• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector semi-rational rogon-solitons and asymptotic analysis for any multicomponent Hirota equations with mixed backgrounds

    2022-10-22 08:14:30WeifangWengGuoqiangZhangShuyanChenZijianZhouandZhenyaYan
    Communications in Theoretical Physics 2022年9期

    Weifang Weng,Guoqiang Zhang,Shuyan Chen,Zijian Zhou and Zhenya Yan

    1 KLMM,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3 Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    Abstract The Hirota equation can be used to describe the wave propagation of an ultrashort optical field.In this paper,the multi-component Hirota(alias n-Hirota,i.e.n-component third-order nonlinear Schr?dinger) equations with mixed non-zero and zero boundary conditions are explored.We employ the multiple roots of the characteristic polynomial related to the Lax pair and modified Darboux transform to find vector semi-rational rogon-soliton solutions (i.e.nonlinear combinations of rogon and soliton solutions).The semi-rational rogon-soliton features can be modulated by the polynomial degree.For the larger solution parameters,the first m(m<n)components with non-zero backgrounds can be decomposed into rational rogons and grey-like solitons,and the last n-m components with zero backgrounds can approach bright-like solitons.Moreover,we analyze the accelerations and curvatures of the quasi-characteristic curves,as well as the variations of accelerations with the distances to judge the interaction intensities between rogons and grey-like solitons.We also find the semi-rational rogon-soliton solutions with ultrahigh amplitudes.In particular,we can also deduce vector semi-rational solitons of the ncomponent complex mKdV equation.These results will be useful to further study the related nonlinear wave phenomena of multi-component physical models with mixed background,and even design the related physical experiments.

    Keywords: Multi-componentHirotaequations,mixedbackgrounds,modifiedDarbouxtransform,semi-rational RWs and W-shaped solitons,asymptotic analysis

    1.Introduction

    The study of solitons[1–5]and rogue waves(alias rogons[6])[7–21]is still a significant topic in the field of nonlinear sciences.They can be used to describe the wave propagations and fundamental features of some nonlinear physical phenomena appearing in nonlinear optics,Bose–Einstein condensates,plasmas physics,quantum optics,DNA,fluid mechanics,ocean,and even finance.As a fundamental and universal physical model,the focusing nonlinear Schr?dinger(NLS) equation is completely integrable [22],and admits the abundant nonlinear modes,such as the bright solitons,rogons,and breathers [7,10,14,19,20,22].As a type of higher-order extensions of the NLS equation,Hirota [23]further extended the NLS equation to first propose a thirdorder NLS equation (alias Hirota equation)

    which is used to demonstrate the propagating wave of an ultrashort optical field p=p(x,t) in an optical fibre [24–26],where the subscripts denote the partial derivatives with respect to the variables x,t.Equation (1) was shown to be completely integrable,and to possess the solitons and rogons in terms of the bilinear method [23],the modified Darboux transform [27–30]and robust inverse scattering method [31].Moreover,the inverse scattering and multi-pole solitons of equation (1) with non-zero boundary conditions were investigated [32,33].The multi-component nonlinear wave equations,as the extensions of the single NLS and Hirota equations,were also studied to analyze the interplays of many bodies.Recently,the vector rogons and semi-rational solutions were also found for the two-component coupled NLS equation [34–46]and three-component coupled NLS equations [47–49].Moreover,the vector rogons and semirational solutions were also shown to appear in the twocomponent Hirota equations [50,51],and three-component Hirota equation [52].

    As the number n of components increases,the key and difficult point is how to find the explicit multiple eigenvalues of the (n+1)-order matrix related to the Lax pairs of the ncomponent nonlinear wave equations.Recently,Zhang et al[53,54]presented a powerful approach to studying this problem such that any n-component NLS equations and their higher-order extensions with non-zero backgrounds have been found to possess the novel vector rogons [55].Moreover,we further extended this idea to obtain the semi-rational rogon-soliton solutions of 5-component Manakov equations[56],and even any n-component NLS equations [57].These solutions imply the interplays of rational rogons and grey-like solitons,as well as ones of the bright-like solitons and localized small modes.To the best of our knowledge,the any ncomponent Hirota (third-order NLS) equations with n >3 were not found to possess the semi-rational rogon-soliton solutions except for a few works on the 2-Hirota and 3-Hirota equations [50–52,58].

    The n-component Hirota (alias the n-Hirota) equations can be written as the dimensionless form [23,55]

    where p(x,t)=(p1(x,t),p2(x,t),…,pn(x,t))T(n∈N)stands for an envelope vector field describing the n components in the nonlinear optical fibre,the subscripts denote the partial derivatives with respect to the variables x,t,and ′? ′ denotes the Hermitian conjugate.The n-Hirota equation (2) can be rewritten as

    where the star denotes the complex conjugate.Equation (2)can be refereed to as the vector extension of equation(1),and reduces to the single Hirota equation (1) at n=1,while equation (2) becomes the coupled Hirota equation and 3-Hirota equation at n=2,3,respectively.As α ≠0,ε=0,equation (2) reduces to the n-component NLS (n-NLS)equation [59].When α=0,ε ≠0,equation (2) becomes the n-component complex mKdV (n-cmKdV) equation

    Similarly to the multi-component AKNS system[59],the Lax pair of the n-Hirota equation (2) is of the form

    where Φ=Φ(x,t;μ)=(φ1(x,t;μ),φ2(x,t;μ),…,φn+1(x,t;μ))Trepresents the vector eigenfunction,μ∈C denotes the iso-spectral parameter,V2=i(ασn+1+2ε P),V1=-(iεσn+1P2-iα P+ε Pxσn+1),and V0=V2P2+iε Pxx+α σn+1Px-ε [P,Px]with the (n+1)-order constant matrix σn+1and potential matrix function P(x,t) being σn+1=For the given initial solution p0(x,t)=(p10(x,t),p20(x,t),...,pn0(x,t))Tof equation (2),based on the loop group method [60]and the solutions of the Lax pair (4),one can obtain a usual DT for the n-Hirota equation (2) [55]:

    which can deduce the ‘new’ solutions of equation (2),where Φ(x,t;μ0)=(φ1(x,t;μ0),φ2(x,t;μ0),…,φn+1(x,t;μ0))Tis a vector-function solution of the Lax pair(4)with p(x,t)=p0(x,t) and μ=μ0.

