• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unexpected high-temperature brittleness of a Mg-Gd-Y-Ag alloy

    2022-10-24 13:25:58LirongXioXuefeiChenHuiynNingPingJingYiLiuBinChenDongiYinHoZhouYuntinZhu
    Journal of Magnesium and Alloys 2022年9期

    Lirong Xio ,Xuefei Chen, ,Huiyn Ning ,Ping Jing ,Yi Liu ,Bin Chen ,Dongi Yin,Ho Zhou,*,Yuntin Zhu,f

    a Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    c School of Mechanical and Electrical Engineering,Heilongjiang Institute of Technology,Harbin 150050,China

    d ThermoFisher Scientific,Shanghai 201210,China

    e Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu,Sichuan 610031,China

    fDepartment of Materials Science and Engineering,City University of Hong Kong,Hong Kong 999077,China

    Abstract Rare earth (RE) can produce excellent precipitation hardening in Mg alloys.However,when forming a solid solution,it also deteriorates formability,a problem that can usually be overcome by raising deformation temperature.Here we report an unexpected observation of high temperature brittleness in a Mg-Gd-Y-Ag alloy.As the temperature reached 500 °C,the formability decreased drastically,leading to severe intergranular fracture under only 0.5% strain.This was caused by failure of grain boundaries,which are weakened by segregated interfacial compounds.

    Keyword: Interfacial compounds;Formability;High temperature brittleness;Grain boundary sliding.

    1.Introduction

    Environmental pollution and energy source exhaustion are becoming severe crises that threat the well-being of humanity.As the lightest metallic materials,magnesium and its alloys have potential applications in many industries such as automobile,ship-building and aerospace [1–3].Extensive investigations on alloy design,forming technology and deformation mechanism of wrought Mg alloys have been carried out to expand their applications in load-bearing components [4–9].Especially,it has been found that the Mg-RE alloys can be effectively strengthened by age hardening [10–12],in which the dispersed nano precipitates block the slip of dislocations to enhance strength [13–16].In addition,it has been reported that other strengthening mechanisms,such as grain refinement and solid solution,can also improve the strength of Mg-RE alloys in conjunction with precipitation hardening [17,18].

    Industrial applications of Mg alloys are severely hindered by their poor formability at room temperature [19,20].In addition,dislocation pinning by solution atoms in Mg-RE alloys further deteriorates their formability [21,22].Therefore,high temperature deformations,which can activate more slip systems,are frequently employed to process Mg-RE alloys[23–25],although RE addition has negative effects on grain refinement in Mg alloys,which leads to higher critical temperatures for recrystallization[26,27]and changes of deformation mechanisms [28,29].Recrystallization is known as effective way to reduce the dislocation density and consequently improve formability during hot deformation.

    In this work,the deformation behaviors of Mg-Gd-Y-Ag alloy at a series of elevated temperatures were comparatively studied.It is found that the critical recrystallization temperature of Mg-Gd-Y-Ag alloy is ?440 °C.Stable rolling deformation to 80% of thickness reduction without any cracking was successfully achieved at this temperature.However,to our surprise,we found unexpected brittleness when the alloy was deformed at higher temperature of 500 °C.Severe cracking occurred in the sample that was rolled for only 0.5% of thickness reduction.This interesting phenomenon is against our current understanding of hot deformation.It is widely accepted that increasing temperature promotes the plastic deformation of most Mg alloys [30,31].Thus,detailed microstructure evolutions of the alloys deformed at 440 °C and 500 °C were comparatively investigated using EBSD and TEM.It is found that the underlying mechanism of the high temperature brittleness of Mg-Gd-Y-Ag alloy was induced by segregated compounds (the Mg3RE and Mg2REAg phases) along the grain boundaries.

    2.Materials and methods

    The composition of Mg-RE alloy was Mg-10Gd-3Y-2Ag in weight percentage (wt.%).The as-cast ingot was cut into plates with dimensions of 30 mm × 20 mm × 2 mm,followed by a homogenization treatment at 500°C for 12 h,then quenched to room temperature in silicon oil (T4 treatment).Rolling deformation was performed at 440 °C or 500 °C with a rolling speed of 20 mm/s.Before each pass,the samples were pre-heated for 30 min in a resistance furnace.The thickness reduction between each pass was ?0.1 mm.

