常玉林,吳照允,孫超,張鵬
(江蘇大學(xué),汽車與交通工程學(xué)院,江蘇鎮(zhèn)江 212013)
城市道路中無信控人行橫道,非機(jī)動(dòng)車和行人過街時(shí)會(huì)與機(jī)動(dòng)車進(jìn)行交織,此時(shí),行人和非機(jī)動(dòng)車與車輛互相影響[1]。然而,非機(jī)動(dòng)車和行人的過街速度變化存在不確定性,在交互作用中可能會(huì)發(fā)生沖突,嚴(yán)重的沖突會(huì)造成生命危險(xiǎn)。因此,為提高非機(jī)動(dòng)車和行人的過街安全,有效避免交通事故,有必要研究行人-機(jī)動(dòng)車沖突和非機(jī)動(dòng)車-機(jī)動(dòng)車沖突。
無信控人行橫道處的交通沖突非常頻繁且復(fù)雜。以前研究行人和非機(jī)動(dòng)車的交通安全,主要依靠歷史碰撞記錄[2],數(shù)據(jù)存在漏報(bào)、缺失以及更新等問題。現(xiàn)在的研究主要以交通沖突嚴(yán)重性為研究對(duì)象。例如,ZHENG 等[3]提出一種融合后侵入時(shí)間、加速度變化率和轉(zhuǎn)向角速度變化率的綜合嚴(yán)重度指標(biāo),衡量連續(xù)沖突的嚴(yán)重程度,并通過二元Logit模型分析沖突的影響因素,但是,研究場(chǎng)景較為簡單,且文獻(xiàn)中兩種沖突為同類型沖突;彭勇等[4]通過交通調(diào)查和數(shù)據(jù)分析的方法探索人車嚴(yán)重程度的影響因素;張燕等[5]通過采用距離碰撞時(shí)間指標(biāo)和沖突速度指標(biāo),提出了新的機(jī)-非沖突嚴(yán)重程度分析方法;周竹萍等[6]基于交叉口交通沖突視頻數(shù)據(jù),運(yùn)用模糊聚類方法得出交通沖突的嚴(yán)重程度和危險(xiǎn)性;LI 等[7]以無信號(hào)人行橫道人-車沖突為對(duì)象,使用入侵后時(shí)間、入侵碰撞時(shí)間和減速至安全時(shí)間,采用支持向量機(jī)算法進(jìn)行測(cè)試;KUMAR等[8]使用事故發(fā)生時(shí)間(TA)和沖突速度(CS)確定沖突的嚴(yán)重程度,并利用廣義有序回歸模型確定影響人-車沖突嚴(yán)重程度的因素。
最近的研究中,將多個(gè)交通沖突指標(biāo)應(yīng)用于安全分析已經(jīng)變的很普遍,但每個(gè)指標(biāo)都有其自身的局限性和適用性??紤]到應(yīng)用環(huán)境以及其他沖突指標(biāo)在交通事故預(yù)測(cè)的準(zhǔn)確性,往往很難確定哪些沖突指標(biāo)是合適的[9];JIANG 等[10]基于傳統(tǒng)指標(biāo)的優(yōu)點(diǎn)和局限性,提出一種改進(jìn)的指標(biāo),結(jié)果表明,改進(jìn)后的指標(biāo)更適合交通安全評(píng)估。除此之外,在無信控人行橫道上,交通沖突的發(fā)生受多種因素的影響。以往的研究主要是單次的人-車沖突,即單個(gè)行人和單個(gè)機(jī)動(dòng)車之間的沖突,并分析人-車沖突的影響因素[11]。然而,很少研究單個(gè)行人與多個(gè)機(jī)動(dòng)車之間的沖突,以及非機(jī)動(dòng)車與機(jī)動(dòng)車之間的沖突。研究表明,在中國,司機(jī)不禮讓行人是很常見的,也是發(fā)生交通事故的原因之一[12]。因?yàn)?,機(jī)動(dòng)車不禮讓行人會(huì)出現(xiàn)下面情形:有的機(jī)動(dòng)車禮讓,有的機(jī)動(dòng)車不禮讓。