓耐波性工程學(xué)院
    基于STAR-CCM+的海上風(fēng)電運維母船水動力性能分析
    廣東造船(2024年3期)2024-01-01 00:00:00
    福建工程學(xué)院
    福建工程學(xué)院
    Discuss Learner-related Factors and How These Might Influence the Process and Outcomes of Classroom Language Learning
    福建工程學(xué)院
    福建工程學(xué)院
    中國商人收購南安普頓
    300t級執(zhí)法船耐波性研究
    廣東造船(2016年4期)2016-10-26 09:22:20
    船舶耐波性安全評價及程序設(shè)計應(yīng)用
    Rapid Prototyping Technology of Tissue Engineering Scaffold
    科技視界(2014年21期)2014-08-21 02:38:06
    看非洲黑人一级黄片| 国产在线免费精品| 午夜福利网站1000一区二区三区| 久久久久精品久久久久真实原创| 精品第一国产精品| 女性被躁到高潮视频| 亚洲av综合色区一区| 欧美精品高潮呻吟av久久| 精品酒店卫生间| 欧美精品人与动牲交sv欧美| 亚洲精品乱久久久久久| 亚洲综合精品二区| 高清在线视频一区二区三区| 亚洲成色77777| 国产精品无大码| 免费久久久久久久精品成人欧美视频| 在线 av 中文字幕| 国产在线一区二区三区精| 国产成人一区二区在线| 国产成人精品无人区| 一级爰片在线观看| 只有这里有精品99| 人成视频在线观看免费观看| 欧美日韩综合久久久久久| 啦啦啦 在线观看视频| 日韩熟女老妇一区二区性免费视频| 19禁男女啪啪无遮挡网站| 久久精品人人爽人人爽视色| 精品国产露脸久久av麻豆| 人人妻人人澡人人爽人人夜夜| 久久精品aⅴ一区二区三区四区| 亚洲欧美中文字幕日韩二区| 香蕉国产在线看| 最黄视频免费看| 国产精品偷伦视频观看了| 日本wwww免费看| 免费人妻精品一区二区三区视频| 久久精品久久久久久噜噜老黄| 这个男人来自地球电影免费观看 | 亚洲综合色网址| 国产97色在线日韩免费| 国产亚洲最大av| 王馨瑶露胸无遮挡在线观看| 亚洲精品第二区| 亚洲精品国产av蜜桃| 欧美黑人精品巨大| 国产精品一区二区在线观看99| 在线看a的网站| 日本av免费视频播放| 色婷婷av一区二区三区视频| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 丝瓜视频免费看黄片| 精品一区二区三卡| 亚洲第一青青草原| 精品国产露脸久久av麻豆| 美女大奶头黄色视频| 亚洲一区二区三区欧美精品| 亚洲精品aⅴ在线观看| 免费人妻精品一区二区三区视频| 日韩一卡2卡3卡4卡2021年| 一级毛片 在线播放| 免费观看a级毛片全部| 国产野战对白在线观看| 国产乱人偷精品视频| 九色亚洲精品在线播放| 91aial.com中文字幕在线观看| 啦啦啦 在线观看视频| 国产一卡二卡三卡精品 | a级片在线免费高清观看视频| 日本黄色日本黄色录像| 黄频高清免费视频| 日韩人妻精品一区2区三区| 别揉我奶头~嗯~啊~动态视频 | 在线观看人妻少妇| 亚洲成人国产一区在线观看 | 国产伦人伦偷精品视频| 亚洲美女黄色视频免费看| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 欧美 亚洲 国产 日韩一| 免费看av在线观看网站| 国产精品蜜桃在线观看| 久久久精品区二区三区| 男人操女人黄网站| 别揉我奶头~嗯~啊~动态视频 | 777米奇影视久久| 亚洲免费av在线视频| 一边亲一边摸免费视频| 国产福利在线免费观看视频| 一级毛片我不卡| 色视频在线一区二区三区| 亚洲国产最新在线播放| 国产精品一区二区在线观看99| 精品酒店卫生间| 美女脱内裤让男人舔精品视频| 久久人妻熟女aⅴ| 日韩av在线免费看完整版不卡| 亚洲av日韩在线播放| 亚洲精品美女久久久久99蜜臀 | 亚洲第一青青草原| 久久女婷五月综合色啪小说| 女性生殖器流出的白浆| 大陆偷拍与自拍| 国产黄色免费在线视频| 亚洲伊人久久精品综合| 熟女少妇亚洲综合色aaa.