• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transcriptome Analysis Provides Novel Insights into Salt Stress Response in Two Egyptian Rice Varieties with Different Tolerance Levels

    2022-10-25 06:19:44ShehabMohamedIoveneMarinaCiancioAurelioColagieroMariantoniettaFinettiSialerMariella
    Rice Science 2022年6期

    Shehab Mohamed, Iovene Marina, Ciancio Aurelio, ColagieroMariantonietta, Finetti-Sialer Mariella

    Letter

    Transcriptome Analysis Provides Novel Insights into Salt Stress Response in Two Egyptian Rice Varieties with Different Tolerance Levels

    Shehab Mohamed1, Iovene Marina2, Ciancio Aurelio3, ColagieroMariantonietta3, Finetti-Sialer Mariella2

    (Kafr El-Sheikh 33717, Egypt; Institute of Biosciences and Bioresources, National Research Council, Bari 70126, Italy; Sustainable Plant Protection Institute, National Research Council, Bari 70126, Italy)

    The response of rice to salt stress (200 mmol/L NaCl) was investigated at the transcription level in Egyptian varieties Giza177 (salt sensitive variety) and Giza178 (salt tolerant variety). We applied a genome-wide RNA-Seq transcriptome study at 21-day-old seedlings of both varieties, exposed or not to salt stress for 24 h. Most differentially expressed genes (DEGs) between the two varieties in response to salt stress were related to the expression of genes active at the cell wall (CW) level, including wall modification, hemicellulose/cellulose synthesis and transcripts of the peroxidase family activated in response to oxidative stress/oxidation reduction, which were significantly more represented in Giza 178. Consistently, Gene Ontology (GO) analysis showed differentially expressed transcripts, involved in response to oxidative stress and chemical stimulus, directly implicated in salt stress response and up-regulated in Giza 178, as well as oxidoreductase, peroxidase and antioxidant activities. When the two varieties were directly compared in exposed or not to salt stress conditions, Giza 177 showed a higher number of differentially expressed and unique loci than Giza 178, including transposable elements (TE). However, Giza 178 showed a higher number of transcription factors (TF) expressed, mostly involving myeloblastosis (MYB) family members and bZIP elements, with annotated elements including zinc finger domain, kinase, expansin, cellulose, sucrose synthase, peroxidase precursor, dehalogenase-like hydrolase, and sodium/ calcium exchanger protein.

    Salinization exerts the most negative effect on rice worldwide, acting as an important limiting factor in production (Korres et al, 2019). Tolerance to salt stress in plants is a multigenic trait, whose mechanism is not yet fully decyphered. Salinity challenges plant metabolism by mostly provoking a growth reduction due to a shortage of available water, interfering with nutrient uptake, stomatal and mesophyll conductance, and ion toxicity (Munns and Tester, 2008). Several studies highlighted physiological and molecular changes underlying salt tolerance through unique adaptation mechanisms (Baldoni et al, 2016; Ghosh et al, 2016; Acosta-Motos et al, 2017). We investigated the response to salt stress of Egyptian rice varieties Giza 177 and Giza 178 by the RNA-Seq study, to identify the mechanisms underpinning their divergent performance. Computational and experimental approaches were combined to characterize the responsive genes. The raw transcript data produced are available at NCBI (Project Accession No. PRJNA782864). Different pipelines were applied to obtain high quality base sequences (Table S1).

