• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effective hydrodynamic radius in the Stokes–Einstein relation is not a constant

    2022-10-22 08:15:24GanRen任淦
    Communications in Theoretical Physics 2022年9期

    Gan Ren (任淦)

    School of Science,Civil Aviation Flight University of China,Guanghan 618307,China

    Abstract Variants based on the assumption of effective hydrodynamic radius being a constant are usually adopted to test the Stokes–Einstein(SE)relation.The rationality of the assumption is examined by performing molecular dynamics simulations with the truncated Lennard-Jones-like (TLJ)model,Kob–Andersen model and ortho-terphenyl (OTP) model.The results indicate the assumption is generally not established except for special case.The effective hydrodynamic radius is observed to increase with decreasing temperature for TLJ model but is decreased for Kob–Andersen and OTP model;and which is almost a constant for TLJ particle with enough rigidity.The variant of SE relationD~T/ηis invalid for the three models except for the TLJ particle with enough rigidity.We propose similar inconsistency may be also existed in other liquids and the assumption should be critically evaluated when adopted to test the SE relation.

    Keywords: Stokes–Einstein relation,effective hydrodynamic radius,Stokes’ formula

    1.Introduction

    The Stokes–Einstein(SE)relation[1]D=kBT/Cη rcombines the Einstein relationD=kBT/αand Stokes’ formulaα=Cη r,which correlates the diffusion coefficient D and the frictional coefficientαor the viscosityη,where kBis the Boltzmann constant,T is the temperature,ris the effective hydrodynamic radius and is equal to the radius for a hard sphere particle,C is a constant depending on the boundary condition,and which is 6π for no-slip boundary condition and 4π for the slip [2].

    The SE relation has been successfully applied to many situations,such as the protein diffusion [3]and the oxygen transport [4]in solutions.However,it is proposed to be invalid for liquid undergoes supercooling [5–7].Instead of the original formulaD=kBT/Cη r,the three variants,D~T/η[5,8–11],D~τ-1[7,12–17],andD~T/τ[6,18–20],are usually adopted to test the SE relation,where τ is the structural relaxationtime.The variantD~T/ηis basedon the assumptionthatris a constant.Both the variantD~τ-1andD~T/τare based onD~T/η.TheD~τ-1is based on a further assumption that τ has a similar temperature dependence asη/T.TheD~T/τdepends on another approximate relationη=G∞τ,where G∞is the instantaneous shear modulus and is presumed to be a constant.Therefore the three variants are all based on the assumption thatris constant under different conditions.Its rationality is important to the conclusion drawn on the validity or not of the SE relation.

    However,there exists some evidences show thatris varied with conditions.A classical case is the deviations from SE relation for alkali ions in aqueous solutions[21,22].It is shown that the dielectric polarization leadsrto deviate from the crystallographic radius.Theris almost proportional to the volume fraction in a diluted organic aqueous solution[23].The gyration radius often adopted to estimaterin aqueous macromolecule solutions is also dependent on conditions[24].Another example is the smaller and lighter ion has a smaller D than the larger and heavier ion in ionic systems at a certain temperature,such as in NaCl aqueous solution [25],[EMI+][NO3-][26]and[EMI+][BF4-][27]ionic liquids at room temperature.The larger and heavier ion at a lower temperature may even have a greater D than the smaller and lighter ion at a higher temperature.The phenomena is different from the estimation according to the SE relation and the gas kinetic theory [28].If the SE relation is valid,rshould be changed with conditions,and otherwise the SE relation is breakdown.

    The SE relation is a result of the combination of Einstein relation and Stokes’s law.Einstein relation as a special case of the fluctuation-dissipation theorem and which is established in equilibrium and near equilibrium state.The supercooled liquids are still in equilibrium and the Einstein relation should be valid[29].Moreover,the viscosity increases with decreasing temperature and the Reynolds number is decreased,so the Stokes’s law applicable for liquids at the normal temperature should be also valid for supercooled liquids.In addition,the Stokes’s law is derived for hard sphere particle in fluids [2],there is no reasons thatris always or directly equal to the radius of soft sphere under different conditions.

    Based on the above facts,we have enough reasons to suspect the assumption especially when conditions have large changes,such as liquid undergoes supercooling.Therefore it is necessary to examine the rationality of the assumption.Becauseris directly equal to the radius of hard sphere[2]and the variantD~T/ηis observed to be breakdown in the two classical supercooled liquid models,Kob–Andersen model and ortho-terphenyl (OTP) [6],in this work,we performed molecular dynamics (MD) simulations with the truncated Lennard-Jones-like (TLJ) model with different rigidity,OTP and Kob–Andersen model to test the rationality of the assumption and to examine its influence on the validity of SE relation.