| 午夜福利视频精品| 曰老女人黄片| kizo精华| 国产欧美日韩综合在线一区二区| 各种免费的搞黄视频| 亚洲av福利一区| 中文字幕人妻熟女乱码| 国产精品国产三级专区第一集| 母亲3免费完整高清在线观看| 欧美亚洲 丝袜 人妻 在线| 天天躁夜夜躁狠狠久久av| 免费观看a级毛片全部| 爱豆传媒免费全集在线观看| 中文字幕最新亚洲高清| 高清欧美精品videossex| 男人舔女人的私密视频| 国产成人午夜福利电影在线观看| 老司机影院毛片| 只有这里有精品99| 操美女的视频在线观看| 女人精品久久久久毛片| 久久综合国产亚洲精品| 国产av国产精品国产| 中文字幕高清在线视频| 老司机影院成人| 国产精品一二三区在线看| 丝袜在线中文字幕| 新久久久久国产一级毛片| 日韩精品免费视频一区二区三区| 两个人免费观看高清视频| 国精品久久久久久国模美| 啦啦啦视频在线资源免费观看| 午夜久久久在线观看| 午夜福利一区二区在线看| 赤兔流量卡办理| 精品酒店卫生间| 国产黄色视频一区二区在线观看| 老司机亚洲免费影院| 久热爱精品视频在线9| 国产精品99久久99久久久不卡 | 欧美日本中文国产一区发布| 国产成人精品久久久久久| 一级毛片黄色毛片免费观看视频| 69精品国产乱码久久久| 欧美日韩福利视频一区二区| 亚洲熟女精品中文字幕| 国产精品 欧美亚洲| 夜夜骑夜夜射夜夜干| 日韩 亚洲 欧美在线| 亚洲成人免费av在线播放| 亚洲成av片中文字幕在线观看| 男女边摸边吃奶| 一级片'在线观看视频| av国产久精品久网站免费入址| 99热全是精品| 狠狠精品人妻久久久久久综合| 日韩一区二区视频免费看| 人体艺术视频欧美日本| 69精品国产乱码久久久| 少妇被粗大猛烈的视频| 精品第一国产精品| 免费观看性生交大片5| 亚洲欧美清纯卡通| 黄色 视频免费看| 宅男免费午夜| 久久免费观看电影| 日本wwww免费看| netflix在线观看网站| 在线亚洲精品国产二区图片欧美| 亚洲在久久综合| 日本色播在线视频| 日韩成人av中文字幕在线观看| 久久久久久免费高清国产稀缺| 亚洲人成网站在线观看播放| 人体艺术视频欧美日本| 国产熟女午夜一区二区三区| 久久久精品94久久精品| 2021少妇久久久久久久久久久| 韩国精品一区二区三区| www.av在线官网国产| 欧美亚洲 丝袜 人妻 在线| 日本av手机在线免费观看| 亚洲伊人色综图| 国产免费福利视频在线观看| 久久久久久久精品精品| 日韩视频在线欧美| 精品国产乱码久久久久久小说| 人妻人人澡人人爽人人| 一区二区日韩欧美中文字幕| 精品一区二区免费观看| 在线观看www视频免费| videosex国产| 欧美另类一区| 极品少妇高潮喷水抽搐| 两性夫妻黄色片| 精品国产国语对白av| 欧美97在线视频| 久久99精品国语久久久| 国产成人免费观看mmmm| 在线 av 中文字幕| 啦啦啦 在线观看视频| 成年女人毛片免费观看观看9 | 又黄又粗又硬又大视频| 亚洲在久久综合| 中国三级夫妇交换| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 久久97久久精品| 国产又爽黄色视频| 在线观看免费午夜福利视频| 黄色视频在线播放观看不卡| 久久精品人人爽人人爽视色| 多毛熟女@视频| 18禁动态无遮挡网站| 天堂中文最新版在线下载| 亚洲av电影在线观看一区二区三区| 韩国精品一区二区三区| 一区二区三区精品91| 日本爱情动作片www.在线观看| 日本91视频免费播放| 欧美亚洲 丝袜 人妻 在线| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 午夜日韩欧美国产| 老司机靠b影院| 亚洲精品一区蜜桃| 曰老女人黄片| 美女午夜性视频免费| 日韩人妻精品一区2区三区| 亚洲欧洲精品一区二区精品久久久 | 蜜桃在线观看..