    Global analyses and DEG mappings for the two varieties subjected to salt stress showed a diverse modulation, when compared to the corresponding control (Fig. S1). Giza 177 showed 2 629 up-regulated and 2 802 down-regulated genes in stressed plants (Table S2). Giza 178 displayed 2 997 up-regulated and 2 813 down-regulated genes in stressed plants (Table S3). Both varieties shared a common set of 1 612 genes (855 up- and 757 down-regulated), and a contrasting expression for 50 genes in Giza 178 and 43 genes in Giza 177, respectively (Fig. S1-A). MapMan analysis showed that differences in salt response between the two varieties were related to transcripts involved in the CW metabolism (Fig. S1-B and -C). In Giza 178, 30 DEGs involved in CW modification were up-regulated with at least a 2-fold change (2-FC), with only 3 genes down-regulated. Moreover, there were three and eight genes of the CW hemicellulose and cellulose synthesis pathways exceeding the 2-FC treshold, respectively. Giza 177 displayed less functional categories up-regulated in CW modification, with only 16 genes exceeding the 2-FC treshold, and 5 genes down-regulated. However, the CW hemicellulose synthesis pathway showed the same trend in bothvarieties. An affinity in regulated genes was shown for CW degradation i.e., mannan-xylose-arabinose-fucose, in which six genes were up-regulated in each variety, with two genes (and) regulated at the same extent (Tables S2 and S3). CW provides the first physical barrier to any environmental adversity. It deploys a relevant function in plant development, acting as an interface with the outer environment, mediating indispensable physiological and biochemical processes (Leschevin et al, 2021).

    Further, DEGs up-regulated in Giza 178 included TFs of the MYB, bZIP and histone families (Fig. 1-A and Fig. S2), as well as transcripts of the peroxidase family. In the peroxidase family, Giza 177 showed more down-regulated genes, with only five transcripts with at least 2-FC (Fig. 1-B). Further DEGs unique for Giza 178 included four zinc finger proteins, prevalently of the C3HC4 type domain (LOC_Os03g22830, LOC_Os03g24184,LOC_Os04g10680 and LOC_Os05g25180). These proteins form a finger-like structure and have the capability to bind Zn2+. They represent one of the largest transcriptional regulators in plants and are induced during growth and development, as well as under unfavorable conditions such as water deficiency and salinity (Han et al, 2020). Consistently with the different salt tolerance reported for the two varieties tested, MapMan analysis showed only 28 TFs (14 MYB, 3 bZIP, 2 WRKY and 1 BHLH) up-regulated in Giza 177 when compared to the control (Table S4). In Giza 178, a higher number (46) of TFs was found, including 15 MYB, 7 bZIP, 1 WRKY and 3 BHLH (Table S5). The activation of several TFs was reported in a pool of 306 rice accessions tested under salt stress (Patishtan et al, 2018). TE transcripts were also differentially expressed by the two varieties when stressed, with a double number of TE-related genes uniquely expressed by Giza 177 (8) vs Giza 178 (4) (with 2 in common). Transposons are involved in genetic re-structuring, in particular in self-fertilizing plants such as rice, and may be fundamental in a stress condition (Negi et al, 2016). Although no direct indication could be derived about the target genes or processes eventually affected, our data suggested that the expression of TE could be, at least in part, responsible for the higher sensitivity (or loss of tolerance) of Giza 177 to salt stress. This hypothesis, however, needs support by additional experimental evidence. DEGs associated to stress response in Giza 178 showed different groups associated to stress signaling, such as phosphatases, which are involved in different cell functions (Xue et al, 2008). Two phosphatases, LOC_Os01g37130 and LOC_Os02g55560, were present among the 54 genes uniquely expressed in Giza 178 under salt stress (Table S6). Phosphatases are regulatory proteins that sense and transduce environmental signals, and play a key role in the abiotic stress response, acting on the expression of downstream genes. They are correlated withthe higher plasticity shown by plants in a challenging environment (Fuchs et al, 2013; Singh et al, 2016).

    Fig. 1. Gene expression analysis between rice varieties Giza 177 and Giza 178 exposed or not to salinity stress.

    A and B, Differential expression (|fold change|2 and-value0.05) of up- and down-regulated genes in Giza 178 and Giza 177 under salt stress. Colors indicate transcripts up/down regulation (see legend). ABA, Abscisic acid; SA, Salicylic acid; JA, Jasmonic acid; HSPs, Heat shock proteins; PR, Pathogenesis related; MAPK, Mitogen-activated protein kinases; ERF, Ethylene-responsive element binding factor; DOF, DNA binding with one finger. C, Venn diagram showing the repartition of differentially expressed genes (DEGs) between Giza 177 and Giza 178 in control and salt stress treatments.D and E, Top 10 (out of 535) most significant DEGs between Giza 177 and Giza 178 in control (D) and salt stressed (E) plants.F, Most significant DEGs up-regulated in Giza 178 and Giza 177 under the salt stress condition. The columns show the mean, and the horizontal line represents means of three replicates.G, qRT-PCR data from total RNA showed consistent differential expression for 11 out of 16 loci tested (asterisks).