    2.Simulation details and analysis methods

    2.1.Simulation details

    The TLJ model potential [30]is given by

    We chooseσ=0.34 nm,ε/kB=120 K,mass of molecule ism=39.95 g mol-1.The positive parameter n determines the degree of softness of the pair potential,and the limitn→∞corresponds to the hard sphere system.Asr=0.5σfor hard sphere,we have chosen eight ns within 1.0–6.0 to explore the variations ofrwith temperature and rigidity.The system contains 8192 particles in a cubic box with size 6.802 nm.

    We adopt Lewis–Wahnstrom model of OTP [31],each phenyl ring is represented by a Lennard-Jones site(ε=5.276 kJ mol-1,σ=0.483 nm),and the three sites form a rigid isosceles triangle with an angle of 75° and the bond length is 0.483 nm.Each site has a massm=78 g mol-1.The system contains 3072 molecules with a constant density 1.0746 g cm-3.

    The Kob–Andersen system [32]contains a binary (80:20)mixture of 8000 Lennard-Jones particles consisting of two species of particles,A and B,in a cubic box with size 6.392 nm.The interaction between two particles of typeα,β∈{A,B}is given by

    All simulations were performed in NVT ensemble with the GROMACS package[33,34].The simulated temperature range is within 7–138 K with 12 temperatures for TLJ model,260–400 K with 13 temperatures for OTP and 66–500 K with 24 temperatures for Kob–Andersen model.The variant of SE relation is observed to be invalid in the chosen simulated temperature range for OTP and Kob–Andersen model [6].The system temperature was kept a constant by the Nosé–Hoover thermostat [35,36].The periodic boundary conditions were applied to all three dimensions.The interactions were calculated directly with the cutoff of 0.35 nm,2.0 nm and 0.85 nm for TLJ,OTP and Kob–Andersen model,respectively.ax=A· cos(qz)with the maximum A is applied in the X

    2.2.Analysis methods

    The method proposed by Hess [37]is adopted to calculateηfor its reliability and fast convergence.An external force direction,whereq=2π/lwith l the box size.The shear viscosity is described by

    where V is the maximum of the velocity in the X direction and ρ is the density.

    Theαis determined by introducing a small forcefeto a part of particles in the linear response regime.The frictional force on an ionfr=αvis equal tofeafter reaching the nonequilibrium steady state.The frictional coefficient is thus determined by

    In this work,64 TLJ particles,160 OTP molecules and 400 B particles are separately chosen for each model to keep enough statistical accuracy and avoid too much disturbance on the system.After getting theηandα,theris calculated by

    where we chooseC=4πin this work corresponding to the slip boundary conditions,for which the calculatedris equal to the radius of TLJ particle for low temperature or large n.

    The diffusion coefficient is calculated via its asymptotic relation with the mean square displacement by

    where Δr(t) is particle position displacement and〈〉denotes ensemble average.

    3.Results and discussion

    To examine the assumption and its possible influence on the SE relation,the viscosityη,frictional coefficientαand diffusion constant D for TLJ model at different temperature T are calculated and plotted in figure 1.If theris a constant,theηandαshould have the same changes with T.However,theηandαshow different variation with increasing T.Theαis increased with increasing T and n.Theηis also increased with increasing T for each n,but it is decreased with increasing n when n is within 1.0–2.0 at a certain temperature.The D is increased with increasing T for all n,and which is almost increased with increasing n at a certain temperature except for n = 6.

    Figure 1.Theη, α and D for TLJ model with different n as a function of T: (a)η versus T;(b)α versus T;(c) D versus T.

    Figure 2.(a)Ther as a function of T for TLJ model with different n;the black dotted line is the reference line r = 0.17 nm.Verification of the validities of the SE relationD~T/αand its variantD~T/ηfor the TLJ model:(b)D~T/αand(c)D~T/η.The calculated data are represented by symbols and the dotted line is y=x.