    In this paper,we would like to study the semi-rational rogon-soliton solutions and asymptotic analysis of the n-Hirota equation (2) with the mixed non-zero and zero boundary conditions.The semi-rational rogon-soliton solutions can be decomposed into the interplays between the rogons and grey-like solitons.Moreover,the quasi-characteristic curves of the wave propagations of these grey-like solitons are almost the straight lines,which differ from ones of the n-NLS equation,which are the logarithmic function curves.

    The rest of this paper is arranged as follows:in section 2,starting from the (n+1)-order matrix Lax pair (4) with the initial plane-wave solutions (6),we find the explicit vector semi-rational rogon-soliton solutions of the n-Hirota equation by means of the modified Darboux transform,and the multiple eigenvalues of an (n+1)-order matrix U.In section 3,we analyze the obtained wave structures and their asymptotics.In particular,the semi-rational rogon-soliton solutions can be decomposed into the rogons and grey-like solitons when the absolute values of some parameters become bigger.Moreover,we discuss the velocities and accelerations of wave propagations of the decomposed grey-like solitons,the curvatures of the quasi-characteristic curves of the grey-like solitons and the relations between the curvatures of the quasicharacteristic curves and the distances defined by from the center points into the points on the quasi-characteristic curves.In section 4,we study the parameter constraints for the vector semi-rational rogon-soliton solutions with ultra-high amplitudes.In section 5,the above-mentioned results can reduce to ones of the n-cmKdV equation at α=0,ε ≠0.Particularly,we find the different vector semi-rational W-shaped soliton and grey-like solitons of the n-cmKdV equation.Finally,we present some conclusions and discussions in section 6.

    2.Vector semi-rational rogon-soliton solutions of(2)with mixed backgrounds

    Here to study the vector semi-rational rogon-soliton solutions of the n-Hirota equation (2) we start from its plane-wave solutions

    whereaj,bj∈ R,a=(a1,a2,…,an)Tand ‖a‖2=aTa.Without loss of generality,one can take aj≥0.Notice that as some as=0(s ∈{1,2,…,n}),the corresponding bs,νscan be chosen as any real constants.Of course,one can also take the νsgiven by equation (6).One can find the fundamental solutions of the Lax pair (4) with p=p0(x,t) given by equation (6) and μ=μ0

    by means of the gauge trans form Ψ (x,t;μ0)=diag (1,eiφ1,eiφ2,…,eiφ n)Φ(x,t;μ0),wherec=(c0,c1,…,cn)Tis a non-zero constant vector,and the matrix polynomial g (U(μ0))=ε U3(μ0)+(α+3εμ0) U2(μ0)+[3ε(μ20-‖a‖2)B=diag (b1,b2,…,bn).

    To explore the vector semi-rational rogon-soliton solutions of the n-Hirota system (2),we should find the explicit multiple eigenvalues of U(μ0).For the case aj≠0,ak=0(j=1,2,…,m;k=m+1,…,n;≤m<n),we show t hat if the non-zero amplitudes ajand wavenumbers bj(j=1,…,m,) and spectral parameter μ0are given by aj=csc (j π/(m+1)),bj=cot (jπ/(m+1)),μ0=i(m+1)/2,j=1,2,…,m,and each bk(k=m+1,…,n) is equal to one of bj(j=1,…,m)with Πns,k=m+1(bs-bk)2≠0,then the matrix U(μ0)possesses the (m+1)-multiple root i(1-m)/2 and(n-m) simple roots-(i(m+1)/2+bk)(k=m+1,…,n).

    Therefore,we,based on the above DT (5),equation (7),and the given aj,bj,μ0,have the following property:

    Proposition 1.The formula of vector semi-rational rogonsoliton solutions of the n-Hirota equation(2)is found in the form

    where Wj(x,t)is the jth row of the function matrix W(x,t)W(x,t)

    with=(a1,a2,…,am)T,and ζ1(x,t)=x+iαt-(‖a‖2+1)t,ζ2(t)=(α+3iε) t/2,ζ3(t)=ε t/2.

    3.Features of semi-rational rogon-soliton solutions and asymptotic analysis

    Here,to conveniently explore the wave features of the found vector semi-rational solutions(8)of the n-Hirota equation we introduce a non-singular matrix G=(G0,G1,…,Gn)

    and a constant vector Γ=(γ0,γ1,…,γn)Tsuch that c=GΓ,where δi,jis the Kronecker delta,ri,j's are constants.Since one of non-zero parameters γ?can be arbitrarily fixed,we set γ?≠0 as γ?+1=…=γn=0 such that in this case Wc=WGΓ is a vector function consisting of the polynomials on x,t of degree ? and exponential functions.

    In the following we analyze the semi-rational rogon-soliton solutions (i.e.nonlinear combinations of rogon and soliton solutions)of the n-Hirota equation(2)with αε ≠0.

    Remark 1.Notice that the curveξ1(x,t)=0in the solution(11),that is,

    Case 1.As ?=1,we choose γ1=i,rj,n=1(j=0,1)such that we deduce the vector rogon-soliton solutions with a free real parameter γ0of the n-Hirota equation (2):

    where

    and

    is called the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation,which is almost a straight line (see figures 1(a),(d) forγ0=7,1).Asε=0,α≠ 0,the corresponding solutions of the n-NLS equation admit the quasi-characteristic curve

    which is indeed a curve,not a straight line (see figures 1(g),(j)).Figure 1 implies that the the coefficient ε of the thirdorder dispersive term can change the quasi-characteristic curve for the n-NLS equation into the approximate characteristic straight line for the n-Hirota equation.

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (11) by studying the effect of the parameter γ0:

    Case 1a.—For the bigger |γ0|,the semi-rational rogonsoliton solutions with non-zero backgrounds pj(x,t)(j=1,2,…,m) given by equation (11) can be separated into the rational rogon partspjrw(x,t)(j=1,2,…,m):

    whose centers (near t=0) are localized the domain of x<0(see figures 2(a),(c),(d),(f),(g),(i),(j),(k)),and non-travelling-wave grey-like soliton parts with hyperbolic functionspjgs(x,t)(j=1,2,…,m):

    whose grey parts near t=0 are localized the domain of x >0(see figures 2(a),(c),(d),(f),(g),(i),(j),(k)).Moreover,the semi-rational solitons with zero backgrounds pk(x,t)(k=m+1,…,n) given by equation (11) tend to the brightlike solitons (see figures 2(b),(e),(h),(l)):

    For the bigger value of|γ0|(e.g.γ0=7),figure 2 displays the weak interplays of some types of rational rogons and greylike solitons,as well as the bright-like solitons and localized tiny waves:

    (1) As n=3,m=2 corresponding to the 3-Hirota equation with two non-zero backgrounds and one zero background,figure 2(a) displays the semi-rational rogonsoliton solution(|p1|/a1)composed of the bright rational rogon (∣p1rw∣a1) and the grey-like soliton (∣p1gs∣a1).Figure 2(b) illustrates the bright-like soliton (|p3|) made up of the bright soliton(∣pbs∣)3 and a localized tiny mode;

    (2) As n=4,m=3 corresponding to the 4-Hirota equation with three non-zero backgrounds and one zero background,figure 2(c) exhibits the semi-rational rogonsoliton (|p1|/a1) composed of the four-petaled-shaped rational rogon (∣prw∣a11) and a grey-like solitonFigure 2(d) illustrates the semi-rational rogon-soliton solution (|p2|/a2) consisting of the bright rational rogon (∣prw∣a22) and the grey-like solitonFigure 2(e) displays the bright-like soliton(|p4|) consisting of a bright-like solitonand a localized tiny mode;

    (3) As n=5,m=4 corresponding to the 5-Hirota equation with four non-zero backgrounds and one zero background,figures 2(f)–(h) exhibit the rogon-soliton(|p1|/a1) composed of the four-petaled-shaped rogonand the grey-like solitonthe semirational rogon-soliton solution (|p2|/a2) made up of the bright rogonand the grey-like solitonand the bright-like soliton (|p5|) consisting of the bright solitonand a localized tiny mode,respectively;

    (4) At n=6,m=5 corresponding to the 6-Hirota equation with five non-zero backgrounds and one zero background,figures 2(i)–(l) display the semi-rational rogonsoliton solution (|p1|/a1) composed of the dark rogonand the grey-like soliton (∣p1gs∣a1),the semirational rogon-soliton solution (|pj|/aj(j=2,3)) made up of the bright rogonand the greylike solitonand the bright-like soliton (|p6|) consisting of the bright-like soliton (∣p6bs∣)and a localized tiny mode,respectively.

    The quasi-characteristic curve and velocity.—We find that the non-travelling-wave grey-like solitonspjgs(x,t)and bright-like solitonspkbs(x,t)possess the same propagation direction,that is,they all propagate along the approximation curve derived from the quasi-characteristic line (12) in the(x,t)-space

    which differs from the propagation direction(the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(14)and(15)isv1?(m+1)2+1t,which becomes slow as |t|increases,and approaches(m+1)2as |t|→∞.

    The time-dependent acceleration.—Now we consider the effect of the bright rogons(13)on the grey-like solitons(14) in these components pj(j=1,…,m) with non-zero backgrounds for the bigger |γ0|.We study the timedependent forceF1(t)=m1a1(t)on each mass point(e.g.its mass is assumed to be m1) along the quasi-characteristic line (12) arising from the rogons,where the time-dependent acceleration a1(t)of the wave propagations of the grey-like solitons given by equation (14) in the form (see figure 3(a))

    where f1(t)=-(α2+ε2)2t2+ε(α2+ε2) (2γ0+1) t+(α2-ε2) (+γ0)+α2/2.Figure 3(a) displays the acceleration a1(t)for t≥1.Moreover,|a1(t)| gradually decreases as t≥1 increases,and approaches zero at t→∞.The result implies that the absolute value of the time-dependent force,|F1(t)|,gradually decreases,and approaches zero as t→∞.

    Figure 1.The quasi-characteristic curves of grey-like solitons for n=5,m=4 and α=1.(a) ?=1,ε=0.1,γ0=7;(d) ?=1,ε=0.1,γ0=1;(b)?=2,ε=0.1,γ0=7;(e)?=2,ε=0.1,γ0=1;(c)?=3,ε=0.1,γ0=7;(f)?=3,ε=0.1,γ0=1;(g)?=1,ε=0,γ0=7;(j)?=1,ε=0,γ0=1;(h) ?=2,ε=0,γ0=7;(k) ?=2,ε=0,γ0=1;(i) ?=3,ε=0,γ0=7;(l) ?=3,ε=0,γ0=1.

    The curvature of the quasi-characteristic curve.—We consider the curvature change of the quasi-characteristic curve (12) or its approximation (16),where the curvature is defined asK(t)=∣x″ (t)∣(1+x′2(t))2,from which one has

    for the approximate characteristic curve (16).In fact,the corresponding curvature K(t) of the implicit quasi-characteristic curve (12) is so complicated,and not given here,but it can be displayed in figure 4(a) for γ0=9,n=5,m=4.

    Acceleration versus distance.—We introduce the distance between the point(x,t)on the quasi-characteristic curve and the center (x0,t0) of the separated rogon asd?d(x,t)=where the center positions of the separated rogons are selected as γ0=7(x0,t0)=(-7.5,0),γ0=9(x0,t0)=(-9.5,0).As a result,we give figure 5 to illustrate the relation of the acceleration and distance,which implies that when the distance increases the the absolute value of acceleration decreases,and approaches zero as the distance tends to infinity.

    Figure 2.Profiles of weak interactions of rogon-soliton components given by equation(11)with α=1,ε=0.1,γ0=7 for ?=1,n=3,4,5,6 with m=n-1.Rogon-soliton components with non-zero backgrounds(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4),(f),(g)|pj|/aj(j=1,2;n=5),(i)–(k) |pj|/aj(j=1,2,3;n=6);Soliton-like component with zero backgrounds: (b) |p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5),(l) |p6|(n=6).

    Case 1b.—For the small value of|γ0|(e.g.γ0=1),figure 6 illustrates the strong interplays of different kinds of rational rogons and grey-like solitons,as well as the bright-like solitons and localized bigger waves given by equation (11).

    Case 2.At ?=2,we take γ1=0.5i,γ2=1,γj+1=0(?=2,3,4),and ri,j=1(j=0,1,2) to find the vector semi-rational rogon-soliton and soliton-like solutions with a free real parameter γ0of the n-Hirota equation

    where

    Figure 3.Time-dependent accelerations of separated grey-like solitons with γ0=7,n=5.(a)–(c) α=1,ε=0.1;(d)–(f) α=0,ε=2;(a),(d) ?=1;(b),(e) ?=2;(c),(f) ?=3.

    Figure 4.The curvatures of the quasi-characteristic curves with γ0=9,n=5,m=4.(a)α=1,ε=0.1,?=1;(b)α=1,ε=0.1,?=2;(c)α=0,ε=2,?=1;(d) α=0,ε=2,?=2.