對(duì)于這種情形,其中一個(gè)機(jī)動(dòng)車禮讓行人,此時(shí),行人過街;另一個(gè)同向行駛的機(jī)動(dòng)車不停車禮讓,有可能會(huì)與行人發(fā)生沖突,甚至碰撞。所以,當(dāng)某一車道機(jī)動(dòng)車禮讓行人停車時(shí),行人可能會(huì)與同方向行駛的另一車道的機(jī)動(dòng)車發(fā)生沖突,將此沖突稱為多重威脅沖突。與之前研究的單次沖突相比,多重威脅沖突的機(jī)動(dòng)車與沖突對(duì)象之間存在視野障礙,機(jī)動(dòng)車無法提前知道行人或非機(jī)動(dòng)車的大概走向及位置。當(dāng)行人或非機(jī)動(dòng)車突然出現(xiàn)時(shí),機(jī)動(dòng)車可能無法做出正確的操作,產(chǎn)生沖突的后果較為嚴(yán)重,甚至發(fā)生碰撞。
綜上所述,本文引入多重威脅沖突,考慮到多重威脅沖突的差異性,提出沖突時(shí)間(TTZ),再結(jié)合后侵入時(shí)間(PET)和安全減速度(DST)兩個(gè)沖突指標(biāo),量化交通沖突的嚴(yán)重程度。通過視頻數(shù)據(jù),分別提取多重威脅沖突和單次沖突的沖突指標(biāo)值。以兩種類型沖突的3類沖突指標(biāo)值作為基礎(chǔ)數(shù)據(jù),運(yùn)用模糊C-均值聚類方法識(shí)別嚴(yán)重沖突和非嚴(yán)重沖突。以嚴(yán)重沖突和非嚴(yán)重沖突作為因變量,影響因素為自變量,建立基于二元Logit 模型的多類型交通沖突嚴(yán)重程度預(yù)測(cè)模型,識(shí)別顯著影響因素,并使用彈性分析法分析顯著影響因素。
交通沖突指交通行為者在參與道路交通時(shí),兩個(gè)道路使用者在空間和時(shí)間上接近彼此到某種程度,此時(shí),如果兩者的運(yùn)動(dòng)保持不變,則會(huì)導(dǎo)致交通損害危險(xiǎn)的發(fā)生[13]。所以,將無信控人行橫道單次沖突定義為行人或非機(jī)動(dòng)車與機(jī)動(dòng)車在道路交通中,行人、非機(jī)動(dòng)車或機(jī)動(dòng)車感知到危險(xiǎn)時(shí),通過改變速度或者采取其他避險(xiǎn)措施以避免碰撞的交通遭遇事件。
在無信號(hào)人行橫道上,當(dāng)一名司機(jī)為行人或非機(jī)動(dòng)車停車讓行時(shí),該行人或非機(jī)動(dòng)車可能會(huì)與另一車道同向行駛的機(jī)動(dòng)車發(fā)生沖突,本文將這種情況稱為多重威脅沖突。不同類型的交通沖突如圖1所示。
圖1 不同類型的交通沖突Fig.1 Different types of traffic conflict
本文運(yùn)用視頻錄像觀測(cè)法獲取無信號(hào)人行橫道交通沖突數(shù)據(jù),選取鎮(zhèn)江市京口區(qū)附近3個(gè)無信號(hào)人行橫道路段,地理位置如圖2所示。
圖2 數(shù)據(jù)采集實(shí)地Fig.2 Real map of data acquisition
根據(jù)3個(gè)地方的交通情況調(diào)查發(fā)現(xiàn),存在較大的安全隱患,尤其是機(jī)動(dòng)車不禮讓行人或非機(jī)動(dòng)車的情況較為突出,造成大量的交通沖突。每個(gè)路段在早晚高峰時(shí)連續(xù)觀測(cè)1 h,具體數(shù)據(jù)如表1所示。
表1 無信控人行橫道沖突數(shù)據(jù)Table 1 Conflicting data of uncontrolled pedestrian crosswalk