    Thercalculated by equation(5)is plotted in figure 2(a).It is not a constant but is increased as T decreases when n is within 1.0–2.0.Meanwhile,it is also increased with increasing n at a certain temperature.Theris approaching 0.17 nm with decreasing T as well as the increasing of n,and is around 0.17 nm for n = 3.0 and 6.0 at all temperatures.The results indicate theris varied with conditions except for the large rigidity,and the assumption is not valid for the TLJ model.As point out in the Stokes’ formula [2],theris equal to the radius of hard sphere.The minimum of T in our simulation is 7 K and the scale of the interaction isε/kB=120 K.The particle has no enough energy to penetrate the surrounding particles when n is large or T is small,and which looks like a hard sphere.On the contrary,it looks like a soft sphere with a smallerrespecially at a higher T and smaller n.

    The SE relationD~T/αand its variantD~T/ηare tested with the data shown in figure 1 and the related results are plotted in figures 2(b)and(c).The data are rescaled by the value at T = 7 K.The data forD~T/αwith different n are almost all fallen onto the same reference liney=x,which indicate that the SE relation is definitely established for all n.However,the variantD~T/ηdeviates fromy=xfor all ns except for n = 3.0 and 6.0.The deviations are decreasing with increasing n as shown by figure 2(c),which is consistent with thershown in figure 2(c).The results indicateD~T/ηis only valid when thercan be considered as a constant and otherwise is not equivalent to the SE relationD~T/α.

    Theη,αand D for OTP and Kob–Andersen model are plotted in figure 3.Bothηandαare increased with decreasing T and show awfully different changes compared with the TLJ model.The D is also increased with increasing T similar as the TLJ model.To examine the assumption,we rescaled therby the value r = 0.402 nm at T = 400 K for the OTP and r=0.133 nm at T = 500 K for Kob–Andersen model,respectively.As the figure 4(a)shown,the rescaled effective hydrodynamic radiusrsis not a constant for both OTP and Kob–Andersen model,and both are almost decreased with decreasing temperature.Similar results as shown byr~T/Dη or D~(η/T)-ξwithξ<1 are also observed in other supercooled liquids,including supercooled water [12],supercooled binary Lennard-Jones liquids[11,38],water/methanol solutions [10],and tris-Naphthylbenzene [39].However,the changes ofrshow opposite trend compared with the TLJ model.

    As discussed above,therof the TLJ model can be explained by the rigidity of the particle under different conditions.However,particles are interacting through Lennard-Jones potential in both OTP and Kob–Andersen model.Both repulsive and attractive interactions are present at the same time;and the negative attractive interaction usually plays a more important role.To give a unified picture,the trend ofrchanging with temperature can be understood as follows.A molecule is usually not freely moving in liquid but partially drags the effective shells composed of surrounding molecules to move together.The first coordination shell usually plays a more important role [25,40]and forms a composite particle along with the central molecule.The interaction between the central molecule and its first solvation shell is different under different conditions,which can be described by the coordination number n and a factor p.A larger p corresponds to a larger probability for molecules in the first shell to move together with the central molecule.Therefore the average number of molecules in the composite particle is 1+np,where 1 denotes the central molecule.By assuming both free molecule and the composite particle are spheres and adopting a mean field approach,the effective hydrodynamic radius of the composite particle is roughly [1+np]1/3r0,wherer0is the effective hydrodynamic radius of a free molecule.Because the frictional force applied to the composite particle~Cη v[1+np]1/3r0should be equal to the sum of the frictional force applied to each molecule in the composited particle~Cη v[1+np]r,where v is the mean velocity of the composite particle.Therefore the average effective hydrodynamic radiusrof a molecule can be described byThe p can be estimated byp=if we roughly separate the molecules into two parts,in the shell and out of the shell,andΔEis the energy difference of molecule in the shell and out of the shell.Then theris

    Figure 3.Theη,α and D as a function of T for OTP and Kob–Andersen model:(a)η versus T;(b)α versus T;(c)D versus T.The data for OTP is colored in black and the red is for Kob–Andersen model.

    Figure 4.(a) The rescaled effective hydrodynamic radiusrs as a function of T for OTP and Kob–Andersen model.(b)Verification of the validities of the SE relationD~T/αand its variantD~T/η for OTP and Kob–Andersen model;the calculated data are represented by symbols and the solid lines are fitted by D~(α/T)-ξand D~(η/T)-χ,respectively.The data for OTP is colored in black and the red is for Kob–Andersen model.