    Gene Ontology (GO) analysis of enriched terms was used to classify the DEG functions. Those involved in response to oxidative stress and chemical stimulus were directly implicated in salt stress response and were up-regulated in Giza 178, as did oxidoreductase, peroxidase and antioxidant activities (Fig. S3and Table S7). Comparisons between control and stress conditions, performed with STAMP (Statistical analysis of taxonomic and functional profiles, http://kiwi.cs.dal.ca/Software/STAMP), showed 535 (80.1%) DEGs in control and 265(67.6%) in salt stress, respectively (Fig. 1-C and Table S8), with 106 transcripts in common (Fig. 1-C). This comparative analysis showed a higher number of DEGs in Giza 177 underexposed or not to salt stress conditions (Fig. 1-D and -E). Most significant DEGs up-regulated by the salt stress in Giza 178 are shown in Fig. 1-F. Only 1 transcript annotated (LOC_Os12g36630)with the term ‘stress’ was found, expressed in both conditions, out of 79 genes with a ‘stress’ term in thegenome. The 265 DEGs betweenthe two varieties under salt stress included 14 transposons (5.2%, 8 unique for Giza 177 and 2 in common), 24 kinases (9.0%) and 15 transferases (5.6%) (Table S7). Giza 177 showed 105 of the 159 DEGs unique for the salt stress condition (Table S8). Giza 178 showed 66 (25%) up-regulated genes out of the 265 DEGs. The 54 DEGs unique for Giza 178 under salt stress showed 11 loci with annotation as expressed protein, followed by 4 loci with annotations including transposon, zinc finger domain and kinases, 2 with rust resistance and phosphatases, and 1 each with expansin, cellulose, sucrose synthase, peroxidase precursor, dehalogenase-like hydrolase and sodium/calcium exchanger protein (Table S8). In the stress treatment, their chromosome distribution showed a higher frequency for chromosomes 1, 3 and 5 (each with > 30), and a lower representation in chromosomes 7, 8 and 9 (< 12) (Fig. S4). Finally, the qRT-PCR data from total RNA showed consistent differential expression for 11 loci out of the 16 tested, shown in Fig. 1-G (annotations and corresponding FC in Table S9).

    In conclusion, global data analyses indicated that the different phenotypic responses observed for the two varieties are consistent with differences in a number of key metabolic processes (Fig. S5). Further network analyses may be needed to identify the loci progressively steering the plant metabolic pathways during their response to salt stress, which can be targeted in future selection programs.

    ACKNOWLEDGEMENTS

    This study was supported by the Ministry of Foreign Affairs, Directorate General for Development Cooperation, Italy and National Research Council, Rome, Italy (Grant No. 1654). The authors gratefully acknowledge Nicoletta Rapanà and Domenico De Paola (Institute of Biosciences and Bioresources, National Research Council, Bari, Italy) for the support and assistance.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Global analysis of differently expressed genes between stressed and control plants of Giza 177 and Giza 178.

    Fig. S2. Up- and down-regulated transcription factors in Giza 177 and Giza 178 under salt stress condition.

    Fig. S3. Gene Onthology analysis of up-regulated molecular and cellular processes in Giza 177 and Giza 178 under salt stress condition.

    Fig. S4. Chromosome distribution of 265 differentially expressed genes between Giza 177 and Giza 178 stressed plants.

    Fig. S5. Crop performance of Giza 177 and Giza 178 in the field.

    Table S1. Number of reads and RNA mappings.

    Table S2. Differentially expressed genes in Giza 177 and their Gene Onthology analyses.

    Table S3. Differentially expressed genes in Giza 178 and their Gene Onthology analyses.

    Table S4. Differentially expressed genes identified by MapMan analysis in Giza 177 in different pathways.

    Table S5. Differentially expressed genes identified by MapMan analysis in Giza 178 in different pathways.