由表1可知,無信號(hào)人行橫道不同,沖突的發(fā)生次數(shù)不相同,這與人行橫道的機(jī)動(dòng)車流量、非機(jī)動(dòng)車流量以及行人流量相關(guān)。
為了量化交通沖突,選取相應(yīng)的交通沖突指標(biāo)。對(duì)于行人或非機(jī)動(dòng)車和機(jī)動(dòng)車之間的沖突,后侵入時(shí)間(Post Encroachment Time,PET)被認(rèn)為是最佳測(cè)量方法[14],因?yàn)樗梢跃_地捕捉每次沖突的靠近程度。安全減速度(Deceleration to Safety Time,DST)可體現(xiàn)出行人和非機(jī)動(dòng)車的加速度變化,表征沖突的嚴(yán)重程度和變化。除此之外,根據(jù)多重威脅沖突的實(shí)際情況,本文設(shè)計(jì)了沖突時(shí)間TTZ。
(1)PET
PET指第1位道路使用者離開潛在沖突區(qū)域到第2位道路使用者到達(dá)沖突區(qū)域之間的時(shí)間,即后侵犯時(shí)間。
式中:ZPET為后侵犯時(shí)間計(jì)算值(s);T1為非機(jī)動(dòng)車離開沖突區(qū)域的時(shí)間(s);T2為車輛到達(dá)沖突區(qū)域的時(shí)間(s)。
(2)DST
本文設(shè)安全減速度為DST,研究的沖突對(duì)象為行人和非機(jī)動(dòng)車。然而,行人或非機(jī)動(dòng)車在過街時(shí),當(dāng)意識(shí)到有車輛到達(dá),他們會(huì)選擇合適的時(shí)間過街。所以,將行人或非機(jī)動(dòng)車過街分為兩階段計(jì)算DST,即
式中:ZDST為安全減速度計(jì)算值(m·s-2);t1為行人或非機(jī)動(dòng)車意識(shí)有車輛到達(dá)的時(shí)間(s);t2為行人或非機(jī)動(dòng)車到達(dá)沖突點(diǎn)的時(shí)間(s);L1為t1到t2之間的距離(m)。
(3)TTZ
后侵入時(shí)間是雙方通過沖突區(qū)域的時(shí)間差,在通過沖突區(qū)域時(shí),機(jī)動(dòng)車已知行人或非機(jī)動(dòng)車的存在,從而進(jìn)行加速或減速,而安全減速度不能表征機(jī)動(dòng)車屬性。對(duì)于多重威脅沖突,機(jī)動(dòng)車和沖突對(duì)象之間存在視野障礙,機(jī)動(dòng)車不知道行人或非機(jī)動(dòng)車的存在,在靠近人行橫道時(shí)速度變化是不確定的。所以,為了更好地表征多重威脅沖突,提出了沖突時(shí)間TTZ。
TTZ 為行人或非機(jī)動(dòng)車意識(shí)到有機(jī)動(dòng)車到達(dá)時(shí),與其發(fā)生交通沖突的機(jī)動(dòng)車離人行橫道的距離與當(dāng)前車速的比值。本文采用機(jī)動(dòng)車的接近事件描述沖突,即
式中:ZTTZ為沖突時(shí)間計(jì)算值(s);L2為機(jī)動(dòng)車至人行橫道前的距離(m);V為行人或非機(jī)動(dòng)車意識(shí)到有機(jī)動(dòng)車到達(dá)時(shí),機(jī)動(dòng)車的速度(m·s-1)。
聚類是交通安全的常用研究方法之一。模糊C-均值聚類算法(Fuzzy C-Means,FCM)屬于無監(jiān)督學(xué)習(xí)算法,該算法具有結(jié)構(gòu)簡單、局部搜索能力強(qiáng)且收斂速度快的特點(diǎn)。適用于模糊和無清洗界限的交通沖突嚴(yán)重程度劃分,為了融合多個(gè)沖突指標(biāo)確定沖突嚴(yán)重性類型,采用FCM 算法進(jìn)行研究。選取后侵入時(shí)間PET、行人安全減速度DST 和沖突時(shí)間TTZ 這3個(gè)沖突指標(biāo),對(duì)沖突嚴(yán)重性進(jìn)行聚類。其最小化目標(biāo)函數(shù)為