    Ifr0andΔEare known,we can calculate ther.Or if we knowΔE,we can calculate the ratio ofrat different temperature.However,ΔEis not a constant as the conditions vary[41].Its sign can be found from the correlation.Due to the pure repulsive interaction,TLJ molecules are more likely to stay out of the shell than in the shell;however,Kob–Andersen and OTP molecules are more likely to stay in the shell because of the attractive interaction.ThereforeΔE> 0 for TLJ model butΔE< 0 for Kob–Andersen and OTP model.With formulaand the sign ofΔE,the trend ofrchanging can be qualitatively explained.At lower temperatures or lager n,is large;TLJ molecules have a weaker correlation and behave like a free molecule.On the contrary,is small for Kob–Andersen and OTP model at lower temperatures;molecules have a stronger correlation and show a collective motion.The correlation is increased for TLJ model and is decreased for Kob–Andersen and OTP model as temperature increases.Therefore the trend ofrchanging with temperature for TLJ model is reverse with Kob–Andersen and OTP model.In summary,the changes ofris a collective effect,and which is caused by correlation between the central molecule and its surrounding shells.

    The SE relationD~T/αand the variantD~T/ηfor OTP and Kob–Andersen model are tested byD~(α/T)-ξandD~(η/T)-χ.Ifξorχ=1.0,the SE relation or the variant is established and otherwise invalid.The logarithm of D andTα,Tηfor OTP and Kob–Andersen are plotted in figure 4(b).The variantD~T/ηis breakdown and behaves as a fractional formD~(η/T)-χwithχ≈0.9 for the two liquids.The results are similar as previous studies[6]as well as the observed in other liquids such as supercooled water[8],aqueous NaCl solutions[42]and ionic liquids[43].However,the SE relationD~T/αis definitely valid for the two liquids,because the exponentξs inD~(α/T)-ξare so close to 1.0.

    Combined the results given by the TLJ model,OTP and Kob–Andersen model,it indicates that the assumption ofris constant is usually invalid except for some special case such as the particle having enough rigidity.The SE relation given by variantD~T/ηis only established whenrcan be considered as a constant.The SE relationD~T/αis valid for OTP and Kob–Andersen model even in the supercooled region.

    4.Conclusions

    In summary,we have examined the assumption ofrbeing a constant by performing MD simulations with TLJ model,OTP and Kob–Andersen model as well as explored its influence on the SE relation.Our results indicate the assumption is usually invalid.The trend ofrchanging is increased with decreasing T for TLJ model for small rigidity and is almost a constant for large rigidity.It is decreased with decreasing T for OTP and Kob–Andersen model.The changes ofrcan be qualitatively explained by the collective effect caused by the correlation of the molecule with its surrounding shells.Molecules have negative correlations with surrounding shells to move together due to the pure repulsive interaction in the TLJ model,especially at low temperatures;however,positive correlations are present in OTP and Kob–Andersen model because of the attractive interaction.The different correlations lead reverse changes ofrwith temperature comparing TLJ model with OTP and Kob–Andersen model.The SE relation given by variantD~T/ηis invalid for TLJ model,OTP and Kob–Andersen model,and which shows a fractional form for OTP and Kob–Andersen model.The SE relation is definitely established for the three models.Our simulations indicate thatris an important parameter to the conclusion drawn on the validity of SE relation and we propose the assumption should be carefully evaluated when used to test the SE relation.

    Our results only simulate three models,similar inconsistency may also appear in other supercooled liquids,especially for strongly correlated systems,such as ionic liquids and liquids at much lower temperatures.The temperature ranges of our MD simulations are limited to 260–400 K for OTP model and 66–500 K for Kob–Andersen model,respectively,it is still far from the glass transition point,the changes ofrneeds to be further explored.Moreover,the same assumption is also adopted when testing the Stokes–Einstein–Debye relation for the molecular rotation;its rationality is still need to be justified.Our future work could be,by employing more computer resources,extending our simulations to low temperatures to see the trend ofrchanging and explore the assumption in the Stokes–Einstein–Debye relation.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.12104502) and the Science Foundation of Civil Aviation Flight University of China(No.J2021-054).The computations of this work were conducted on the Tian-2 supercomputer,and the author thanks Yanting Wang (ITP CAS) for supporting.