| a级毛片在线看网站| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 一本一本久久a久久精品综合妖精| 亚洲精品久久久久久婷婷小说| 久久久久精品国产欧美久久久 | 亚洲精品视频女| a级毛片在线看网站| 午夜福利在线免费观看网站| 国产精品一国产av| 久久影院123| 中文字幕亚洲精品专区| 看免费成人av毛片| 日韩精品有码人妻一区| 99久久99久久久精品蜜桃| av在线app专区| 欧美xxⅹ黑人| 女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久 | 高清在线视频一区二区三区| 久久天堂一区二区三区四区| 十八禁人妻一区二区| 日本爱情动作片www.在线观看| 九九爱精品视频在线观看| 国产熟女欧美一区二区| www.精华液| 一边摸一边做爽爽视频免费| 亚洲久久久国产精品| 成人黄色视频免费在线看| 中文字幕高清在线视频| 日韩 欧美 亚洲 中文字幕| 十八禁人妻一区二区| 卡戴珊不雅视频在线播放| 久久久久久久大尺度免费视频| 91精品三级在线观看| 操美女的视频在线观看| 97人妻天天添夜夜摸| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 咕卡用的链子| 99久久人妻综合| 免费高清在线观看日韩| 爱豆传媒免费全集在线观看| 成人黄色视频免费在线看| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 午夜91福利影院| 熟女少妇亚洲综合色aaa.| 亚洲综合精品二区| 十八禁高潮呻吟视频| 亚洲成人av在线免费| 亚洲综合色网址| 97精品久久久久久久久久精品| 麻豆乱淫一区二区| 亚洲综合色网址| 中文字幕高清在线视频| 九色亚洲精品在线播放| tube8黄色片| 精品国产乱码久久久久久男人| 一本色道久久久久久精品综合| 日本欧美国产在线视频| 精品国产一区二区三区四区第35| 永久免费av网站大全| 久久久久精品国产欧美久久久 | 国产极品粉嫩免费观看在线| 啦啦啦啦在线视频资源| 亚洲av国产av综合av卡| 丰满少妇做爰视频| h视频一区二区三区| www日本在线高清视频| 嫩草影视91久久| 免费观看av网站的网址| 中文字幕最新亚洲高清| www.自偷自拍.com| 在线看a的网站| xxx大片免费视频| 建设人人有责人人尽责人人享有的| 美女高潮到喷水免费观看| 亚洲成国产人片在线观看| 少妇 在线观看| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 国产淫语在线视频| 亚洲第一青青草原| 男人操女人黄网站| 久久久久久人人人人人| 国产一区二区激情短视频 | 午夜影院在线不卡| 国产成人精品久久二区二区91 | 在线观看www视频免费| 国产成人午夜福利电影在线观看| 成人黄色视频免费在线看| 亚洲 欧美一区二区三区| 亚洲图色成人| 亚洲中文av在线| 亚洲美女视频黄频| 国产片特级美女逼逼视频| 丝袜喷水一区| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 久久久久久久久免费视频了| 美女视频免费永久观看网站| 国产av精品麻豆| 日本猛色少妇xxxxx猛交久久| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 日本av免费视频播放| 日韩制服骚丝袜av| 亚洲精品,欧美精品| 各种免费的搞黄视频| 亚洲欧美一区二区三区久久| 无遮挡黄片免费观看| 免费观看人在逋| xxx大片免费视频| 午夜激情av网站| a级片在线免费高清观看视频| 日本午夜av视频| 超碰成人久久| 高清视频免费观看一区二区| 亚洲av成人精品一二三区| 成人国产麻豆网| 哪个播放器可以免费观看大片| 色视频在线一区二区三区| 亚洲欧美一区二区三区国产| 老汉色av国产亚洲站长工具| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 