式中:f為模糊聚類的誤差平方和;r為模糊指數(shù);q為樣本點(diǎn)總數(shù);w為聚類簇的數(shù)目;為樣本e屬于g類簇的隸屬度,通常為隸屬度矩陣;xe為第e個(gè)參與聚類的樣本點(diǎn);cg為g類簇的聚類中心;d(xe,cg)為xe與cg的距離函數(shù)。
本文基于后侵入時(shí)間PET、安全減速度DST及沖突時(shí)間TTZ 指標(biāo)建立沖突樣本數(shù)據(jù)庫,通過Matlab 軟件分析無信控人行橫道的237 個(gè)沖突樣本,按照FCM 算法流程,設(shè)定類中心c=2,聚類結(jié)果如圖3所示。
圖3 沖突原始數(shù)據(jù)散點(diǎn)及各平面投影Fig.3 Scattered points of conflicting original data and projection of each plane
根據(jù)聚類結(jié)果,設(shè)置沖突嚴(yán)重等級(jí)為嚴(yán)重沖突和非嚴(yán)重沖突。通過算法迭代,得到聚類中心(PET、DST、TTZ)坐標(biāo),反映了兩個(gè)不同沖突等級(jí)的指標(biāo)特征,如表2所示。
表2 沖突嚴(yán)重程度聚類中心Table 2 Cluster center of conflict severity
嚴(yán)重沖突表示非-車沖突或人-車沖突非常危險(xiǎn),極有可能發(fā)生碰撞事故;非嚴(yán)重沖突表示沖突危險(xiǎn)系數(shù)小。PET 和TTZ 值越低,DST 值越大,發(fā)生的沖突越嚴(yán)重。
由圖4可以直觀地看到,越往左下方,沖突越嚴(yán)重。對(duì)于沖突次數(shù)來說,單次沖突要多于多重威脅沖突。然而,對(duì)于沖突嚴(yán)重性,多重威脅沖突的嚴(yán)重沖突比例比單次沖突大,對(duì)行人或非機(jī)動(dòng)車過街安全將會(huì)造成更大的威脅。
圖4 兩種類型沖突的嚴(yán)重程度聚類結(jié)果Fig.4 Clustering results of severity about two types of conflict
由圖5可以直觀地看到,非機(jī)動(dòng)車的沖突次數(shù)不但比行人多,非機(jī)動(dòng)車的沖突嚴(yán)重程度比例也比行人大。
圖5 兩種沖突對(duì)象的嚴(yán)重程度聚類結(jié)果Fig.5 Clustering results of severity about two conflicting objects
傳統(tǒng)沖突嚴(yán)重程度是根據(jù)沖突指標(biāo)閾值識(shí)別,以后侵入時(shí)間PET 為例,通過PET 累積頻率的第85%分位數(shù)作為區(qū)分嚴(yán)重和非嚴(yán)重沖突的截點(diǎn)值,本文PET 的截點(diǎn)值計(jì)算為2.75。模糊聚類方法與傳統(tǒng)指標(biāo)閾值方法比較如圖6所示。
圖6 不同方法沖突嚴(yán)重程度的判別結(jié)果Fig.6 Distinguished result of different methods for conflict severity