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (19) by studying the effect of the parameter γ0:

    Remark 2.For the case?=2,the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation isξ2(x,t)=0,that is,

    which is almost a straight line(see figures 1(b),(e))except for the tiny bend near the point(0,0).However whenε=0,α=1,the corresponding quasi-characteristic curves of the n-NLS equation are displayed in figures 1(h),(k).

    Case 2a.—For the bigger value of |γ0|,we consider the asymptotic analysis to decompose the obtained vector semirational rogon-soliton solutions (19).The semi-rational rogon-soliton solutions pj(x,t)(j=1,2,…,m) given by equation(11)can be decomposed into the rational rogon partspjrw(x,t)

    whose centers (near t=0) are localized the domain of x<0(see figure 7),and grey-like soliton partspjgs(x,t)

    whose grey parts near t=0 are localized the domain of x >0(see figure 7).Moreover,the semi-rational soliton ps(x,t)(s=m+1,…,n) given by equation (19) approaches to a bright-like soliton

    Figure 5.Acceleration versus distance with α=1,ε=0.1,?=1.(a) γ0=7,n=3,(b) γ0=7,n=5,(c) γ0=9,n=3,(d) γ0=9,n=5.

    Figure 6.Features of strong interplays of semi-rational rogon-soliton components given by equation (11) with α=1,ε=0.1,γ0=1 for?=1,n=3,4,5,6 with m=n-1.Rogon-soliton components with non-zero backgrounds (a) |p1|/a1(n=3),(c),(d) |pj|/aj(j=1,2;n=4),(f),(g)|pj|/aj(j=1,2;n=5),(i)–(k)|pj|/aj(j=1,2,3;n=6);Soliton-like component with zero backgrounds: (b)|p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5),(l) |p6|(n=6).

    For the bigger value of|γ0|(e.g.γ0=8),figure 7 displays the structures of weak interplays of different kinds of rational rogons and grey-like solitons,as well as the bright-like solitons and localized tiny waves given by equation (19): (1) At n=3,m=2,figures 7(a),(b) illustrate the weak interplay(|p1|/a1) made up of the two-bright rational rogon (∣∣a1)and grey-like soliton (∣∣a1),and the bright-like soliton(|p3|) consisting of the bright-like soliton (∣∣) and a localized tiny mode with one hump and one dip,respectively;(2)As n=4,m=3,figures 7(c)–(e) exhibit the features of|p1|/a1composed of the two-four-petaled-shaped rogon(∣∣a1) and grey-like soliton (∣∣a1),the |p2|/a2consisting of two-bright rogon (∣∣a2) and grey-like soliton(∣∣a2),and bright-like soliton (|p4|) consisting of the bright-like soliton (∣∣) and a localized tiny mode with one hump and one dip,respectively.Equations (22) and (23)imply that the grey-like solitonsand bright-like solitonspkbs(x,t)have the same propagation direction along the approximation curve derived from the quasi-characteristic curve (20)

    Figure 7.Profiles of weak and strong interactions of rogon-soliton given by equation(19)with α=1,ε=0.1 and ?=2,n=3,4,m=n-1.Weak interactions with γ0=8:Non-zero backgrounds(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4);Soliton-like components with zero background: (b) |p3|(n=3),(e) |p4|(n=4).Strong interactions with γ0=-0.5: Non-zero backgrounds (f) |p1|/a1(n=3),(h),(i) |pj|/aj(j=1,2;n=4),and soliton-like components with zero backgrounds: (g) |p3|(n=3),(j) |p4|(n=4).

    which differs from the propagation direction(the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(22)and(23)isv2?(m+1)2+2t,which becomes slow as |t|increases,and approaches(m+1)2as|t|→∞.Similarly to?=1,we can also consider the time-dependent accelerations for ?=2(see figure 3(b)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(b) for γ0=9,n=5,m=4.

    Case 2b.—For the smaller value of|γ0|(e.g.γ0=-0.5),figures 7(f)–(j) exhibit the features of strong interactions of different kinds of two-rogons and grey-like solitons,as well as bright-like solitons and localized tiny modes given by equation (19).

    Case 3.As ?=3,i.e.γ0γ1γ2γ3≠0,γj+1=0(j=3,4,…,n),and ri,j=1(j=0,1,2,3).We take γ1=0.5i,γ2=1,γ3=i to find the semi-rational vector rogon-soliton and soliton-like solutions (8) of the n-Hirota equation (2)

    where

    where Dm+1(Gj)denotes a column vector consisting of the first(m+1) rows of the column vector Gjgiven by equation(10).

    Remark 3.As?=3,the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation is

    which is almost a straight line(see figures 1(c),(f))except for the tiny bend near the point(0,0).However whenε=0,α=1,the corresponding quasi-characteristic curves of the n-NLS equation are displayed in figures 1(i),(l).

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (25) by studying the effect of the parameter γ0:

    Figure 8.Features of weak and strong interplays for the semi-rational rogon-soliton components with non-zero boundary conditions given by equation(25)with α=1,ε=0.1 and ?=3,n=4,m=n-1.Weak interactions with γ0=15:(a),(b)|pj|/aj(j=1,2;n=4),and solitonlike component with zero backgrounds: (c)|p3|(n=3).Weak interactions with γ0=-0.5: (d),(e) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (f) |p4|(n=4).

    Case 3a.—For the bigger |γ0|,we consider the asymptotic analysis to decompose the obtained vector semi-rational rogon-soliton solutions (25).The semi-rational rogon-soliton solutions pj(x,t)(j=1,2,…,m)given by equation(25)can be decomposed into the rational rogon parts(x,t)

    whose centers (near t=0) are localized the domain of x<0 (see figure 8),and grey-like soliton partspjgs(x,t)

    whose grey-like parts near t=0 are localized the domain of x >0 (see figure 7).Moreover,the semi-rational soliton pk(x,t)(k=m+1,…,n) given by equation (25) approaches to a bright-like soliton

    It follows from equations(28)and(29)that the grey-like solitonspjgs(x,t)and bright-like solitonspkbs(x,t)have the same propagation direction along the approximation curve derived from the quasi-characteristic line (26)

    due to the relation

    where f is a polynomial of x,t.The direction given by equation (30) differs from the propagation direction (the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(28)and(29)isv3?(m+1)2+which becomes slow as|t|increases,and approaches(m+1)2as|t|→∞.Similarly to ?=1,2,we can also consider the time-dependent accelerations for ?=3 (see figure 3(c)).