    To reveal the microstructural evolution with different rolling conditions,electron back-scattered diffraction (EBSD)characterization was performed in a scanning electron microscope (SEM,FEI Quanta 250 FEG).EBSD samples were cut from the rolling sheets.Transverse direction was set as the observation direction.The scanning step sizes are 4 μm,0.5 μm and 0.3 μm for the sample in T4,440 °C and 500 °C conditions.Kernel average misorientation (KAM) analysis was carried out near the cracks to reveal the nature of strain hardening [32].Transmission electron microscopy (TEM) specimens were cut parallel to the normal plane and gently thinned to a thickness of ?25 μm.Perforation by ion milling was performed on a cold stage (?50 °C) with a low angle (<3.5°) and low energy ion beam (<3 keV).Atomic-resolution high-angle annular dark field (HAADF) observations were performed in an aberration-corrected scanning transmission electron microscope(STEM,FEI Titan G2 60-300)operated at 300 kV.Digital Micrograph plug-in was used for geometric phase analysis(GPA) to measure strain field from high-resolution TEM images.For simplicity,all the zone axes and crystal planes are hereafter referred to as those of theα-Mg matrix.

    3.Results and discussions

    Fig.1a is an EBSD inverse pole figure (IPF) map of Mg-Gd-Y-Ag alloy,showing a random texture in the T4 treated sample.The grain size distribution is plotted in Fig.1c,indicating an average grain sizeof ?86 μm.The microstructure is of a typical annealed equiaxed grains with relatively clean grain interior.Fig.1b shows the EBSD grain boundaries(GBs) map in the same observation area.Althrough the sample is well homogenized at 500°C for 12 h(T4),there are still some compounds in local regions.HAADF-STEM and TEM images(Fig.1d and e)reveal that the compounds exist mostly along grain boundaries,which are also frequently observed in other solid solute treated Mg-RE alloys with high RE contents [33,34].X-ray diffraction (XRD) analysis indicates that the compounds are mostly the Mg3RE and Mg2REAg phases(Fig.1f).These compounds are segregated at grain boundaries,but can be fragmented,refined and even dissolved during the subsequent plastic deformations [35].

    Owing to their insufficient number of slip systems,Mg alloys usually show poor formability at room temperature[19,20].We performed cold rolling on this T4 treated sample,and found that not surprisingly,cracking occurred when the thickness reduction reached 20%.To improve the formability,high temperature deformation is usually employed to activate more non-basal slip systems [30,31].Fig.2 shows the IPF maps of samples rolled at 440 °C with thickness reductions from 20% to 80%.During the hot deformation,defects in grain interior are significantly cleaned up through dynamic recrystallization [36,37].Compared to the T4 sample,significant grain refinement occurred in the 20% hot rolled sample,showing an average grain size of ?33 μm (Fig.2a).The grain size is inhomogeneous,exhibiting co-existence of coarse grains (>100 μm) and fine grains (<10 μm),which indicates that the grain refinement of 20% rolled sample is not uniform.Further deformation reduces the average grain sizes to ?25 μm,?21 μm and ?13 μm after 40%,60% and 80% rolling strain,as shown in Fig.2b–d,respectively.The grain size distributions indicate that the homogeneity of grain size is improved with increasing rolling strain.Thus,Mg-Gd-Y-Ag alloys exhibit excellent formability at 440 °C,due to dynamic recrystallization.The samples are able to sustain up to 80% rolling reduction without any cracking.Similar result was also reported in the Ref.[34].

    In sharp contrast,the deformation at 500 °C induced an intergranular fracture,as shown in Fig.3a.Surprisingly,the limit of rolling reduction at 500 °C is extremely low: severe fracture occurred with only 0.5% of thickness reduction.This observation is against our general understanding that higher temperature typically improves the formability of Mg alloys.The GB map (Fig.3b) indicates that recrystallization did not occur when the sample was deformed at 500 °C.The average grain size is ?75 μm (Fig.3f),which is close to that of the T4 sample (?86 μm).

    Fig.1.Microstructure of as-received (T4 treated at 500 °C for 12 h) Mg-Gd-Y-Ag alloy: (a) IPF map,(b) GB map,(c) statistical histogram of grain size distribution,(d) HAADF-STEM image at GB,(e) bright-field TEM image at GB,(f) XRD pattern of phase constitution.