由圖6可以看出,與FCM 方法相比,不論多重威脅沖突還是單次沖突,沖突指標(biāo)閾值識(shí)別的嚴(yán)重沖突數(shù)量較多。而實(shí)際情況并非如此,因?yàn)楫?dāng)行人安全通過沖突區(qū)域后,機(jī)動(dòng)車可能會(huì)加速通過沖突區(qū)域,得到的PET值較小,但行人過街是安全的,容易誤判為嚴(yán)重沖突,因此,采用沖突指標(biāo)閾值方法很難準(zhǔn)確識(shí)別。而模糊聚類方法利用后侵入時(shí)間、安全減速度及沖突時(shí)間這3 個(gè)指標(biāo)獲取沖突嚴(yán)重程度的聚類中心,采用隸屬度的大小判定屬于哪種沖突(嚴(yán)重或者非嚴(yán)重),與傳統(tǒng)的閾值方法相比,提高了準(zhǔn)確性和有效性。
通過實(shí)地調(diào)查和數(shù)據(jù)分析,提取有關(guān)沖突嚴(yán)重程度的影響因素,由上述的聚類結(jié)果,將交通沖突分為嚴(yán)重沖突和非嚴(yán)重沖突。以沖突的嚴(yán)重程度為因變量,影響因素為自變量,構(gòu)建二元Logit 模型,并用貝葉斯估計(jì)方法標(biāo)定模型參數(shù),運(yùn)用彈性分析討論顯著影響因素。
根據(jù)視頻數(shù)據(jù)分析,對(duì)于多重威脅沖突的側(cè)面停車分為兩種停車情況:(1)側(cè)面車輛直接在禮讓線處停車;(2)側(cè)面車輛緩慢行駛越過禮讓線,在人行橫道上遇到行人或非機(jī)動(dòng)車時(shí)停車,如圖7所示。
對(duì)于上面的兩種停車情況,本文重新定義。將在禮讓線處直接停車的情況,定義為車輛合法停車行為;對(duì)于緩慢行駛越過禮讓線停車的情況定義為車輛不合法停車行為。
本文選取的影響因素主要包括:是否混合通行,機(jī)動(dòng)車數(shù)量,行人和非機(jī)動(dòng)車的過街速度和過街方向,前方車輛屈服行為以及側(cè)面車輛合法停車行為等,具體變量名稱及取值如表3所示。變量分為連續(xù)變量和分類變量,其中,分類變量取值為1或0,連續(xù)變量根據(jù)設(shè)定屬性范圍進(jìn)行取值。
表3 關(guān)鍵變量描述Table 3 Description of key variables
(1)模型建立
根據(jù)聚類結(jié)果,對(duì)于交通沖突,可能是嚴(yán)重的,也可能是非嚴(yán)重的。Logistic回歸模型是研究二元關(guān)系最有效和廣泛使用的方法[15]。假設(shè)Y是交通沖突嚴(yán)重性的二元結(jié)果,Y=1 表示嚴(yán)重沖突;Y=0表示非嚴(yán)重沖突。對(duì)于沖突對(duì)象n(n=1,表示行人;n=2,表示非機(jī)動(dòng)車),在第k種沖突下(k=1,表示多重威脅沖突;k=2,表示單次沖突)的沖突嚴(yán)重程度i(嚴(yán)重或非嚴(yán)重)的隨機(jī)效用定義為
式中:M為解釋變量個(gè)數(shù);為第k種沖突下,沖突嚴(yán)重程度i的效用;Qkin為可觀測(cè)的效用部分;βknm為沖突對(duì)象n在第k種沖突下,沖突嚴(yán)重程度i第m個(gè)解釋變量的相應(yīng)參數(shù);xknm為沖突對(duì)象n在第k種沖突下,沖突嚴(yán)重程度i第m個(gè)解釋變量,εi為隨機(jī)誤差項(xiàng),假設(shè)εi~N(0,σ2ε)為服從均值為0,方差為σ2ε的正態(tài)分布。對(duì)于第k種沖突下,沖突對(duì)象n的沖突嚴(yán)重程度為i的概率為
采用偏差信息準(zhǔn)則(DIC)比較模型的擬合優(yōu)度。DIC 結(jié)合了模型擬合的度量和對(duì)模型復(fù)雜性的懲罰[16]為
式中:ZDIC為偏差信息準(zhǔn)則計(jì)算值;為模型擬合的后驗(yàn)均值偏差;PD為模型中參數(shù)的有效個(gè)數(shù)。一般來說,DIC值越小,模型越好[17]。
(2)彈性分析