    Case 3b.—For the smaller value of|γ0|(e.g.γ0=-0.5),figures 8(d)–(f) exhibit the strong interactions of different kinds of two-rogons and grey-like solitons,as well as brightlike solitons and localized tiny waves given by equation(25).

    Figure 9.Profiles of the semi-rational rogon-soliton solutions given by equation (8) with α=1,∈=0.1.The case ofAall : (a)–(c)n=3,m=2,c0=,c1,2,3=i;(d)–(g) n=4,m=3,c0=2,c1,2,3,4=i;The case ofA e,j: (i) n=3,m=2: (h) |p1|/a1,c0=1,c1=i,cj=0(j=2,3),(i)|p2|/a2,c0=1,c2=i,cj=0(j=1,3);(ii)n=4,m=3:(j)|p1|/a1,c0=1,c1=i,cj=0(j=2,3,4),(k)|p2|/a2,c0=1,c2=i,cj=0(j=1,3,4),(l) |p3|/a3,c0=1,c3=i,cj=0(j=1,2,4).

    4.Semi-rational rogon-soliton solutions with ultrahigh amplitudes

    In this section,we will consider the maximal amplitudes of the vector semi-rational rogon-soliton solutions given by equation(8).We will consider two the average amplitudes as follows:

    wherep(x,t)=(p1,p2,…,pn)T,a=(a1,a2,…,an)Twith aj≠0(j=1,2,…,m).

    Proposition 2.For the given the vector semi-rational

    rogon-soliton solutions (8),Aall,Ae,jcan be attained at{c=(n,i,…,i)T,(x,t)=(0,0)} and{c=(1,0,…,0,i,0,…,0)T,(x,t)=(0,0) }(non-zero number i in thecis the(j+1)-th entry),respectively,in the forms

    Proof.Firstly,we should note that W(n+1)×(n+1)(0,0)given by equation (9) is

    Given the(n+1)-dimensional vectors W=(∣α0∣,∣α1∣i,…,∣αn∣i)T,Wc=(α0,α1,…,αn)T,andβj=∣αj∣,we have

    The last equality holds if and only ifβ0==βj,0<i,j≤n.According to (35),we have the expression ofAallin equation (33).Notice that since W(x,t)is a unit matrix at(0,0),so we can takec=(,i,…,i)T.In the same way,according to

    we have the expression ofAe,jin equation (33).Notice that W(0,0)=In+1,thus one can takec=(1,0,…,0,i,0,…,0)T.This completes the proof.□

    In particular,we display the profiles of the 3-Hirota and 4-Hirota equations when Talland Te,jare attained for at{c=(,i,…,i)T,(x,t)=(0,0)} and{c=(1,0,…,0,i,0,…,0)T,(x,t)=(0,0)},respectively (see figure 9).

    5.Vector semi-rational solitons of the n-cmKdV equation

    At α=0,ε ≠0,we can find the vector semi-rational solitons of the n-cmKdV equation (3) from the solutions (8),whereNotice that the separated rational solutions are solitons,not rogons,which mainly result fromζ1=x-(1+‖a‖2)is a real-valued linear function of x,t,andζ2=is a pure imaginary function of t,however,ζ1=x+iαt-(1+‖a‖2)tis a complex-valued linear function of x,t,andζ2=is also a complex-valued function of t for the n-Hirota equation with αε ≠0.

    Case 1.For the ?=1,we have the vector semi-rational solitons of the n-cmKdV equation (3) in the form (11) with α=0.Figures 10(a)–(h)display the weak interactions for the larger γ0=7 and n=3,4,5 with m=n-1,and the strong interactions are illustrated in figures 10(i)–(p) for the smaller γ0=1 and n=3,4,5 with m=n-1.

    Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations in the n-cmKdV equation for ?=1(see figure 3(d)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(c) for γ0=9,n=5,m=4.

    Figure 10.Profiles of the semi-rational solitons(11)with α=0,ε=2 for ?=1,n=3,4,5 with m=n-1.Weak interactions with γ0=7:grey-like and W-shaped solitons with non-zero backgrounds (a) |p1|/a1(n=3),(c),(d) |pj|/aj(j=1,2;n=4),(f),(g) |pj|/aj(j=1,2;n=5),and soliton-like components with zero backgrounds: (b) |p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5).Strong interactions with γ0=1 for n=3,4,5 with m=n-1:grey-like and W-shaped solitons with non-zero backgrounds(i)|p1|/a1(n=3),(k),(l)|pj|/aj(j=1,2;n=4),(o,p)|pj|/aj(j=1,2;n=5),and soliton-like component with zero backgrounds:(j)|p3|(n=3),(m)|p4|(n=4),(p)|p5|(n=5).

    Case 2.For ?=2,we find the vector semi-rational solitons of the n-cmKdV equation (3) in the form (19) with α=0.Figures 11(a)–(e)display the weak interactions for the larger γ0=8 and n=3,4 with m=n-1,and the strong interactions are illustrated in figures 11(f)–(j) for the smaller γ0=-0.5 and n=3,4 with m=n-1.

    Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations in the n-cmKdV equation for ?=2(see figure 3(e)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(d)for γ0=9,n=5,m=4.

    Case 3.As ?=3,we find the vector semi-rational solitons of the n-cmKdV equation (3) in the form (25) with α=0.Figures 12(a)–(c)display the weak interactions for the larger γ0=15 and n=4,m=3,and the strong interactions are illustrated in figures 12(d)–(f) for the smaller γ0=-0.5 and n=4,m=3.Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations for ?=3 (see figure 3(f)).

    Similarly,the results in section 4 with α=0,ε ≠0 also hold for the n-cmKdV equation (3),which are displayed in figure 13 for some parameters.

    6.Conclusions and discussions

    In conclusion,we start with the mixed background seed solutions and obtain the semi-rational rogon-soliton solutions of the n-Hirota equation through the modified Darboux transformation.Firstly,we require the selection of parameters makes the characteristic polynomial admit the (m+1)-multiple root and(n-m)simple roots,and then it is brought into the modified Darboux transform to find the semirational solutions of the n-Hirota equation.Finally,the exact semi-rational solutions of the n-Hirota equation are analyzed in detail for the cases of ?=1,2,3 and n=3,4,5,6.The semi-rational rogon-soliton solutions of first m components with non-zero backgrounds can be decomposed into the rational rogon solutions and the grey-like solitons.The last(n-m) components with zero backgrounds are gradually decayed to the bright-like solitons.The interactions between rogons and soliton-like solutions are characterized by analyzing the accelerations and curvatures along the quasicharacteristic curves.We also study the semi-rational solitons of the n-cmKdV equation.The ideas and methods used in this paper can be extended to other nonlinear integrable physical models.Among them,the higher-order Darboux transformation of n-Hirota equation can also be studied in future.