    Table S6. Differentially expressed loci unique for Giza 178 under salt stress condition.

    Table S7. List of 265 loci differentially expressed between Giza 177 and Giza 178 under salt stress condition.

    Table S8. Differentially expressed genes between Giza 177 and Giza 178, unique or in common between salt-stressed and control plants.

    Table S9. Loci selected for qRT-PCR validation and related annotations.

    Table S10. List of oligonucleotides used for qRT-PCR.

    Acosta-Motos J R, Ortu?o M F, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M J, Hernandez J A. 2017. Plant responses to salt stress: Adaptive mechanisms., 7: 18.

    Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. 2016. Comparative leaf and root transcriptomic analysis of two ricecultivars reveals major differences in the root early response to osmotic stress., 9(1): 25.

    Fuchs S, Grill E, Meskiene I, Schweighofer A. 2013. Type 2C protein phosphatases in plants., 280(2): 681–693.

    Ghosh B, Ali Md N, Gantait S. 2016. Response of rice under salinity stress: A review update., 4: 167.

    Han G L, Lu C X, Guo J R, Qiao Z Q, Sui N, Qiu N W, Wang B S. 2020. C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants., 11: 115.

    Korres N E, Varanasi V, Slaton N A, Price A J, Bararpour T M. 2019. Effects of salinity on rice and rice weeds: Short- and long-term adaptation strategies and weed management.: Hasanuzzaman M, Fujita M, Nahar K, Biswas J K. Advances in Rice Research for Abiotic Stress Tolerance. Oxford, UK: Woodhead Publishing: 159–176.

    Leschevin M, Ismael M, Quero A, San Clemente H, Roulard R, Bassard S, Marcelo P, Pageau K, Jamet E, Rayon C. 2021. Physiological and biochemical traits of two majoraccessions, Col-0 and Ws, under salinity., 12: 639154.

    Munns R, Tester M. 2008. Mechanisms of salinity tolerance., 59: 651–681.

    Negi P, Rai A N, Suprasanna P. 2016. Moving through the stressed genome: Emerging regulatory roles for transposons in plant stress response., 7: 1448.

    Patishtan J, Hartley T N, de Carvalho R F, Maathuis F J M. 2018. Genome-wide association studies to identify rice salt-tolerance markers., 41(5): 970–982.

    Singh A, Pandey A, Srivastava A K, Tran L S, Pandey G K. 2016. Plant protein phosphatases 2C: From genomic diversity to functional multiplicity and importance in stress management., 36(6): 1023–1035.

    Xue T T, Wang D, Zhang S Z, Ehlting J, Ni F, Jakab S, Zheng C C, Zhong Y. 2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and., 9: 550.

    14 December 2021;

    12 March 2022

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.09.001

    Finetti-Sialer Mariella (mariella.finetti@ibbr.cnr.it)