為更好地清晰認(rèn)識(shí)解釋變量的影響,本文采用彈性分析。彈性可以用變量的1 個(gè)單位變化導(dǎo)致結(jié)果概率的變化解釋,即代表了每個(gè)變量對(duì)不同類型沖突的嚴(yán)重程度概率的影響。計(jì)算式[18]為
式中:為在第k種沖突下,沖突對(duì)象n與機(jī)動(dòng)車之間的沖突概率;Xknm為k種沖突下,沖突對(duì)象n的第m個(gè)變量。對(duì)于二元分類變量,本文采用平均彈性[19],即
本文通過貝葉斯估計(jì)方法標(biāo)定模型的參數(shù)。貝葉斯估計(jì)方法可以應(yīng)對(duì)更復(fù)雜的模型形式,解釋數(shù)據(jù)中存在的不確定性,并產(chǎn)生更準(zhǔn)確的模型估計(jì),常采用馬爾可夫鏈蒙特卡羅(Markov Chain Monte Carlo,MCMC)仿真完成參數(shù)標(biāo)定。對(duì)于兩種沖突,分別設(shè)置兩個(gè)不同初始值的模型參數(shù)鏈,運(yùn)行50000 次迭代,前20000 次樣本丟棄,剩下的30000次迭代用于計(jì)算模型估計(jì)。模型參數(shù)估計(jì)結(jié)果如表4所示。由表4可以看出,對(duì)于行人來說,多重威脅沖突7個(gè)變量中有3個(gè)變量對(duì)模型存在顯著影響,分別為等待時(shí)間、過街速度以及側(cè)面車輛合法停車行為;單次沖突6 個(gè)變量中有3 個(gè)變量對(duì)模型存在顯著影響,其中,等待時(shí)間、過街速度以及前面車輛屈服行為這3 個(gè)變量均在95%置信區(qū)間上顯著。對(duì)于非機(jī)動(dòng)車來說,多重威脅沖突7個(gè)變量中有4 個(gè)變量對(duì)模型存在顯著影響,分別為:機(jī)動(dòng)車數(shù)量、等待時(shí)間、過街速度以及側(cè)面車輛合法停車行為;單次沖突6 個(gè)變量中有4 個(gè)變量對(duì)模型存在顯著影響,其中,等待時(shí)間、過街速度以及前面車輛屈服行為這3個(gè)變量在95%置信區(qū)間上顯著,機(jī)動(dòng)車數(shù)量在90%置信區(qū)間上顯著。
表4 模型參數(shù)估計(jì)結(jié)果Table 4 Model parameter estimation results
(1)沖突指標(biāo)分析
本文分析選取的沖突指標(biāo)PET、DST、TTZ,根據(jù)人行橫道上的每個(gè)沖突事件計(jì)算具體數(shù)值,沖突指標(biāo)特征如表5所示。
表5 沖突指標(biāo)數(shù)值Table 5 Conflict index value
根據(jù)沖突指標(biāo)定義和特征,PET 和TTZ 值越低,沖突發(fā)生概率越高;DST值越大,發(fā)生的沖突越嚴(yán)重。
由圖8可知,其中“多-非”表示沖突類型為多重威脅沖突,沖突對(duì)象為非機(jī)動(dòng)車,其余同理。不論非機(jī)動(dòng)車還是行人,多重威脅沖突的PET和TTZ平均值較低,DST 平均值最高。結(jié)果表明,多重威脅沖突下,與機(jī)動(dòng)車之間沖突較為嚴(yán)重。因?yàn)樵诙嘀赝{沖突情況下,行人和非機(jī)動(dòng)車與機(jī)動(dòng)車存在視野障礙,機(jī)動(dòng)車無法觀察到行人和非機(jī)動(dòng)車的移動(dòng)軌跡,減速靠近人行橫道。對(duì)于兩種類型沖突來說,非機(jī)動(dòng)車的PET 和TTZ 平均值較低,DST 平均值最高。結(jié)果表明,兩種類型沖突下,非機(jī)動(dòng)車與機(jī)動(dòng)車之間沖突較為嚴(yán)重。因?yàn)榉菣C(jī)動(dòng)車速度比行人速度快,過街需要的時(shí)間更短,相對(duì)于行人來說,非機(jī)動(dòng)車更容易產(chǎn)生僥幸心里,更偏向危險(xiǎn)過街。