    Figure 11.Profiles of weak interactions for the semi-rational rogon-soliton components with non-zero backgrounds given by equation (19)with α=0,ε=2,γ0=8 for ?=2,n=3,4 with m=n-1:(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds:(b)|p3|(n=3),(e)|p4|(n=4).Strong interactions with α=0,ε=2,γ0=-0.5 for ?=2,n=3,4 with m=n-1:(f) |p1|/a1(n=3),(h),(i) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (g) |p3|(n=3),(j) |p4|(n=4).

    Figure 12.Profiles of weak interactions for the semi-rational rogon-soliton components with non-zero backgrounds given by equation (25)with α=0,ε=2,γ0=15 for ?=3,n=4 with m=n-1: (a),(b) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (c) |p3|(n=3).Strong interactions with α=0,ε=2,γ0=-0.5 for ?=3,n=4 with m=n-1: (d),(e) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (f) |p4|(n=4).

    Figure 13.Profiles of the semi-rational soliton solutions given by equation(8)with α=0,∈=2.The case ofAe,j :(i)n=3,m=2(a)|p1|/a1,c0=1,c1=i,cj=0(j=2,3),(b)|p2|/a2,c0=1,c2=i,cj=0(j=1,3);(ii)n=4,m=3:(c)|p1|/a1,c0=1,c1=i,cj=0(j=2,3,4),(d) |p2|/a2,c0=1,c2=i,cj=0(j=1,3,4),(e) |p3|/a3,c0=1,c3=i,cj=0(j=1,2,4).The case ofAall : (f)–(h) n=3,m=2,c0=,c1,2,3=i.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11 925 108 and 11 731 014).