亚洲av日韩精品久久久久久密 | 成年人免费黄色播放视频| 搡老乐熟女国产| av视频免费观看在线观看| 又粗又硬又长又爽又黄的视频| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| 欧美精品高潮呻吟av久久| 国产97色在线日韩免费| 国产精品蜜桃在线观看| 欧美xxⅹ黑人| 久久人人爽av亚洲精品天堂| 男女午夜视频在线观看| 午夜福利网站1000一区二区三区| 亚洲中文av在线| a级毛片在线看网站| 日本av手机在线免费观看| 男女午夜视频在线观看| 麻豆av在线久日| 久久99热这里只频精品6学生| 国产成人系列免费观看| 在线观看免费午夜福利视频| 午夜激情av网站| 日韩熟女老妇一区二区性免费视频| 欧美精品av麻豆av| 一个人免费看片子| 亚洲色图 男人天堂 中文字幕| 国产免费视频播放在线视频| 国产精品蜜桃在线观看| 老鸭窝网址在线观看| 好男人视频免费观看在线| 国产又色又爽无遮挡免| 国产黄频视频在线观看| 亚洲欧美一区二区三区久久| 尾随美女入室| 精品一区二区三区四区五区乱码 | 国产精品国产三级专区第一集| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 啦啦啦视频在线资源免费观看| 女的被弄到高潮叫床怎么办| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 国产精品香港三级国产av潘金莲 | 满18在线观看网站| 国产日韩一区二区三区精品不卡| 丝瓜视频免费看黄片| 国产成人精品在线电影| 男女高潮啪啪啪动态图| 九九爱精品视频在线观看| av网站免费在线观看视频| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| 国产成人91sexporn| 97精品久久久久久久久久精品| 黄色一级大片看看| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 一区二区三区精品91| 最近手机中文字幕大全| 久久毛片免费看一区二区三区| 久久久精品国产亚洲av高清涩受| 五月天丁香电影| 欧美激情极品国产一区二区三区| 国产精品人妻久久久影院| 另类精品久久| 欧美日韩亚洲综合一区二区三区_| 成人影院久久| 精品亚洲成a人片在线观看| 香蕉国产在线看| 久久久久精品性色| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| 丁香六月天网| 久久久精品国产亚洲av高清涩受| 久久久精品区二区三区| 国产女主播在线喷水免费视频网站| 精品一区在线观看国产| 97在线人人人人妻| 日韩制服骚丝袜av| 久久久久久人妻| 在线观看免费午夜福利视频| 久久久久久免费高清国产稀缺| 麻豆av在线久日| av不卡在线播放| 一级爰片在线观看| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品古装| 亚洲国产欧美一区二区综合| 精品卡一卡二卡四卡免费| 亚洲成av片中文字幕在线观看| 中文字幕最新亚洲高清| www.av在线官网国产| 王馨瑶露胸无遮挡在线观看| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 如日韩欧美国产精品一区二区三区| 成年av动漫网址| 国产成人免费观看mmmm| 日韩电影二区| 国产一区二区 视频在线| 国产在线免费精品| 中文字幕精品免费在线观看视频| 亚洲精品自拍成人| 国产一级毛片在线| 最新在线观看一区二区三区 | 国产女主播在线喷水免费视频网站| 国产精品人妻久久久影院| 老司机靠b影院| 男女下面插进去视频免费观看| 国产1区2区3区精品| 久久亚洲国产成人精品v| 一边亲一边摸免费视频| 国产日韩欧美亚洲二区| 日本一区二区免费在线视频| 婷婷色av中文字幕| 亚洲一区二区三区欧美精品| 下体分泌物呈黄色| 精品免费久久久久久久清纯 | 久久99热这里只频精品6学生| avwww免费| 免费久久久久久久精品成人欧美视频| 