圖8 沖突指標(biāo)平均值Fig.8 Average value of conflict index
(2)顯著影響因素彈性分析
對(duì)于多重威脅沖突,非機(jī)動(dòng)車與機(jī)動(dòng)車沖突有4 個(gè)顯著變量,分別是機(jī)動(dòng)車數(shù)量、等待時(shí)間、過街速度以及側(cè)面車輛合法停車行為;行人與機(jī)動(dòng)車沖突有3 個(gè)顯著變量,分別為等待時(shí)間、過街速度以及側(cè)面車輛合法停車行為。對(duì)于單次沖突,非機(jī)動(dòng)車與機(jī)動(dòng)車沖突有4個(gè)顯著變量,分別是機(jī)動(dòng)車數(shù)量、等待時(shí)間、過街速度以及前方車輛屈服行為;行人與機(jī)動(dòng)車沖突有3 個(gè)顯著變量,分別為等待時(shí)間、過街速度以及前方車輛屈服行為。這些顯著變量的彈性(或平均彈性)如表6所示。
表6 顯著變量的彈性(或平均彈性)Table 6 Elasticity(or average elasticity)of significant variables
對(duì)機(jī)動(dòng)車數(shù)量來說,若機(jī)動(dòng)車數(shù)量值增加1時(shí),多重威脅沖突中,非機(jī)動(dòng)車與機(jī)動(dòng)車之間為嚴(yán)重沖突的概率增加了0.62%;單次沖突中,非機(jī)動(dòng)車與機(jī)動(dòng)車之間為嚴(yán)重沖突的概率降低了0.71%。
等待時(shí)間也影響不同類型的沖突,若等待時(shí)間值增加1 時(shí),在多重威脅沖突情況下,非機(jī)動(dòng)車與機(jī)動(dòng)車之間的沖突屬于嚴(yán)重沖突的概率降低了0.21%;行人與機(jī)動(dòng)車之間的沖突屬于嚴(yán)重沖突的概率降低了0.44%。在單次沖突情況下,非機(jī)動(dòng)車與機(jī)動(dòng)車之間的沖突屬于嚴(yán)重沖突的概率降低了1.39%;行人與機(jī)動(dòng)車之間的沖突屬于嚴(yán)重沖突的概率降低了1.81%。
(3)過街速度
非機(jī)動(dòng)車的過街速度對(duì)多重威脅沖突和單次沖突的嚴(yán)重程度均顯著相關(guān)。由圖9可知,非嚴(yán)重的多重威脅沖突和單次沖突平均速度較低,分布比較集中;嚴(yán)重的多重威脅沖突和單次沖突平均速度較高,分布比較離散。說明,非機(jī)動(dòng)車過街平均速度較高時(shí),非機(jī)動(dòng)車與機(jī)動(dòng)車更容易發(fā)生碰撞且風(fēng)險(xiǎn)高。一方面,較高的非機(jī)動(dòng)車過街平均速度表明非機(jī)動(dòng)車爭取盡快通過人行橫道,減少等待時(shí)間,與機(jī)動(dòng)車爭奪路權(quán)。尤其在多重威脅沖突情況下,非機(jī)動(dòng)車速度快,反應(yīng)時(shí)間短,碰撞的可能性更高,碰撞后的危險(xiǎn)程度也更嚴(yán)重。另一方面,非機(jī)動(dòng)車過街的平均速度是整個(gè)過街過程中速度的平均值,較高的車速表示非機(jī)動(dòng)車在過街過程中更多的強(qiáng)行過街行為,意味著更高的沖突嚴(yán)重程度。
圖9 沖突嚴(yán)重程度的非機(jī)動(dòng)車速度分布Fig.9 Speed distribution of non motor vehicle for conflict severity