    Fig.2.EBSD IPF maps and corresponding grain size distributions of Mg-Gd-Y-Ag alloy rolled at 440 °C: (a) 20%,(b) 40%,(c) 60%,and (d) 80% of the thickness reductions.

    Fig.3.Microstructure of the cracked Mg-Gd-Y-Ag alloy sample rolled at 500 °C: (a) IPF map,(b) grain boundary map,(c) TEM bright field image and corresponding diffraction pattern of twinning,(d) and (e) closed-up KAM and Schmid factor maps of the white rectangle region in (a),(f) statistical histogram of grain size distribution.

    Fig.4.Atomic-scale microstructure of the segregated compound in GB: (a) low magnification HAADF-STEM image,(b) EDS map of a specific compound,(c) high magnification HAADF-STEM image,(d) GPA analysis of lattice strain map,(e) interface between the segregated compound and matrix,(f) twodimensional unit cell marked on a HAADF-STEM image.

    It is well understood that the activation of dynamic recrystallization requires two essential conditions: (1) The deformation temperature is higher than the critical recrystallization temperature;(2) The continuous straining to introduce the high density of defects.In this case,500 °C is higher than the recrystallization temperature (440 °C).However,the defect accumulation in grain interior is very slow.Only some deformation twins are observed in the grains along the cracks.As shown in Fig.3c,the bright-field TEM image and corresponding SAED pattern indicate that most of them are{102}twins.Detailed analysis of deformation was carried out in the white rectangle area of Fig.3a,using a much smaller step size of scanning.As shown in Fig.3d,the high KAM value regions mainly distribute along the grain boundaries (7?17°),especially along the cracks,while the KAM value in grain interior is relatively low (mostly below 2°).The Schmid factor map shows that grains (IV to VII) on both sides of the crack are below 0.3,which is unfavorable to slip activation(Fig.3e).Fortunately,the crack growth is blocked by the grains (I to III) with higher Schmid factor (0.4?0.5),which are easier for dislocation slip.Therefore,grain boundary sliding appear to be the main deformation mode at such a high temperature.

    As mentioned above,segregated compounds exist in the T4 treated samples (Fig.1d and e).Fig.4a shows the HAADFSTEM image of segregated compound,which is responsible for the high temperature brittleness.The compositions of the compound have high atomic numbers,thus exhibiting a brighter contrast than that of Mg matrix [38–41].We performed energy-dispersive X-ray spectroscopy(EDS)anaylsis,and detected all the three alloying elements in the compound(Fig.4b).The color of the maps indicates that the concentration of Y is lower than those of Gd and Ag in the compound.Enlarged HAADF-STEM image shows that the segregated compound has a periodic structure,which has a three-fold symmetry in this zone axis(Fig.4c).Due to the different orientations on both sides of the GB,the lattice structure of the compound is not perfect,which has lower ordering structure in some local areas.Fig.4d is the GPA analysis of the same region,showing that the distibtion of high strain regions exist inside this compound.Owing to the high interfacial energy in disordered structure,they could be the strat area for softening at high temperature.As shown in Fig.4e,the atomic-scale morphology of the interface between matrix and the segregated compound show a zigzag morphology,but is highly coherent in the lattice.Based on the three-fold symmetry in this zone axis,the two-dimensional unit cell of the compound is proposed as a hexagonal structure,as marked in Fig.4f.

    The segregated compounds on the grain boundary results in serious cracking,when the samples were deformed at 500 °C.Fig.5a and b shows the segregated compounds looks like split and molten during high temperature deformation,which could be the main reason for the high temperature brittleness of the Mg-Gd-Y-Ag alloy.In general,grain boundary sliding is helpful for plastic deformation in metals,which is well studied in the researches of superplastic deformation [42–45].However,in this specific case,the softening of the compound on the GB is equivalent to crack formation on the GB,because the molten phase can carry little stress.This statement is supported by HAADF-STEM observations that the cracking initiation occurred at the interface of segregated compounds(Fig.5b).

    Fig.5c shows the stress-strain curves of the Mg-Gd-Y-Ag alloy compressed at 440 °C and 500 °C,respectively.The test was performed on a Gleeble-3500 thermo-mechanical simulator at a strain rate of 0.001 s-1.The alloy compressed at 440 °C shows stable flow stress,which has a yield strength of ?50 MPa.Due to the dynamic recrystallization,the flow stress shows a slight decrease after yielding,and then tends to be stable.In contrast,the stress-strain curve of the sample compressed at 500 °C shows a drastic wobble,which is resulted from the severe cracking during the plastic deformation.