    久久久久网色| 成人性生交大片免费视频hd| 亚洲中文字幕日韩| 日韩,欧美,国产一区二区三区 | 国产老妇女一区| 你懂的网址亚洲精品在线观看 | 国模一区二区三区四区视频| 天天躁日日操中文字幕| 搡老妇女老女人老熟妇| 日日摸夜夜添夜夜爱| 美女被艹到高潮喷水动态| www.av在线官网国产| 自拍偷自拍亚洲精品老妇| 久久久久久国产a免费观看| 男人的好看免费观看在线视频| 蜜桃久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 亚洲真实伦在线观看| 国产三级中文精品| 有码 亚洲区| 亚洲国产色片| av专区在线播放| 国产免费福利视频在线观看| 久久久成人免费电影| 狠狠狠狠99中文字幕| 男女视频在线观看网站免费| 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放 | 男人狂女人下面高潮的视频| 欧美日本视频| 亚洲自拍偷在线| 亚洲最大成人av| 能在线免费观看的黄片| 中文资源天堂在线| 美女大奶头视频| 舔av片在线| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品久久男人天堂| 精品人妻熟女av久视频| 国产老妇女一区| 寂寞人妻少妇视频99o| av在线蜜桃| 亚洲成人精品中文字幕电影| 免费观看a级毛片全部| 亚洲成人av在线免费| 日韩成人伦理影院| 国产精品蜜桃在线观看| 欧美成人免费av一区二区三区| 内地一区二区视频在线| 尤物成人国产欧美一区二区三区| 蜜桃久久精品国产亚洲av| 真实男女啪啪啪动态图| 日韩一区二区视频免费看| kizo精华| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 国产精品1区2区在线观看.| ponron亚洲| 亚洲欧洲国产日韩| 久久午夜福利片| 热99re8久久精品国产| 精品久久久久久久久久久久久| 日韩国内少妇激情av| 亚洲成人精品中文字幕电影| 日韩成人av中文字幕在线观看| 国产精品一二三区在线看| 小蜜桃在线观看免费完整版高清| 国产免费一级a男人的天堂| 成人亚洲欧美一区二区av| 亚洲精品影视一区二区三区av| 爱豆传媒免费全集在线观看| 乱人视频在线观看| 色播亚洲综合网| 午夜精品在线福利| 亚洲va在线va天堂va国产| 国产在视频线精品| 最近2019中文字幕mv第一页| 毛片女人毛片| 久久精品久久久久久久性| 极品教师在线视频| 亚洲人成网站高清观看| 日韩欧美在线乱码| 欧美变态另类bdsm刘玥| 亚洲成av人片在线播放无| 看十八女毛片水多多多| 麻豆久久精品国产亚洲av| 人人妻人人澡欧美一区二区| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 天堂√8在线中文| 狂野欧美白嫩少妇大欣赏| 久久亚洲国产成人精品v| 久久99蜜桃精品久久| 18禁在线播放成人免费| 国产久久久一区二区三区| 免费av不卡在线播放| 美女国产视频在线观看| 最近手机中文字幕大全| a级一级毛片免费在线观看| 欧美精品一区二区大全| 免费看美女性在线毛片视频| 建设人人有责人人尽责人人享有的 | 免费观看精品视频网站| 看片在线看免费视频| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 久久久久久九九精品二区国产| 99久久中文字幕三级久久日本| 日韩三级伦理在线观看| 乱人视频在线观看| 大香蕉97超碰在线| 18禁动态无遮挡网站| 国产午夜精品一二区理论片| 全区人妻精品视频| 九九久久精品国产亚洲av麻豆| 蜜臀久久99精品久久宅男| 日日啪夜夜撸| 国产成人免费观看mmmm| 天堂√8在线中文| 我要搜黄色片| 免费观看性生交大片5| 青春草亚洲视频在线观看| 亚洲高清免费不卡视频| 禁无遮挡网站| 嘟嘟电影网在线观看| 亚洲精品一区蜜桃| 午夜福利高清视频| 亚洲伊人久久精品综合 | 狠狠狠狠99中文字幕| 国产淫片久久久久久久久| 国产伦精品一区二区三区四那| 婷婷色麻豆天堂久久 | 亚洲成人av在线免费| 精品午夜福利在线看| 人妻少妇偷人精品九色| 国产精品国产高清国产av| www.