    国产男女内射视频| 日本黄色日本黄色录像| 18在线观看网站| 久久精品国产99精品国产亚洲性色 | 女警被强在线播放| 啦啦啦视频在线资源免费观看| 欧美日韩精品网址| 日韩欧美一区视频在线观看| 亚洲av日韩在线播放| 国产亚洲欧美精品永久| 大片免费播放器 马上看| 老司机靠b影院| 欧美av亚洲av综合av国产av| 欧美激情 高清一区二区三区| 一区福利在线观看| 1024香蕉在线观看| 18禁国产床啪视频网站| 亚洲,欧美精品.| 国产在线免费精品| 欧美激情高清一区二区三区| 久久亚洲真实| 男人操女人黄网站| 夜夜夜夜夜久久久久| 夫妻午夜视频| 啦啦啦中文免费视频观看日本| 一区二区三区乱码不卡18| 日韩一区二区三区影片| 男女无遮挡免费网站观看| 水蜜桃什么品种好| 亚洲专区中文字幕在线| 亚洲av电影在线进入| 久久香蕉激情| 亚洲精品av麻豆狂野| 亚洲精品国产区一区二| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 精品少妇内射三级| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看| 欧美日韩成人在线一区二区| 午夜免费鲁丝| 好男人电影高清在线观看| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 日韩一区二区三区影片| 成年人免费黄色播放视频| 欧美乱妇无乱码| 欧美久久黑人一区二区| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 青青草视频在线视频观看| 成人特级黄色片久久久久久久 | 视频区图区小说| 精品国内亚洲2022精品成人 | 涩涩av久久男人的天堂| 99国产综合亚洲精品| e午夜精品久久久久久久| 久久精品国产综合久久久| 国产深夜福利视频在线观看| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜制服| 亚洲欧洲日产国产| 热re99久久精品国产66热6| 1024香蕉在线观看| 免费在线观看黄色视频的| 一级毛片精品| 精品亚洲成国产av| 精品福利永久在线观看| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩另类电影网站| 十八禁网站免费在线| 亚洲熟女精品中文字幕| 99久久99久久久精品蜜桃| 午夜视频精品福利| 免费女性裸体啪啪无遮挡网站| 中文字幕色久视频| 久热爱精品视频在线9| 少妇被粗大的猛进出69影院| 亚洲国产精品一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 久久久久视频综合| 亚洲精品国产一区二区精华液| 黄色丝袜av网址大全| 国产一区二区在线观看av| 欧美一级毛片孕妇| 50天的宝宝边吃奶边哭怎么回事| 蜜桃国产av成人99| 俄罗斯特黄特色一大片| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 一区福利在线观看| 久久香蕉激情| 搡老熟女国产l中国老女人| 波多野结衣av一区二区av| 51午夜福利影视在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线 av 中文字幕| 日本精品一区二区三区蜜桃| 亚洲人成伊人成综合网2020| 曰老女人黄片| 亚洲久久久国产精品| 免费看十八禁软件| 99热网站在线观看| 男女高潮啪啪啪动态图| 国产高清国产精品国产三级| 国产免费视频播放在线视频| 欧美精品亚洲一区二区| 亚洲av成人不卡在线观看播放网| 国产精品久久久人人做人人爽| 国产成人精品在线电影| 超色免费av| 色综合欧美亚洲国产小说| 黄色毛片三级朝国网站| 激情在线观看视频在线高清 | 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 国产精品香港三级国产av潘金莲| 一区在线观看完整版| 精品少妇内射三级| 日韩欧美一区二区三区在线观看 | av福利片在线| 色婷婷久久久亚洲欧美| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 99久久99久久久精品蜜桃| 日本欧美视频一区| 最新的欧美精品一区二区| 欧美中文综合在线视频| 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 多毛熟女@视频| a级毛片黄视频| 乱人伦中国视频| 国产精品av久久久久免费| 大码成人一级视频| 不卡一级毛片| 18禁美女被吸乳视频| www.