    Fig.5.Mechanism of high temperature brittleness in Mg-Gd-Y-Ag alloy: (a) HAADF-STEM of a GB,(b) growth GB cracks,(c) true stress-strain curves of hot compression at a strain rate of 0.001 s-1,(d) schematic diagram of microstructure evolution deformed at 440 °C and 500 °C,respectively.

    Fig.5d illustrates the deformation mechanism of Mg-Gd-Y-Ag alloy rolled at 440 °C and 500 °C,respectively.Stable plastic deformation at 440 °C is dominated by dislocation slip and deformation twinning.Formability of the alloy is significantly improved by dynamic recrystallization,leading to grain refinement from 86 μm to 13 μm.In contrsat,at 500 °C,the softening of the compounds significnalty weakens the grain boundary,which makes it easier for the GB to slide and for the GB cracks to form,which consequently fails the sample,leading to the high temperature brittleness in the Mg-Gd-Y-Ag alloy.

    To solve the high temperature brittleness,the following two methods are suggested for the processing of Mg-Gd-Y-Ag alloy.First,the content of rare earth elements in Mg-Gd-Y-Ag alloys should be reduced,which will reduce the formation of the segregated compounds along GBs.Previous work revealed that deformation of pure Mg was stable at 500 °C,even to a very high strain [46].Second,lower the deformation temperature to avoid the softening of the compounds segregated to the GBs.

    4.Conclusions

    In summary,an unexpected high temperature brittleness was found in a Mg-Gd-Y-Ag alloy,which induced severe cracking under a very low deformation strain.The deformation mechanisms at different temperatures were studied.The key findings are summarized below:

    (1) Segregated compound is responsible for the high temperature brittleness,which became soften during deformation at 500 °C.Cracking initiation occurs at the interface of segregated compounds.The severe cracking during deformation leads to a drastic wobble of flow stress.

    (2) At 500 °C,the weakening of the grain boundaries by the softening segregated compounds led to easy grain boundary sliding.As a result,dislocation slip and accumulation in the grain interior became more difficult because the deformation was carried out largely at grain boundaries.Together with premature failure of the sample at low strain,there was not enough defects accumulated in the grain interior to initiate dynamic crystallization before sample fracture.

    (3) The compositions of segregated compound have Gd,Ag and Y elements,in which the concentration of Y is lower than that of Gd and Ag.The compound has a periodic structure,which has a three-fold symmetry in the observed direction.The interface between matrix and the compound is zigzag,but is highly coherent in the lattice.The two-dimensional unit cell of the compound is proposed as have a hexagonal structure.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (Grant numbers 52071178,51901103,51931003,51601003,51401172),the National Key Research and Development Program of China (Grant number 2017YFA0204403),Project of Natural Science Foundation of Heilongjiang Province (grant number LH2019E080).The authors wish to express their appreciation to the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology.EBSD and TEM experiments were performed at the Materials Characterization and Research Center of Nanjing University of Science and Technology.