午夜福利视频在线观看免费| 日韩不卡一区二区三区视频在线| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 国产伦人伦偷精品视频| 91老司机精品| 女性被躁到高潮视频| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 男女床上黄色一级片免费看| 亚洲欧洲精品一区二区精品久久久 | 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 老司机亚洲免费影院| 亚洲av日韩在线播放| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 欧美少妇被猛烈插入视频| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| 91成人精品电影| 少妇人妻久久综合中文| 免费黄网站久久成人精品| 国产黄频视频在线观看| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| 久久精品亚洲熟妇少妇任你| 亚洲第一区二区三区不卡| av不卡在线播放| 高清黄色对白视频在线免费看| 中文字幕精品免费在线观看视频| 国产毛片在线视频| 精品国产露脸久久av麻豆| 国精品久久久久久国模美| 久久亚洲国产成人精品v| 高清av免费在线| 丝袜喷水一区| 亚洲成国产人片在线观看| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 香蕉国产在线看| 曰老女人黄片| 一级,二级,三级黄色视频| 激情视频va一区二区三区| 最新在线观看一区二区三区 | 国产欧美日韩一区二区三区在线| 一边亲一边摸免费视频| 精品酒店卫生间| 亚洲国产精品成人久久小说| 免费在线观看黄色视频的| 国产xxxxx性猛交| 啦啦啦中文免费视频观看日本| 亚洲国产精品一区二区三区在线| 老司机靠b影院| 色综合欧美亚洲国产小说| 日本黄色日本黄色录像| 一边摸一边抽搐一进一出视频| 少妇被粗大猛烈的视频| 午夜免费观看性视频| 中文字幕高清在线视频| 午夜日本视频在线| 十八禁高潮呻吟视频| 亚洲av电影在线观看一区二区三区| 美女脱内裤让男人舔精品视频| 青春草国产在线视频| av片东京热男人的天堂| 黄片小视频在线播放| 美国免费a级毛片| 中文欧美无线码| 日本欧美视频一区| 日日爽夜夜爽网站| 日韩一本色道免费dvd| 国产在线一区二区三区精| 久久午夜综合久久蜜桃| 一级毛片黄色毛片免费观看视频| 国产免费一区二区三区四区乱码| 欧美日本中文国产一区发布| 中文字幕人妻丝袜制服| 午夜福利视频精品| 久久国产精品大桥未久av| 女人爽到高潮嗷嗷叫在线视频| 最近中文字幕2019免费版| 99久久99久久久精品蜜桃| 美女脱内裤让男人舔精品视频| 国产精品久久久久成人av| 国产女主播在线喷水免费视频网站| 欧美日韩av久久| 欧美日韩成人在线一区二区| 亚洲国产欧美日韩在线播放| 国产一区二区在线观看av| 国产精品麻豆人妻色哟哟久久| 2018国产大陆天天弄谢| 国产又色又爽无遮挡免| 啦啦啦中文免费视频观看日本| 久久久久久久久久久久大奶| 久久精品国产a三级三级三级| 国产精品一区二区在线不卡| 免费女性裸体啪啪无遮挡网站| 欧美成人精品欧美一级黄| 熟女少妇亚洲综合色aaa.| 欧美最新免费一区二区三区| 激情视频va一区二区三区| 又粗又硬又长又爽又黄的视频| 国产免费现黄频在线看| 秋霞在线观看毛片| 可以免费在线观看a视频的电影网站 | 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 一级片'在线观看视频| 久久天堂一区二区三区四区| 日韩成人av中文字幕在线观看| 国产在线视频一区二区| 嫩草影院入口| 丝袜美腿诱惑在线| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 免费在线观看视频国产中文字幕亚洲 | av国产精品久久久久影院| 午夜福利在线免费观看网站|