精华液| 热re99久久精品国产66热6| 国产免费现黄频在线看| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 国产亚洲欧美在线一区二区| 亚洲欧洲日产国产| 亚洲伊人色综图| 国产福利在线免费观看视频| 国产在线精品亚洲第一网站| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人| 亚洲精品久久午夜乱码| 精品一区二区三卡| 在线观看免费日韩欧美大片| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 日韩大码丰满熟妇| av电影中文网址| 在线观看免费视频网站a站| 香蕉国产在线看| 亚洲午夜理论影院| 午夜福利,免费看| 国产成人一区二区三区免费视频网站| 国产精品1区2区在线观看. | 交换朋友夫妻互换小说| 久久 成人 亚洲| 一个人免费看片子| 久久九九热精品免费| 热re99久久国产66热| 亚洲国产看品久久| 亚洲熟女精品中文字幕| 老司机在亚洲福利影院| videosex国产| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 一边摸一边抽搐一进一小说 | 男人舔女人的私密视频| 久久精品成人免费网站| 国产亚洲精品一区二区www | 99香蕉大伊视频| 香蕉久久夜色| 国产91精品成人一区二区三区 | 国产淫语在线视频| 欧美乱妇无乱码| 国产在视频线精品| 日本黄色日本黄色录像| svipshipincom国产片| 女人被躁到高潮嗷嗷叫费观| 男女免费视频国产| 精品高清国产在线一区| 亚洲av美国av| 99久久精品国产亚洲精品| 水蜜桃什么品种好| 欧美激情高清一区二区三区| 啦啦啦在线免费观看视频4| 国产成人系列免费观看| 黄色片一级片一级黄色片| 国产精品熟女久久久久浪| 亚洲成av片中文字幕在线观看| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| 精品国产乱码久久久久久男人| 国产人伦9x9x在线观看| 啦啦啦免费观看视频1| 国产av又大| 搡老熟女国产l中国老女人| 丁香六月天网| 国内毛片毛片毛片毛片毛片| 欧美一级毛片孕妇| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免费看| 99国产综合亚洲精品| 99热网站在线观看| 久久精品国产综合久久久| 午夜免费成人在线视频| 大香蕉久久网| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 自线自在国产av| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 搡老熟女国产l中国老女人| 国产野战对白在线观看| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| videosex国产| 午夜免费鲁丝| 18禁国产床啪视频网站| 国产成人啪精品午夜网站| 好男人电影高清在线观看| 视频在线观看一区二区三区| 一本大道久久a久久精品| 99re6热这里在线精品视频| 亚洲第一欧美日韩一区二区三区 | 久久免费观看电影| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精| 久久精品国产99精品国产亚洲性色 | kizo精华| 久久久国产一区二区| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 757午夜福利合集在线观看| av有码第一页| 亚洲欧美日韩高清在线视频 | 免费在线观看日本一区| 国产精品免费一区二区三区在线 | 性高湖久久久久久久久免费观看| 日韩大码丰满熟妇| 国产精品一区二区免费欧美| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 欧美日韩福利视频一区二区| 丁香六月欧美| 丝瓜视频免费看黄片| 精品国产乱码久久久久久男人| 日韩中文字幕视频在线看片| 搡老熟女国产l中国老女人| 天天躁狠狠躁夜夜躁狠狠躁| 日本a在线网址| 国产精品免费大片| 国产视频一区二区在线看| 国产精品九九99| 国产精品亚洲av一区麻豆| 在线十欧美十亚洲十日本专区| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 99久久人妻综合| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| 大片免费播放器 马上看| 日韩成人在线观看一区二区三区| 在线看a的网站| 免费av中文字幕在线| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 91大片在线观看| 妹子高潮喷水视频| av有码第一页| 久久久久国产一级毛片高清牌| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 18在线观看网站| 国产精品电影一区二区三区 | 99久久人妻综合| 男女之事视频高清在线观看| 欧美成人免费av一区二区三区 | 国精品久久久久久国模美| 午夜福利欧美成人| 大码成人一级视频| 