    国产女主播在线喷水免费视频网站| 国产精品久久久久久精品古装| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 久久人人爽人人爽人人片va| 国产精品国产三级国产专区5o| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 亚洲精品成人av观看孕妇| 少妇的逼好多水| 国产精品久久久久久久久免| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 黄色视频在线播放观看不卡| 欧美另类一区| 亚洲精华国产精华液的使用体验| 韩国av在线不卡| 亚洲欧美中文字幕日韩二区| 欧美高清成人免费视频www| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 美女视频免费永久观看网站| 欧美区成人在线视频| 亚洲av.av天堂| 99热6这里只有精品| www.av在线官网国产| 国产成人福利小说| 国产永久视频网站| 免费看光身美女| 在线观看一区二区三区激情| 老女人水多毛片| 国产免费福利视频在线观看| 18+在线观看网站| 777米奇影视久久| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看 | 精品久久久久久久久av| 午夜福利网站1000一区二区三区| 成年人午夜在线观看视频| 久久久久久久久久人人人人人人| 亚洲精品影视一区二区三区av| 国产淫语在线视频| 青青草视频在线视频观看| 深夜a级毛片| av在线亚洲专区| 人人妻人人爽人人添夜夜欢视频 | 狂野欧美激情性xxxx在线观看| 亚洲自偷自拍三级| av在线观看视频网站免费| 亚洲图色成人| 成人无遮挡网站| 五月伊人婷婷丁香| 99视频精品全部免费 在线| 久久亚洲国产成人精品v| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久v下载方式| 美女高潮的动态| 最近的中文字幕免费完整| 乱系列少妇在线播放| 久久精品国产亚洲网站| 丝瓜视频免费看黄片| 看黄色毛片网站| 国产成人freesex在线| 亚洲欧美一区二区三区黑人 | 人妻一区二区av| 三级男女做爰猛烈吃奶摸视频| 制服丝袜香蕉在线| 黄片wwwwww| 一级片'在线观看视频| 亚洲,一卡二卡三卡| 热99国产精品久久久久久7| 啦啦啦啦在线视频资源| 国产在线男女| 我的老师免费观看完整版| 中文欧美无线码| 国产av不卡久久| 色播亚洲综合网| 国产精品久久久久久av不卡| 又爽又黄无遮挡网站| 国产探花在线观看一区二区| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 亚洲一区二区三区欧美精品 | 婷婷色av中文字幕| 夜夜爽夜夜爽视频| 亚洲成色77777| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载 | 蜜臀久久99精品久久宅男| 国产黄片美女视频| 69人妻影院| 国产免费一级a男人的天堂| 啦啦啦啦在线视频资源| 黄色一级大片看看| 日韩一区二区三区影片| 制服丝袜香蕉在线| 成人一区二区视频在线观看| 韩国高清视频一区二区三区| 一区二区三区四区激情视频| 亚洲最大成人中文| 国产男人的电影天堂91| av在线亚洲专区| 亚洲在线观看片| 男女那种视频在线观看| 少妇猛男粗大的猛烈进出视频 | 我的女老师完整版在线观看| 国产午夜精品久久久久久一区二区三区| av在线老鸭窝| 如何舔出高潮| 国产欧美日韩精品一区二区| 最近手机中文字幕大全| 久久久精品94久久精品| 亚洲欧美精品专区久久| 人妻制服诱惑在线中文字幕| 丝袜喷水一区| 免费在线观看成人毛片| 国产高清有码在线观看视频| 久久影院123| 爱豆传媒免费全集在线观看| 男女边摸边吃奶| 熟女电影av网| 久久精品国产a三级三级三级| 亚洲不卡免费看| 干丝袜人妻中文字幕| 午夜免费鲁丝| 久久久久久久午夜电影| 中文字幕av成人在线电影| 中文资源天堂在线| 乱码一卡2卡4卡精品| 黄色视频在线播放观看不卡| 天天躁日日操中文字幕| 精品久久国产蜜桃| 少妇人妻 视频| 久久久久久久久久人人人人人人| 亚洲经典国产精华液单| 亚洲国产精品999| 欧美成人午夜免费资源| av女优亚洲男人天堂| 在线观看免费高清a一片| 少妇的逼好多水| 久久99热这里只有精品18| 国产伦精品一区二区三区四那| 观看免费一级毛片| 中文字幕亚洲精品专区| 久久人人爽人人片av| 国产精品一及| 成人免费观看视频高清| 日韩,欧美,国产一区二区三区| 中文字幕免费在线视频6| 性色av一级| 久久午夜福利片| 69人妻影院| 亚洲欧美一区二区三区黑人 | 亚洲在线观看片| 国产伦精品一区二区三区四那| 一个人看视频在线观看www免费| 麻豆成人av视频| 久久鲁丝午夜福利片| 欧美精品一区二区大全| 3wmmmm亚洲av在线观看| 99精国产麻豆久久婷婷| 国产免费一级a男人的天堂| 日韩欧美 国产精品| 日韩一本色道免费dvd| 亚洲av日韩在线播放| 人妻 亚洲 视频| 日本熟妇午夜| 高清av免费在线| 一级二级三级毛片免费看| 免费大片18禁| 久久6这里有精品| 三级国产精品片| 午夜精品国产一区二区电影 | 午夜福利高清视频| 成人亚洲欧美一区二区av| 欧美三级亚洲精品| 黄色欧美视频在线观看| 亚洲精品久久午夜乱码| 青青草视频在线视频观看| 亚洲av一区综合| 久久97久久精品| 18禁在线播放成人免费| 亚洲精品国产av成人精品| 日本猛色少妇xxxxx猛交久久| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 久久午夜福利片| 免费观看性生交大片5| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品电影| www.色视频.com| 亚洲欧洲日产国产| 日本猛色少妇xxxxx猛交久久| 自拍欧美九色日韩亚洲蝌蚪91 | 美女xxoo啪啪120秒动态图| 王馨瑶露胸无遮挡在线观看| 在现免费观看毛片| 亚洲精品国产成人久久av| 久久人人爽av亚洲精品天堂 | 免费av观看视频| 黄色一级大片看看| 国产精品一区二区性色av| 成人黄色视频免费在线看| 黄片wwwwww| av在线观看视频网站免费| 亚洲一区二区三区欧美精品 | 三级男女做爰猛烈吃奶摸视频| 可以在线观看毛片的网站| 小蜜桃在线观看免费完整版高清| 国产探花极品一区二区| 高清视频免费观看一区二区| 高清视频免费观看一区二区| 97超碰精品成人国产| 久久久久久久国产电影| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区三区四区免费观看| 在线a可以看的网站| 麻豆久久精品国产亚洲av| 亚洲av中文av极速乱| 日韩精品有码人妻一区| 只有这里有精品99| 菩萨蛮人人尽说江南好唐韦庄| 有码 亚洲区| 亚洲一级一片aⅴ在线观看| 男女国产视频网站| 日本一二三区视频观看| 亚洲av在线观看美女高潮| 国产精品国产av在线观看| 看十八女毛片水多多多| 麻豆久久精品国产亚洲av| 精品久久久久久电影网| 亚洲国产精品成人综合色| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 欧美激情久久久久久爽电影| 一区二区三区精品91| 日韩强制内射视频| 男人和女人高潮做爰伦理| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av成人精品| 欧美成人精品欧美一级黄| 免费看不卡的av| 亚洲,欧美,日韩| 欧美最新免费一区二区三区| 日本wwww免费看| 啦啦啦中文免费视频观看日本| 舔av片在线| 熟女人妻精品中文字幕| 亚洲精品中文字幕在线视频 | 久久久久网色| 久久人人爽人人片av| 久久精品国产a三级三级三级| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 亚洲一级一片aⅴ在线观看| 亚洲内射少妇av| 男女国产视频网站| 少妇猛男粗大的猛烈进出视频 | 日本欧美国产在线视频| 午夜福利在线在线| 日日啪夜夜爽| 久久久午夜欧美精品| 亚洲欧洲日产国产| 在线免费十八禁| 国产在线男女| 亚洲精品,欧美精品| 黄色日韩在线| 交换朋友夫妻互换小说| 日本-黄色视频高清免费观看| 大话2 男鬼变身卡| 免费看a级黄色片| 亚洲av电影在线观看一区二区三区 | 我的女老师完整版在线观看| 欧美性感艳星| 亚洲高清免费不卡视频| 麻豆精品久久久久久蜜桃| 国产伦理片在线播放av一区| 欧美bdsm另类| 女人十人毛片免费观看3o分钟| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 亚洲av欧美aⅴ国产| 麻豆成人av视频| 国产女主播在线喷水免费视频网站| 亚洲精品乱久久久久久| 色播亚洲综合网| 日韩一区二区三区影片| 亚洲欧美成人精品一区二区| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 亚洲欧洲日产国产| 亚洲av一区综合| 亚洲国产精品成人久久小说| 欧美丝袜亚洲另类| 国产久久久一区二区三区| 在线播放无遮挡| 成人免费观看视频高清| 中文天堂在线官网| 亚洲成人中文字幕在线播放| 久久人人爽人人爽人人片va| 国产 精品1| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 免费高清在线观看视频在线观看| 亚洲av福利一区| 免费观看性生交大片5| 久久久久网色| 人妻系列 视频| 国产欧美日韩一区二区三区在线 | 汤姆久久久久久久影院中文字幕| 亚洲精品色激情综合| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 亚洲av在线观看美女高潮| 久久精品国产亚洲av涩爱| 久久久久久九九精品二区国产| 亚洲一级一片aⅴ在线观看| 有码 亚洲区| av卡一久久| 国产美女午夜福利| 国产成人精品一,二区| av.