    黑人高潮一二区| 毛片一级片免费看久久久久| 床上黄色一级片| 日本精品一区二区三区蜜桃| av免费在线看不卡| 午夜a级毛片| 日本 av在线| 男人舔女人下体高潮全视频| 亚洲综合色惰| 亚州av有码| 国产精品日韩av在线免费观看| 99热网站在线观看| 久久99热6这里只有精品| videossex国产| 亚洲精品久久国产高清桃花| 欧美成人一区二区免费高清观看| 成人午夜高清在线视频| 亚洲av第一区精品v没综合| 日韩欧美免费精品| 俄罗斯特黄特色一大片| 亚洲熟妇熟女久久| 国产一区二区激情短视频| 我要看日韩黄色一级片| 亚洲精品粉嫩美女一区| 亚洲最大成人av| 午夜亚洲福利在线播放| 亚洲av一区综合| 一区二区三区四区激情视频 | 一进一出好大好爽视频| 男女下面进入的视频免费午夜| 无遮挡黄片免费观看| 少妇人妻一区二区三区视频| 搡老岳熟女国产| 欧美日韩精品成人综合77777| av国产免费在线观看| 成人国产麻豆网| 国产精品免费一区二区三区在线| 久久中文看片网| 国产男人的电影天堂91| 亚洲av成人av| 久久久久久大精品| 日本爱情动作片www.在线观看 | 久久久久久久久中文| 赤兔流量卡办理| 欧美日本视频| 不卡视频在线观看欧美| 三级经典国产精品| 婷婷亚洲欧美| 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| 美女大奶头视频| eeuss影院久久| 日韩制服骚丝袜av| 在线免费观看的www视频| 久久久久久久久大av| 在线免费观看的www视频| 97在线视频观看| 成人漫画全彩无遮挡| 嫩草影院新地址| 男女视频在线观看网站免费| 久久天躁狠狠躁夜夜2o2o| 亚洲五月天丁香| 别揉我奶头~嗯~啊~动态视频| 午夜精品在线福利| 国产美女午夜福利| 久久精品国产亚洲网站| 性欧美人与动物交配| 国产在视频线在精品| 啦啦啦观看免费观看视频高清| 青春草视频在线免费观看| 精品久久久久久久人妻蜜臀av| 国产精品电影一区二区三区| 小蜜桃在线观看免费完整版高清| 国产免费男女视频| 欧美激情国产日韩精品一区| 国内精品一区二区在线观看| 亚洲av二区三区四区| h日本视频在线播放| 熟女电影av网| 国产精品一区二区性色av| 神马国产精品三级电影在线观看| 久久欧美精品欧美久久欧美| ponron亚洲| 久久久午夜欧美精品| eeuss影院久久| 免费av毛片视频| 亚洲一级一片aⅴ在线观看| 色综合站精品国产| 久久人人爽人人爽人人片va| 99热网站在线观看| 国产男人的电影天堂91| 露出奶头的视频| 欧美在线一区亚洲| 国产精品嫩草影院av在线观看| 人妻少妇偷人精品九色| 非洲黑人性xxxx精品又粗又长| 亚洲成a人片在线一区二区| 免费黄网站久久成人精品| 99热这里只有是精品50| 日日摸夜夜添夜夜添av毛片| 免费看光身美女| 中文亚洲av片在线观看爽| 神马国产精品三级电影在线观看| 亚洲欧美日韩无卡精品| 男女做爰动态图高潮gif福利片| 国产精品一区二区三区四区久久| 18禁在线播放成人免费| 亚洲高清免费不卡视频| 日韩亚洲欧美综合| 成人性生交大片免费视频hd| 在线看三级毛片| 国产v大片淫在线免费观看| 日本在线视频免费播放| 成人欧美大片| 亚洲精品影视一区二区三区av| 嫩草影院入口| 国产人妻一区二区三区在| 欧美丝袜亚洲另类| 精品日产1卡2卡| 99热这里只有是精品50| 国产精品不卡视频一区二区| 黄色一级大片看看| 亚洲一区二区三区色噜噜| 日本与韩国留学比较| 国产蜜桃级精品一区二区三区| 国产精品日韩av在线免费观看| 午夜福利在线观看吧| 最近在线观看免费完整版| 麻豆av噜噜一区二区三区| 日韩欧美国产在线观看| 赤兔流量卡办理| 国产黄片美女视频| 午夜福利在线在线| 久久久久久久久久黄片| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品 | 一区二区三区高清视频在线| 亚洲真实伦在线观看| 免费av毛片视频| 日韩成人av中文字幕在线观看 | 中文亚洲av片在线观看爽| 日本五十路高清| 美女黄网站色视频| 99九九线精品视频在线观看视频| 欧美成人一区二区免费高清观看| a级毛色黄片| 亚洲av成人精品一区久久| 国产伦一二天堂av在线观看| 国产精品久久久久久久电影| 日本与韩国留学比较| 国产男人的电影天堂91| 日日摸夜夜添夜夜爱| 在线免费观看不下载黄p国产| 亚洲不卡免费看| 国产午夜精品论理片| 国产成人精品久久久久久| 精华霜和精华液先用哪个| 久久精品综合一区二区三区| 久久久久国内视频| 亚洲国产精品成人久久小说 | 欧美国产日韩亚洲一区| 99久久精品一区二区三区| 波野结衣二区三区在线| 最好的美女福利视频网| 精品午夜福利在线看| 一个人免费在线观看电影| 一本久久中文字幕| 