国产在线观看jvid| 久久精品国产99精品国产亚洲性色 | 精品乱码久久久久久99久播| 亚洲精品国产色婷婷电影| 欧美在线黄色| 精品午夜福利视频在线观看一区 | 国产熟女午夜一区二区三区| 国产精品亚洲一级av第二区| 69av精品久久久久久 | 亚洲黑人精品在线| 高清欧美精品videossex| 亚洲av日韩精品久久久久久密| 国产aⅴ精品一区二区三区波| 久久精品熟女亚洲av麻豆精品| av片东京热男人的天堂| 国产在线一区二区三区精| 后天国语完整版免费观看| 久热爱精品视频在线9| 在线看a的网站| 一本综合久久免费| 99国产综合亚洲精品| 国产免费视频播放在线视频| 五月开心婷婷网| 亚洲精品久久午夜乱码| 捣出白浆h1v1| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜一区二区| 久久热在线av| 免费在线观看完整版高清| 国产精品 欧美亚洲| 国产xxxxx性猛交| 欧美黄色淫秽网站| 国产一区有黄有色的免费视频| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 国产免费福利视频在线观看| av不卡在线播放| 天天添夜夜摸| 亚洲成人手机| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 日韩视频一区二区在线观看| 国产成人免费无遮挡视频| 中文字幕人妻丝袜一区二区| 脱女人内裤的视频| 亚洲中文av在线| 99精品在免费线老司机午夜| 亚洲中文av在线| 国产精品电影一区二区三区 | 久久香蕉激情| 亚洲全国av大片| 美女主播在线视频| 亚洲国产成人一精品久久久| 一进一出抽搐动态| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 午夜精品国产一区二区电影| av福利片在线| 国产高清视频在线播放一区| 黄色片一级片一级黄色片| 中文字幕制服av| 精品熟女少妇八av免费久了| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 99国产极品粉嫩在线观看| 日本一区二区免费在线视频| 99久久人妻综合| 亚洲国产av新网站| 新久久久久国产一级毛片| 久久这里只有精品19| 狠狠精品人妻久久久久久综合| 欧美日韩一级在线毛片| 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人人97超碰香蕉20202| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 最黄视频免费看| 午夜精品国产一区二区电影| aaaaa片日本免费| av天堂在线播放| 桃花免费在线播放| 日韩视频在线欧美| 法律面前人人平等表现在哪些方面| h视频一区二区三区| 国产精品 欧美亚洲| 国产精品久久久人人做人人爽| 国产片内射在线| 热99久久久久精品小说推荐| 我的亚洲天堂| 五月开心婷婷网| 亚洲中文日韩欧美视频| 国产av精品麻豆| 午夜福利影视在线免费观看| 99国产精品一区二区蜜桃av | 久久狼人影院| 在线播放国产精品三级| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 精品久久久久久久毛片微露脸| 午夜日韩欧美国产| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 久久精品亚洲av国产电影网| 久久久久久人人人人人| 国产成人一区二区三区免费视频网站| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久| 1024香蕉在线观看| 国产av国产精品国产| 岛国毛片在线播放| 一本综合久久免费| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网| 可以免费在线观看a视频的电影网站| 国产日韩欧美在线精品| 久久久精品94久久精品| 亚洲精品美女久久久久99蜜臀| 一级毛片精品| 免费观看人在逋| 久久久久网色| 大香蕉久久成人网| 中文字幕制服av| 99热网站在线观看| h视频一区二区三区| 国产精品一区二区在线不卡| 精品少妇黑人巨大在线播放| 成人精品一区二区免费| 欧美激情高清一区二区三区| 一二三四在线观看免费中文在| 免费人妻精品一区二区三区视频| 欧美日韩亚洲高清精品| 亚洲免费av在线视频| 国产不卡一卡二| 黄色丝袜av网址大全| 国产精品二区激情视频| 美女福利国产在线| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频| 免费在线观看完整版高清| 高潮久久久久久久久久久不卡| 五月开心婷婷网| 搡老熟女国产l中国老女人| 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 