色视频.com| 大香蕉97超碰在线| 国产成人freesex在线| 日韩精品有码人妻一区| av卡一久久| 国产精品麻豆人妻色哟哟久久 | or卡值多少钱| 一区二区三区免费毛片| 久久午夜福利片| 国产91av在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 免费搜索国产男女视频| 嘟嘟电影网在线观看| 日本熟妇午夜| 99热网站在线观看| 国产亚洲一区二区精品| 国产av码专区亚洲av| 久久精品影院6| 韩国高清视频一区二区三区| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 欧美xxxx性猛交bbbb| 亚洲性久久影院| 久久精品夜夜夜夜夜久久蜜豆| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 99热6这里只有精品| 天天一区二区日本电影三级| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| h日本视频在线播放| 美女黄网站色视频| 久久人人爽人人片av| 人妻制服诱惑在线中文字幕| 亚洲一级一片aⅴ在线观看| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜 | 最近视频中文字幕2019在线8| 特大巨黑吊av在线直播| www.av在线官网国产| 亚洲18禁久久av| 秋霞在线观看毛片| 一级黄色大片毛片| 99九九线精品视频在线观看视频| videos熟女内射| 在线观看av片永久免费下载| 成人午夜高清在线视频| 久久这里有精品视频免费| 国产 一区精品| 日本av手机在线免费观看| 69av精品久久久久久| 国产毛片a区久久久久| 网址你懂的国产日韩在线| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 18禁裸乳无遮挡免费网站照片| 51国产日韩欧美| 一级爰片在线观看| 一个人看的www免费观看视频| 日本五十路高清| 久久精品久久久久久噜噜老黄 | 国产伦在线观看视频一区| 日本黄大片高清| 日本与韩国留学比较| 精品午夜福利在线看| 一二三四中文在线观看免费高清| 日韩 亚洲 欧美在线| 国产又黄又爽又无遮挡在线| 人体艺术视频欧美日本| 久久久久精品久久久久真实原创| 精品一区二区免费观看| 人人妻人人澡欧美一区二区| 亚洲激情五月婷婷啪啪| 国产一区二区亚洲精品在线观看| 深爱激情五月婷婷| 51国产日韩欧美| 日韩国内少妇激情av| 少妇丰满av| 嫩草影院精品99| 成人亚洲精品av一区二区| 大香蕉久久网| 七月丁香在线播放| 成人av在线播放网站| 久久久欧美国产精品| 男的添女的下面高潮视频| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| av在线播放精品| 色吧在线观看| 99九九线精品视频在线观看视频| 亚洲欧美清纯卡通| 国产色爽女视频免费观看| 中文资源天堂在线| 一级av片app| 欧美一级a爱片免费观看看| 日本三级黄在线观看| 国产精品精品国产色婷婷| 一级毛片我不卡| 亚洲欧美中文字幕日韩二区| 老师上课跳d突然被开到最大视频| 国产午夜精品论理片| 日产精品乱码卡一卡2卡三| 久久久精品欧美日韩精品| 成年免费大片在线观看| 99热这里只有精品一区| 亚洲经典国产精华液单| 国产私拍福利视频在线观看| 嫩草影院入口| 99久国产av精品| 成年av动漫网址| 波多野结衣巨乳人妻| 哪个播放器可以免费观看大片| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 亚洲经典国产精华液单| 国产私拍福利视频在线观看| 99九九线精品视频在线观看视频| 女人被狂操c到高潮| 欧美+日韩+精品| 欧美+日韩+精品| 免费播放大片免费观看视频在线观看 | 在线免费观看的www视频| 久久99蜜桃精品久久| 色播亚洲综合网| 亚洲图色成人| 日本-黄色视频高清免费观看| 色综合站精品国产| 又爽又黄无遮挡网站| 久久鲁丝午夜福利片| 国产精品一区二区在线观看99 | 亚洲成av人片在线播放无| 婷婷色综合大香蕉| 天天躁日日操中文字幕| 亚洲一区高清亚洲精品| 中文字幕免费在线视频6| 精品不卡国产一区二区三区| 日韩制服骚丝袜av| 久久久久网色| 欧美日本视频| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 亚洲,欧美,日韩| 亚洲成人精品中文字幕电影| 久久精品综合一区二区三区| 51国产日韩欧美| 免费在线观看成人毛片| 少妇高潮的动态图| 国产精品国产三级国产av玫瑰| 国产精华一区二区三区| 亚洲图色成人| 日韩欧美 国产精品| 少妇被粗大猛烈的视频| 国产精品久久视频播放| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 人人妻人人澡欧美一区二区| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 春色校园在线视频观看| 久久久久久久久久成人| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品| 欧美xxxx黑人xx丫x性爽| 亚洲精品一区蜜桃| 中文字幕av成人在线电影| 