行人過街速度對(duì)多重威脅沖突與單次沖突的嚴(yán)重程度均有正顯著影響。因?yàn)樾腥诉^街速度越快,越容易引起嚴(yán)重的沖突。越快的行人過街速度(例如跑步),司機(jī)的反應(yīng)時(shí)間越短,從而增加嚴(yán)重沖突的概率;反之,行人減速過街會(huì)減低嚴(yán)重沖突的概率。這可以解釋為減速過街時(shí),行人傾向安全過街,從而降低沖突概率。
(4)車輛屈服行為
前方車輛屈服行為僅對(duì)單次沖突嚴(yán)重程度有顯著影響,側(cè)面車輛合法停車行為僅對(duì)多重威脅沖突嚴(yán)重程度有顯著影響,均呈負(fù)相關(guān)。3 個(gè)沖突指標(biāo)在兩種類型沖突不同屈服行為下的分布如圖10所示。
由圖10可知,前方車輛不屈服行為會(huì)增加單次沖突的沖突嚴(yán)重程度;側(cè)面車輛的不合法停車行為會(huì)增加多重威脅沖突的沖突嚴(yán)重程度。原因是對(duì)于單次沖突,機(jī)動(dòng)車司機(jī)可能會(huì)下意識(shí)地跟隨前方車輛,從而忽略行人和非機(jī)動(dòng)車的存在;側(cè)面車輛的不合法停車行為會(huì)給旁邊車道上的機(jī)動(dòng)車司機(jī)一種假象,對(duì)于車速較快的機(jī)動(dòng)車,司機(jī)分不清側(cè)面車輛是即將停車還是啟動(dòng)行駛,造成機(jī)動(dòng)車勻速駛向人行橫道。
圖10 車輛屈服行為沖突指標(biāo)值分布Fig.10 Distribution diagram of conflict index value for vehicle yield behavior
本文以后侵入時(shí)間(PET)、安全減速度(DST)以及沖突時(shí)間(TTZ)這3 個(gè)沖突指標(biāo)作為數(shù)據(jù)集,運(yùn)用模糊C-均值聚類方法識(shí)別嚴(yán)重沖突和非嚴(yán)重沖突,對(duì)比兩種沖突的嚴(yán)重程度;以沖突嚴(yán)重程度作為因變量,建立基于二元Logit 模型的多類型交通沖突嚴(yán)重程度預(yù)測(cè)模型,分析兩種沖突嚴(yán)重程度的影響因素。研究結(jié)果表明:
(1)行人和非機(jī)動(dòng)車兩個(gè)沖突對(duì)象與機(jī)動(dòng)車之間的沖突嚴(yán)重程度為多重威脅沖突高于單次沖突;對(duì)于兩種類型的交通沖突,非機(jī)動(dòng)車與機(jī)動(dòng)車之間的沖突嚴(yán)重程度高于行人與機(jī)動(dòng)車之間的沖突嚴(yán)重程度。
(2)關(guān)于影響因素,機(jī)動(dòng)車數(shù)量(非機(jī)動(dòng)車0.391)、等待時(shí)間(行人-0.899,非機(jī)動(dòng)車-0.359)、過街速度(行人2.042,非機(jī)動(dòng)車1.056)和側(cè)面車輛合法停車行為變量(行人-1.394,非機(jī)動(dòng)車-1.653)對(duì)多重威脅沖突有顯著影響;機(jī)動(dòng)車數(shù)量(非機(jī)動(dòng)車-0.365)、等待時(shí)間(行人-1.205,非機(jī)動(dòng)車-0.509)、過街速度(行人1.784,非機(jī)動(dòng)車0.890)和前方車輛屈服行為(行人-1.776,非機(jī)動(dòng)車-1.49)變量對(duì)單次沖突有顯著影響。
本文的研究結(jié)果有助于交通管理者采取適當(dāng)?shù)拇胧┙档蜔o信控人行橫道交通沖突的發(fā)生率,提高行人和非機(jī)動(dòng)車的過街安全,并為無信控人行橫道交通沖突的研究提供新的方向和思路。