亚洲成av片中文字幕在线观看| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 国产一区二区三区综合在线观看| 在线观看舔阴道视频| 亚洲一码二码三码区别大吗| 成人特级黄色片久久久久久久 | 黄色成人免费大全| 久久香蕉激情| 日韩成人在线观看一区二区三区| 免费av中文字幕在线| 国产精品二区激情视频| 黑人操中国人逼视频| 满18在线观看网站| 一边摸一边做爽爽视频免费| 99热国产这里只有精品6| 波多野结衣av一区二区av| 国产精品 欧美亚洲| 99国产精品免费福利视频| 国产成人免费无遮挡视频| 少妇裸体淫交视频免费看高清 | 免费久久久久久久精品成人欧美视频| 亚洲男人天堂网一区| 国产成人免费无遮挡视频| 黄频高清免费视频| 又紧又爽又黄一区二区| 国产精品美女特级片免费视频播放器 | 亚洲七黄色美女视频| 麻豆成人av在线观看| 最黄视频免费看| 免费黄频网站在线观看国产| 亚洲精品国产色婷婷电影| 日韩三级视频一区二区三区| 超碰成人久久| 国产99久久九九免费精品| 国产免费现黄频在线看| 手机成人av网站| 制服诱惑二区| 无遮挡黄片免费观看| 免费av中文字幕在线| 国产一区二区三区综合在线观看| 高清欧美精品videossex| 一边摸一边抽搐一进一小说 | 91精品三级在线观看| 国产一区二区 视频在线| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲欧美色中文字幕在线| 桃花免费在线播放| 精品亚洲乱码少妇综合久久| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 日韩人妻精品一区2区三区| 国产精品久久久久久精品电影小说| 在线看a的网站| 夜夜骑夜夜射夜夜干| 国产一区二区三区在线臀色熟女 | 香蕉丝袜av| 91九色精品人成在线观看| 国产精品一区二区在线观看99| 窝窝影院91人妻| 岛国毛片在线播放| 国产av国产精品国产| 19禁男女啪啪无遮挡网站| 精品少妇久久久久久888优播| 午夜福利,免费看| 久久热在线av| 人妻一区二区av| 淫妇啪啪啪对白视频| 99在线人妻在线中文字幕 | 啦啦啦免费观看视频1| 国产在线精品亚洲第一网站| 欧美激情高清一区二区三区| 日本黄色视频三级网站网址 | 久久精品亚洲精品国产色婷小说| 免费看十八禁软件| 午夜免费成人在线视频| av天堂久久9| 天天添夜夜摸| 午夜两性在线视频| 欧美黄色淫秽网站| 亚洲男人天堂网一区| 日韩免费高清中文字幕av| a在线观看视频网站| 97在线人人人人妻| 成人18禁高潮啪啪吃奶动态图| 国产免费现黄频在线看| 亚洲专区国产一区二区| 国产一区二区在线观看av| 在线永久观看黄色视频| 9191精品国产免费久久| 久久久久国内视频| 新久久久久国产一级毛片| av天堂久久9| 久久中文字幕人妻熟女| 动漫黄色视频在线观看| 久久久久国产一级毛片高清牌| 91精品三级在线观看| 欧美国产精品va在线观看不卡| 中文欧美无线码| 午夜福利视频在线观看免费| 亚洲情色 制服丝袜| 国产伦人伦偷精品视频| 免费在线观看影片大全网站| 高清av免费在线| 亚洲中文av在线| 亚洲精品一卡2卡三卡4卡5卡| 日本wwww免费看| 1024香蕉在线观看| 一本大道久久a久久精品| 欧美乱妇无乱码| 久久国产精品男人的天堂亚洲| 亚洲 欧美一区二区三区| 人成视频在线观看免费观看| 好男人电影高清在线观看| 国产片内射在线| 国产精品av久久久久免费| 亚洲精品在线美女| 人妻久久中文字幕网| 国产在线免费精品| 在线观看66精品国产| 桃花免费在线播放| 亚洲久久久国产精品| 不卡av一区二区三区| 免费观看a级毛片全部| 在线观看免费视频网站a站| 国产成人精品久久二区二区免费| 国产黄色免费在线视频| 午夜免费成人在线视频| 人人澡人人妻人| 狠狠狠狠99中文字幕| 久久久久久久国产电影| 国产亚洲午夜精品一区二区久久| 日韩视频一区二区在线观看| 热re99久久精品国产66热6| 精品午夜福利视频在线观看一区 | 黑人欧美特级aaaaaa片| 亚洲国产精品一区二区三区在线| 亚洲全国av大片| 久久午夜综合久久蜜桃| 日本a在线网址| 午夜精品国产一区二区电影| 亚洲精品国产色婷婷电影| 肉色欧美久久久久久久蜜桃| 国产高清视频在线播放一区| 色尼玛亚洲综合影院| 黑丝袜美女国产一区| 国产精品久久久久久精品古装| 免费久久久久久久精品成人欧美视频| 亚洲av电影在线进入| 久久久久久免费高清国产稀缺| 欧美日韩亚洲国产一区二区在线观看 | 另类亚洲欧美激情| 无限看片的www在线观看| 亚洲人成电影免费在线| 蜜桃在线观看..| 99国产精品一区二区三区| 日韩有码中文字幕| 久久天堂一区二区三区四区| 99国产精品一区二区三区| 99久久国产精品久久久| 蜜桃在线观看..| 老司机亚洲免费影院| 国产精品美女特级片免费视频播放器 | 国产成人免费观看mmmm| 捣出白浆h1v1| 黑人巨大精品欧美一区二区mp4| 久久精品国产99精品国产亚洲性色 |