精品一区二区免费观看| 日本与韩国留学比较| 永久网站在线| 国内揄拍国产精品人妻在线| 亚洲综合精品二区| 精品久久久久久久久久久久久| 人人妻人人澡人人爽人人夜夜 | h日本视频在线播放| 免费看日本二区| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 免费电影在线观看免费观看| 国产亚洲av嫩草精品影院| 欧美潮喷喷水| 亚洲av不卡在线观看| 色视频www国产| 在线免费观看不下载黄p国产| 国产91av在线免费观看| 午夜福利在线观看免费完整高清在| 高清av免费在线| 婷婷色av中文字幕| 国产精品一区二区在线观看99 | 麻豆成人av视频| 日产精品乱码卡一卡2卡三| 91精品伊人久久大香线蕉| 欧美97在线视频| 男女啪啪激烈高潮av片| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 男的添女的下面高潮视频| 国产免费视频播放在线视频 | 国产成人精品一,二区| 1000部很黄的大片| 综合色丁香网| 99久久人妻综合| 国产极品精品免费视频能看的| 免费电影在线观看免费观看| 亚洲av日韩在线播放| 久久99热这里只有精品18| 村上凉子中文字幕在线| 亚洲精品aⅴ在线观看| 我要搜黄色片| 亚洲三级黄色毛片| 久久精品国产自在天天线| 久久久色成人| 国产亚洲av片在线观看秒播厂 | 日本av手机在线免费观看| av在线老鸭窝| 久久热精品热| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 国产精品三级大全| 国模一区二区三区四区视频| 久久久久久久久久久丰满| 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 精品一区二区三区视频在线| 亚洲成人av在线免费| 国产黄色小视频在线观看| 观看免费一级毛片| www日本黄色视频网| 亚洲av熟女| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区视频9| 韩国av在线不卡| 全区人妻精品视频| 丰满乱子伦码专区| 啦啦啦韩国在线观看视频| 国产成人精品婷婷| 久久久欧美国产精品| 久久久精品欧美日韩精品| 欧美日本视频| av视频在线观看入口| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| 亚洲在线观看片| 亚洲国产欧美在线一区| 天堂网av新在线| 婷婷六月久久综合丁香| 午夜爱爱视频在线播放| 欧美成人a在线观看| 国产在视频线在精品| 欧美日韩一区二区视频在线观看视频在线 | 又粗又硬又长又爽又黄的视频| 中文字幕制服av| 在线观看av片永久免费下载| 日本欧美国产在线视频| 国内精品一区二区在线观看| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 久久人人爽人人爽人人片va| a级毛色黄片| 九九在线视频观看精品| 青春草亚洲视频在线观看| 国产色婷婷99| 亚洲电影在线观看av| 综合色丁香网| 久久这里有精品视频免费| 99久久中文字幕三级久久日本| 亚洲av不卡在线观看| 久久久久久九九精品二区国产| 日本猛色少妇xxxxx猛交久久| 国产真实乱freesex| 欧美区成人在线视频| 毛片女人毛片| 国产三级中文精品| 极品教师在线视频| 久久欧美精品欧美久久欧美| 一本一本综合久久| 国产乱人视频| 久久精品国产亚洲网站| 日本免费一区二区三区高清不卡| 午夜免费激情av| 三级国产精品欧美在线观看| 韩国av在线不卡| 91av网一区二区| 午夜精品国产一区二区电影 | av专区在线播放| 国产精品爽爽va在线观看网站| 国产伦在线观看视频一区| 成人午夜高清在线视频| 在线观看66精品国产| 亚洲av免费高清在线观看| 日本免费一区二区三区高清不卡| 成人鲁丝片一二三区免费| 久久精品久久久久久噜噜老黄 | 淫秽高清视频在线观看| av在线亚洲专区| 男女国产视频网站| 精品国内亚洲2022精品成人| 天天一区二区日本电影三级| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 国产精品久久久久久久电影| 亚洲五月天丁香| 欧美激情久久久久久爽电影| 青青草视频在线视频观看| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 老师上课跳d突然被开到最大视频| 深夜a级毛片| 老司机影院成人| 国产精品1区2区在线观看.