国产精品伦人一区二区| 欧美潮喷喷水| av在线亚洲专区| 波野结衣二区三区在线| 久久精品人妻少妇| 久久中文看片网| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 免费看av在线观看网站| 亚洲av中文字字幕乱码综合| 女同久久另类99精品国产91| 国产精品久久久久久亚洲av鲁大| 亚洲av免费在线观看| 丝袜美腿在线中文| 99热全是精品| 人妻丰满熟妇av一区二区三区| 99久久九九国产精品国产免费| 男人舔奶头视频| 亚洲精品色激情综合| 久久天躁狠狠躁夜夜2o2o| 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 在线天堂最新版资源| 日韩精品有码人妻一区| a级毛片a级免费在线| 久久九九热精品免费| 亚洲av不卡在线观看| av专区在线播放| 永久网站在线| 亚洲综合色惰| 卡戴珊不雅视频在线播放| 亚洲国产精品成人久久小说 | 免费看日本二区| av专区在线播放| 亚洲中文字幕日韩| 少妇被粗大猛烈的视频| 国国产精品蜜臀av免费| 一区二区三区免费毛片| 久久精品国产99精品国产亚洲性色| 国产精品永久免费网站| 久久精品国产亚洲av涩爱 | 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看| 老司机福利观看| 亚洲国产日韩欧美精品在线观看| 国产一级毛片七仙女欲春2| 男人舔女人下体高潮全视频| 精品久久久久久久久av| 中国美女看黄片| 欧美成人精品欧美一级黄| 日韩成人伦理影院| 国产三级中文精品| 久久久久久久久大av| 国产精品久久久久久av不卡| 成人二区视频| 日韩一区二区视频免费看| 免费av不卡在线播放| 日本 av在线| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 精品久久久久久成人av| 伦精品一区二区三区| 日本免费一区二区三区高清不卡| 国产真实伦视频高清在线观看| 国国产精品蜜臀av免费| 午夜福利视频1000在线观看| 成年女人毛片免费观看观看9| 看黄色毛片网站| 一进一出抽搐gif免费好疼| www.色视频.com| 亚洲高清免费不卡视频| 日本黄色片子视频| 国产精品不卡视频一区二区| 国产乱人视频| 亚洲熟妇熟女久久| 亚洲欧美清纯卡通| 日本三级黄在线观看| 黄色一级大片看看| 国产三级在线视频| 亚洲性夜色夜夜综合| 能在线免费观看的黄片| 精品一区二区三区av网在线观看| 在线a可以看的网站| 波多野结衣高清无吗| or卡值多少钱| 国产精品嫩草影院av在线观看| 精品久久久久久久久久久久久| 亚洲色图av天堂| 国产不卡一卡二| av在线播放精品| 精品日产1卡2卡| 久久久久国产网址| 色噜噜av男人的天堂激情| 我要看日韩黄色一级片| 三级毛片av免费| 成人精品一区二区免费| 亚洲av中文av极速乱| 成年女人永久免费观看视频| 最近的中文字幕免费完整| 国产在线男女| 91午夜精品亚洲一区二区三区| 亚洲最大成人av| 少妇人妻精品综合一区二区 | 人妻久久中文字幕网| 久久鲁丝午夜福利片| 18禁黄网站禁片免费观看直播| 日本a在线网址| 国产精品伦人一区二区| 天天一区二区日本电影三级| 欧美bdsm另类| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 欧美日韩一区二区视频在线观看视频在线 | 国产成年人精品一区二区| 亚洲精品国产av成人精品 | 国产精品久久久久久精品电影| 夜夜爽天天搞| 日韩欧美国产在线观看| 两个人的视频大全免费| 丰满人妻一区二区三区视频av| 嫩草影院入口| 国产在视频线在精品| 亚洲国产高清在线一区二区三| 99热只有精品国产| 俺也久久电影网| 男女那种视频在线观看| 午夜福利在线观看免费完整高清在 | 又黄又爽又免费观看的视频| avwww免费| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 身体一侧抽搐| 国产精品三级大全| 精品无人区乱码1区二区| 国产精品人妻久久久久久| 国产 一区精品| 日韩av在线大香蕉| 久久久久久久久久久丰满| 欧美日韩一区二区视频在线观看视频在线 | 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 免费观看精品视频网站| 久久久午夜欧美精品| а√天堂www在线а√下载| 国产久久久一区二区三区| 精品一区二区三区视频在线观看免费| 少妇的逼好多水| 麻豆乱淫一区二区| 日韩国内少妇激情av| 国产精品久久久久久精品电影| 麻豆国产av国片精品| 欧美高清成人免费视频www| 亚洲自拍偷在线| 性插视频无遮挡在线免费观看| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 