在线天堂| 亚洲真实伦在线观看| 又粗又硬又长又爽又黄的视频| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 80岁老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 久久久国产一区二区| 久久久久国产精品人妻一区二区| 国产伦在线观看视频一区| 日本wwww免费看| 亚洲一级一片aⅴ在线观看| 美女国产视频在线观看| 一区二区三区乱码不卡18| av黄色大香蕉| 国产探花极品一区二区| 亚洲第一区二区三区不卡| 日韩欧美 国产精品| 久久精品久久久久久噜噜老黄| 夫妻午夜视频| 亚洲综合精品二区| 18禁动态无遮挡网站| 亚洲精品一区蜜桃| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 狠狠精品人妻久久久久久综合| 直男gayav资源| 夫妻性生交免费视频一级片| 少妇人妻 视频| 国产高清国产精品国产三级 | 美女主播在线视频| 久久影院123| 久久久久性生活片| 亚洲,欧美,日韩| 成人亚洲欧美一区二区av| 大码成人一级视频| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看 | 国产熟女欧美一区二区| 全区人妻精品视频| 日本黄大片高清| 美女xxoo啪啪120秒动态图| 蜜桃久久精品国产亚洲av| 免费观看av网站的网址| 大码成人一级视频| 女人被狂操c到高潮| 成人高潮视频无遮挡免费网站| 精品久久久久久电影网| 精品一区二区三区视频在线| 欧美日本视频| 日韩精品有码人妻一区| 18禁在线无遮挡免费观看视频| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线| 能在线免费看毛片的网站| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 少妇人妻久久综合中文| 99热6这里只有精品| 波野结衣二区三区在线| 亚洲av电影在线观看一区二区三区 | 亚洲精品乱码久久久v下载方式| 亚洲精品亚洲一区二区| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 少妇人妻 视频| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 91久久精品国产一区二区三区| 高清毛片免费看| 久久久亚洲精品成人影院| 18禁在线播放成人免费| 国产成人精品一,二区| 国产 一区精品| 久久久色成人| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 亚洲欧美日韩另类电影网站 | 菩萨蛮人人尽说江南好唐韦庄| 在线免费十八禁| 欧美激情国产日韩精品一区| 黑人高潮一二区| 国产亚洲一区二区精品| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久 | 国产 一区精品| 好男人在线观看高清免费视频| 尾随美女入室| 日韩三级伦理在线观看| 久久精品久久久久久久性| 大话2 男鬼变身卡| av在线播放精品| 国产在线男女| 国产成年人精品一区二区| 91精品国产九色| 永久网站在线| 卡戴珊不雅视频在线播放| 国产大屁股一区二区在线视频| 黄色日韩在线| 成人特级av手机在线观看| 天堂俺去俺来也www色官网| 国产成人精品福利久久| 97在线视频观看| 中文在线观看免费www的网站| 欧美日韩视频精品一区| 国产黄色视频一区二区在线观看| 国产有黄有色有爽视频| 久久97久久精品| 亚洲国产精品999| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 日本与韩国留学比较| 国产片特级美女逼逼视频| 亚洲av二区三区四区| 97在线视频观看| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 在线 av 中文字幕| 天天一区二区日本电影三级| 91久久精品国产一区二区三区| 老女人水多毛片| 欧美bdsm另类| 超碰97精品在线观看| 日韩欧美 国产精品| 一级毛片我不卡| 看免费成人av毛片| 久久影院123| 亚洲丝袜综合中文字幕| 各种免费的搞黄视频| 国产精品蜜桃在线观看| 亚洲精品乱码久久久久久按摩| 性插视频无遮挡在线免费观看| 日韩成人伦理影院| 日本猛色少妇xxxxx猛交久久| 新久久久久国产一级毛片| 免费观看a级毛片全部| 少妇 在线观看| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片| www.av在线官网国产| 男女国产视频网站| 成人美女网站在线观看视频| 亚洲美女视频黄频| 91精品国产九色| 日本与韩国留学比较| 亚洲成人久久爱视频| 亚洲综合色惰| 国模一区二区三区四区视频| 欧美人与善性xxx| 国产视频首页在线观看| 国产免费又黄又爽又色| av免费在线看不卡| 日本三级黄在线观看| 亚洲天堂av无毛| 人妻系列 视频| 国产乱人视频| 日韩免费高清中文字幕av| 在线精品无人区一区二区三 | av国产免费在线观看| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 精品久久国产蜜桃| 联通29元200g的流量卡| 亚洲国产av新网站| 晚上一个人看的免费电影| 国产精品福利在线免费观看| 日韩 亚洲 欧美在线| 国产成人精品久久久久久| 国产亚洲av嫩草精品影院| 色网站视频免费| 久久韩国三级中文字幕| 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 丝瓜视频免费看黄片| 美女主播在线视频| 少妇熟女欧美另类| 精品人妻偷拍中文字幕| 男人爽女人下面视频在线观看| 国产av码专区亚洲av| av卡一久久| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 欧美日本视频| 久久精品综合一区二区三区| 夜夜爽夜夜爽视频| 国产伦精品一区二区三区视频9| 亚洲国产成人一精品久久久| av播播在线观看一区| 韩国av在线不卡| 亚洲精品乱码久久久久久按摩| 丝袜脚勾引网站| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av福利一区| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 一级av片app| 日本午夜av视频| 极品教师在线视频| av播播在线观看一区| 韩国av在线不卡| 欧美亚洲 丝袜 人妻 在线| 三级国产精品片| 亚洲真实伦在线观看| 久久久久性生活片| 中文字幕av成人在线电影| 99久国产av精品国产电影| 一级毛片黄色毛片免费观看视频| 性插视频无遮挡在线免费观看| 亚洲最大成人中文| 日韩成人av中文字幕在线观看| 欧美老熟妇乱子伦牲交| 欧美另类一区| 另类亚洲欧美激情| 久久久精品欧美日韩精品| 国产精品不卡视频一区二区| 嫩草影院精品99| 人妻一区二区av| 青青草视频在线视频观看| 人妻一区二区av| 一级毛片久久久久久久久女| 人妻一区二区av| 亚洲av电影在线观看一区二区三区 | 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 亚洲国产高清在线一区二区三| 精品久久久精品久久久| 丝袜美腿在线中文| 免费看光身美女| 午夜免费鲁丝| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 国国产精品蜜臀av免费| 18+在线观看网站| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 久久人人爽av亚洲精品天堂 | 久久这里有精品视频免费| 麻豆国产97在线/欧美| 成人欧美大片| 激情五月婷婷亚洲| 在线播放无遮挡| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 免费观看性生交大片5| 亚洲最大成人中文| 69人妻影院| 白带黄色成豆腐渣| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 永久网站在线| 国产精品99久久99久久久不卡 | 亚洲久久久久久中文字幕| 视频区图区小说| 九九爱精品视频在线观看| 国产精品无大码| 99热这里只有精品一区| 少妇人妻久久综合中文| tube8黄色片| 精品久久久久久久久av| 免费看不卡的av| 91在线精品国自产拍蜜月| av福利片在线观看| 热99国产精品久久久久久7| 国产永久视频网站| 99热这里只有是精品在线观看| 亚洲成人中文字幕在线播放| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| 黄色欧美视频在线观看| 久久久精品94久久精品| 熟女av电影| 久久6这里有精品| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 美女视频免费永久观看网站| 国产精品av视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 九色成人免费人妻av| 亚洲,欧美,日韩| 嫩草影院入口| 纵有疾风起免费观看全集完整版| 久久精品国产亚洲网站|