| 岛国在线免费视频观看| 成人一区二区视频在线观看| 少妇丰满av| 亚洲精品一区蜜桃| 精品久久国产蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 丰满少妇做爰视频| 国产精品综合久久久久久久免费| 久久精品国产99精品国产亚洲性色| 少妇丰满av| 国产一区有黄有色的免费视频 | 成年女人看的毛片在线观看| 免费搜索国产男女视频| 1000部很黄的大片| 一级av片app| 免费看光身美女| 久久久久久伊人网av| 老司机影院成人| 中文字幕亚洲精品专区| 又粗又爽又猛毛片免费看| 亚洲国产精品成人久久小说| 精品熟女少妇av免费看| 一区二区三区乱码不卡18| 99久久九九国产精品国产免费| 噜噜噜噜噜久久久久久91| 成人欧美大片| 日韩三级伦理在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久 | 在线播放无遮挡| 国产黄a三级三级三级人| 欧美一级a爱片免费观看看| 亚洲精品乱久久久久久| 亚洲在线观看片| 精品午夜福利在线看| 亚洲人成网站高清观看| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频 | 波多野结衣高清无吗| 能在线免费观看的黄片| 国产乱人视频| 韩国av在线不卡| 国产极品天堂在线| 最近的中文字幕免费完整| 中文亚洲av片在线观看爽| 免费搜索国产男女视频| 国产欧美日韩精品一区二区| 国产 一区精品| 国产一区二区在线av高清观看| 国产私拍福利视频在线观看| 亚洲四区av| 日韩欧美在线乱码| 亚洲av成人精品一二三区| 人妻少妇偷人精品九色| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看 | 成人毛片60女人毛片免费| 亚洲av一区综合| 国产成人a区在线观看| 久久精品久久久久久噜噜老黄 | 男人舔奶头视频| 最近2019中文字幕mv第一页| 国产乱人视频| 少妇人妻精品综合一区二区| 在线观看av片永久免费下载| 简卡轻食公司| 日韩欧美 国产精品| 麻豆成人午夜福利视频| 中文天堂在线官网| 欧美xxxx黑人xx丫x性爽| 国产免费一级a男人的天堂| 男人狂女人下面高潮的视频| 爱豆传媒免费全集在线观看| 伦精品一区二区三区| 最近手机中文字幕大全| 黄片无遮挡物在线观看| 老女人水多毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app| 美女大奶头视频| 国产成人精品一,二区| 青青草视频在线视频观看| 夜夜看夜夜爽夜夜摸| 韩国av在线不卡| 久久久久久久久大av| 亚洲欧美成人精品一区二区| 卡戴珊不雅视频在线播放| 国产一级毛片七仙女欲春2| 久久精品久久久久久久性| 国产精品国产三级国产av玫瑰| 色5月婷婷丁香| 日本一二三区视频观看| 国产精品无大码| 久久久精品大字幕| 亚洲av一区综合| 国产极品精品免费视频能看的| 国产单亲对白刺激| 久久这里只有精品中国| 亚洲av中文字字幕乱码综合| 好男人视频免费观看在线| 中文亚洲av片在线观看爽| 色视频www国产| 日韩三级伦理在线观看| 国产成人freesex在线| 精品一区二区三区视频在线| 久久精品国产自在天天线| 一级毛片aaaaaa免费看小| 色哟哟·www| 色5月婷婷丁香| 成年女人永久免费观看视频| 国产免费视频播放在线视频 | 成年av动漫网址| 国产真实伦视频高清在线观看| 啦啦啦啦在线视频资源| 黄片wwwwww| 久久久久久久久久久丰满| 国产私拍福利视频在线观看| 久久久久久久国产电影| 国产伦精品一区二区三区视频9| 精品久久久久久久久久久久久| 美女黄网站色视频| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 国产精品蜜桃在线观看| 久久精品久久久久久噜噜老黄 | 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 国产精品国产三级国产av玫瑰| 欧美日韩国产亚洲二区| 午夜福利在线观看吧| 国产极品天堂在线| 国产色爽女视频免费观看| 69人妻影院| 久久久亚洲精品成人影院| 日韩欧美国产在线观看| 日韩成人av中文字幕在线观看| 国产高潮美女av| 欧美高清性xxxxhd video| 中国国产av一级| 身体一侧抽搐| 亚洲国产精品久久男人天堂| 欧美性猛交╳xxx乱大交人| 大话2 男鬼变身卡| 亚洲美女搞黄在线观看| 色综合站精品国产| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办| 国产精品三级大全| 精品国产露脸久久av麻豆 | 中文在线观看免费www的网站| 天美传媒精品一区二区| 日本免费一区二区三区高清不卡| 日韩欧美国产在线观看| 久久精品久久精品一区二区三区| 91午夜精品亚洲一区二区三区| 观看免费一级毛片| 69av精品久久久久久| 日产精品乱码卡一卡2卡三| 亚洲在线观看片| 亚洲五月天丁香| 精品人妻视频免费看|