久久久精品94久久精品| 麻豆乱淫一区二区| 亚洲性久久影院| 成人国产麻豆网| 一边摸一边抽搐一进一小说| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av在线| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 国产午夜福利久久久久久| 麻豆国产97在线/欧美| 夜夜夜夜夜久久久久| 欧美+日韩+精品| 久久精品国产自在天天线| 在线观看午夜福利视频| 成人一区二区视频在线观看| 99国产极品粉嫩在线观看| 最近中文字幕高清免费大全6| 在线播放国产精品三级| 精品一区二区三区视频在线观看免费| 亚洲无线在线观看| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 啦啦啦观看免费观看视频高清| 国产爱豆传媒在线观看| av在线天堂中文字幕| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影 | 国产精品精品国产色婷婷| 蜜桃久久精品国产亚洲av| 国产成人精品久久久久久| 听说在线观看完整版免费高清| 日本三级黄在线观看| 国产精品综合久久久久久久免费| 深爱激情五月婷婷| 免费看日本二区| 成人特级黄色片久久久久久久| 亚洲最大成人av| 又爽又黄a免费视频| 午夜福利在线在线| 免费人成视频x8x8入口观看| 乱码一卡2卡4卡精品| 日韩精品青青久久久久久| av视频在线观看入口| 老师上课跳d突然被开到最大视频| 91久久精品电影网| 亚洲av第一区精品v没综合| 亚洲av成人精品一区久久| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 真人做人爱边吃奶动态| 色噜噜av男人的天堂激情| 99riav亚洲国产免费| 97超碰精品成人国产| 精品国产三级普通话版| 国内精品宾馆在线| 熟妇人妻久久中文字幕3abv| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 久久久久免费精品人妻一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 看免费成人av毛片| 在线免费观看的www视频| 桃色一区二区三区在线观看| 日本成人三级电影网站| 亚洲无线在线观看| 精品久久久久久成人av| 免费在线观看影片大全网站| 在线观看美女被高潮喷水网站| 国内久久婷婷六月综合欲色啪| 中文字幕av成人在线电影| 少妇猛男粗大的猛烈进出视频 | 18禁在线无遮挡免费观看视频 | 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| 国产精品1区2区在线观看.| 成人特级av手机在线观看| 欧美高清性xxxxhd video| 悠悠久久av| 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| avwww免费| 少妇人妻精品综合一区二区 | 久久久精品大字幕| 国产 一区精品| 亚洲国产精品成人久久小说 | 欧美区成人在线视频| 国产av不卡久久| 99热这里只有精品一区| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品成人综合色| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 欧美+日韩+精品| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 国内精品美女久久久久久| 99久久无色码亚洲精品果冻| 亚洲无线观看免费| 久久久久久久久久黄片| 最新在线观看一区二区三区| 我的老师免费观看完整版| 男女之事视频高清在线观看| 99热精品在线国产| 久久精品夜夜夜夜夜久久蜜豆| 韩国av在线不卡| 色哟哟哟哟哟哟| 毛片一级片免费看久久久久| 在线国产一区二区在线| 久久中文看片网| 欧美成人精品欧美一级黄| 国产乱人视频| 亚洲精品国产av成人精品 | 噜噜噜噜噜久久久久久91| 国内久久婷婷六月综合欲色啪| 亚洲乱码一区二区免费版| 免费观看的影片在线观看| 少妇熟女aⅴ在线视频| 国产精品三级大全| 老女人水多毛片| 国产美女午夜福利| 九九爱精品视频在线观看| 青春草视频在线免费观看| 成年人免费黄色播放视频 | 伦理电影大哥的女人| av有码第一页| 老司机影院毛片| 日本午夜av视频| 一本久久精品| 色5月婷婷丁香| 国产成人免费观看mmmm| 99热全是精品| 久久久国产精品麻豆| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 国产精品成人在线| 久久精品夜色国产| 大话2 男鬼变身卡| 久久午夜福利片| 国产欧美亚洲国产| 久久久精品94久久精品| 在线观看人妻少妇| 看非洲黑人一级黄片| 国产精品一区www在线观看| 插逼视频在线观看| 中国国产av一级| 亚洲国产毛片av蜜桃av| 国产午夜精品久久久久久一区二区三区| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡 | 一本一本综合久久| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久 | 日本欧美视频一区| 国产欧美日韩综合在线一区二区 | av在线老鸭窝| 少妇丰满av| 青春草国产在线视频| 午夜福利在线观看免费完整高清在| 伦理电影免费视频| 又黄又爽又刺激的免费视频.| 午夜av观看不卡| 欧美精品亚洲一区二区| 国产精品久久久久久久电影| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 99久久中文字幕三级久久日本| 三上悠亚av全集在线观看 | 午夜福利视频精品| 人妻一区二区av| 国产精品欧美亚洲77777| 国产色爽女视频免费观看| 国产极品粉嫩免费观看在线 | 在线观看国产h片| 一级爰片在线观看| 国内揄拍国产精品人妻在线| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 丝袜脚勾引网站| 国产男女超爽视频在线观看| 少妇裸体淫交视频免费看高清| 日韩欧美一区视频在线观看 | 亚洲精品乱码久久久v下载方式| 美女主播在线视频| 99热全是精品| 国产免费福利视频在线观看| av国产久精品久网站免费入址| 免费大片黄手机在线观看| 亚洲精品国产色婷婷电影| 大又大粗又爽又黄少妇毛片口| 日日撸夜夜添| 黑人巨大精品欧美一区二区蜜桃 | 亚洲成人一二三区av| 久久久久久久久久久久大奶| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 成人影院久久| av在线老鸭窝| 最黄视频免费看| 亚洲精品中文字幕在线视频 | 国产亚洲午夜精品一区二区久久| tube8黄色片| 日本vs欧美在线观看视频 | 在线观看免费日韩欧美大片 | 美女cb高潮喷水在线观看| av福利片在线观看| 免费观看性生交大片5| 久久av网站| 国产日韩一区二区三区精品不卡 | 五月天丁香电影| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站 | 免费大片18禁| 亚洲国产精品999| 丰满迷人的少妇在线观看| 久热这里只有精品99| 欧美精品国产亚洲| 国产伦精品一区二区三区四那| 久久久久视频综合| 欧美一级a爱片免费观看看| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| av免费在线看不卡| 观看免费一级毛片| 最近最新中文字幕免费大全7| 亚洲不卡免费看| 久久久久精品久久久久真实原创| 成人二区视频| 哪个播放器可以免费观看大片| 丰满饥渴人妻一区二区三| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 日本与韩国留学比较| 亚洲精品456在线播放app| 欧美日韩在线观看h| 性色av一级| 国产精品无大码| 嘟嘟电影网在线观看| 欧美日韩视频精品一区| 久热久热在线精品观看| 成人黄色视频免费在线看| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看| 国产一区二区在线观看日韩| 晚上一个人看的免费电影| 亚洲天堂av无毛| 欧美 日韩 精品 国产| 久久精品国产自在天天线| 国产精品蜜桃在线观看| 看非洲黑人一级黄片| 亚洲精品国产av蜜桃| 少妇人妻 视频| 十八禁高潮呻吟视频 | 国产深夜福利视频在线观看| 成人国产麻豆网| 涩涩av久久男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 黄色欧美视频在线观看| 国产精品欧美亚洲77777| 亚洲精品一二三| 色视频在线一区二区三区| 欧美激情极品国产一区二区三区 | 一级毛片黄色毛片免费观看视频| 久久国内精品自在自线图片| 欧美xxⅹ黑人| 欧美xxxx性猛交bbbb| 久久99蜜桃精品久久| 亚洲精品456在线播放app| 亚洲欧洲国产日韩| 丁香六月天网| 日韩av免费高清视频| 欧美老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| av有码第一页| 人妻人人澡人人爽人人| 在线看a的网站| 99热全是精品| 少妇人妻一区二区三区视频| 成年av动漫网址| 丰满人妻一区二区三区视频av| 国产伦精品一区二区三区四那| 日本av手机在线免费观看|