• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial variability of δ18O and δ2H in North Pacific and Arctic Oceans surface seawater

    2022-10-18 12:57:30LIZhiqiangDINGMinghuWANGYetangDUZhihengDOUTingfeng
    Advances in Polar Science 2022年3期

    LI Zhiqiang, DING Minghu, WANG Yetang, DU Zhiheng & DOU Tingfeng

    Spatial variability of18O and2H in North Pacific and Arctic Oceans surface seawater

    LI Zhiqiang1, DING Minghu2,3, WANG Yetang4*, DU Zhiheng3& DOU Tingfeng5

    1National Marine Environmental Forecasting Center, Beijing 100081, China;2State Key Laboratory of Severe Weather and Institute of Tibetan Plateau & Polar Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China;3State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;4College of Geography and Environment, Shandong Normal University, Jinan 250014, China;5College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

    This study presents new observations of stable isotopic composition (18O,2H and deuterium excess) in surface waters of the North Pacific and Arctic Oceans that were collected during the sixth Chinese National Arctic Research Expedition (CHINARE) from mid-summer to early autumn 2014. Seawater18O and2H decrease with increasing latitudes from 39°N to 75°N, likely a result of spatial variability in evaporation/precipitation processes. This explanation is further confirmed by comparing the18O–2H relationship of seawater with that of precipitation. However, effects of freshwater inputs on seawater stable isotopic composition are also identified at 30°N–39°N. Furthermore, we finda non-significant relationship between the isotopic parameters (2H and18О) and salinity from 73°N northwards in the Arctic Ocean, implying that sea ice melting/formation may have some effect. These results suggest that the isotopic parameters2H and18О are useful for tracing marine hydrological processes.

    stable water isotopes, seawater salinity, surface seawater, North Pacific Ocean, Arctic Ocean

    1 Introduction

    The isotopic ratios of seawater18O and2H, which represent the isotopic abundance ratios of18O/16O and2H/1H, respectively, in a sample with respect to those of Vienna Standard Mean Ocean Water (VSMOW) are associated with fractionation processes that occur during all phase transitions in the hydrological cycle, including evaporation, precipitation, melting, and freezing of freshwater in the ocean. Thus, in modern oceans, seawater isotopes can serve as valuable natural tracers of sea ice melt (Macdonald et al., 1999), the source(s) of freshwater input (Khatiwala et al., 1999; Dubinina et al., 2017), and the formation of deep ocean water (Jacobs et al., 1985). They have also been used to trace the flow pathways of freshwater to the sea and to quantify the exchanges between different water masses (Gordeev et al., 1996; Bauch et al., 2005; Dubinina et al., 2017). Furthermore, the seawater stable isotopes of hydrogen and oxygen are considered important proxies for reconstructing palaeoclimate (Craig and Gordon, 1965; Sowers and Bender, 1995; Koutavas and Joanides, 2012) and palaeosalinity, an important parameter for understanding the ocean hydrological cycle (Rohling and Bigg, 1998; Singh et al., 2014).

    Several previous studies have documented that seawater18O,D, and their relationship can be used to understand oceanic hydrological processes (Conroy et al., 2014; Dubinina et al., 2017; Kumar et al., 2018). To quantify ocean isotopic signatures, many seawater18O measurements have been made across the world’s oceans from 1950 onwards (LeGrande and Schmidt, 2006). However, such observations over the North Pacific Ocean and the Arctic Ocean remain limited, and so oceanic hydrological processes remain inadequately characterized. Thus, additional seawater isotope observations are still required.

    Deuterium excess (), defined as=2H?8×18O (Dansgaard, 1964), quantifies non-equilibrium fractionation effects during phase changes. This second-order parameter depends largely on the conditions, such as relative humidity, sea surface temperature (SST), and wind speed, in the region of moisture origin, i.e., where water evaporates from the ocean surface (Dansgaard, 1964; Pang et al., 2015; Parkes et al., 2017). Thus, ocean surface conditions have a strong impact onvalues in vapor or subsequent precipitation (Uemura et al., 2008). As a result, changes in surface seawatervalues likely affect thevariations measured in vapor and precipitation. Many efforts have been made to investigate the spatial and temporal variability vapor and precipitationvalues, and to infer their main underlying processes (Aemisegger et al., 2014; Benetti et al., 2014; Pfahl and Sodemann, 2014). However, data on the spatial variability of seawatervalues and inferences regarding their underlying mechanisms are still somewhat limited.

    Here, we present new isotope data of surface seawater collected along the route of the sixth Chinese National Arctic Research Expedition (CHINARE), which took place from July to September 2014 (Figure 1). Based on this dataset, we investigate the spatial patterns in seawater stable isotopic compositions, quantify2H–18O relationships, and analyze their possible controlling factors.

    Figure 1 The route of the 6th CHINARE and the locations of the seawater isotopic composition and surface salinity samplings.

    2 Data and methods

    During the 6th CHINARE cruise (July to September of 2014), sea surface water samples were collected every 12 h along the route shown in Figure 1. The route spans the East China Sea, the Japan Sea, the Northwest Pacific Ocean, the Bering Sea, the Chukchi Sea, and the Arctic Ocean. The northern-most sampling location was at 81°N, 155°E. In total, 178 250-mL high-density polyethylene (HDPE) bottles were used to collect surface water. To prevent contamination, a 10-L bucket was used to collect surface water and first wash and then fill the bottles at each site. Then, the tightly capped bottles were placed into separate Ziploc bagsand were refrigerated. Two bottles of seawater were sampled at each location to determine whether sample contamination may have occurred.

    Stable water isotopic compositions were measured at theState Key Laboratory of Cryospheric Sciences, China by wavelength scanned cavity ring-down spectrometry (CRDS) (Picarro L1102), with an overall precision of at least 0.15‰ for18O and 0.5‰ for2H. Using the isotope ratio mass spectrometry (IRMS) method, salinity correction tovalues was considered unnecessary because the molalities of Mg, Ca, and K were lower than the values used for correction (Gonfiantini, 1981). As a modern method, near-infrared laser absorption spectroscopy techniques (including CRDS) have also proven applicable to seawater experiments (Skrzypek and Ford, 2014). The main effect (incomplete evaporation and memory effect) of salinity is related to the vaporizer. Thus, the in-time replacement of the injection pad per 100 injections of seawater samples was applied in our measurements. Isotopic compositions are reported as18O and2H values and represent the differences in the18O/16O and D/H ratios, respectively, between the samples and VSMOW.

    Based on results from four world-class laboratories (Benetti et al., 2017), when applying the CRDS method to sea-water, and additional correction of ~0.09‰ is required for18O compared with freshwater. This is slightly larger than that the IRMS method requires (0.06‰–0.02‰). However, for2H, only ~0.13‰ of extra correction is required, which is much less than that required by IRMS measurements (0.55‰–0.23‰). Regardless, the errors of both methods were minimized by applying rigorous experimental protocols and conducting calibration.

    Surface seawater was collected from an intake on the port side of the ship at approximately 4-m depth, which was designed to capture representative surface biogeochemical signals. To minimize clogging by sea ice and reduce the residence time of the sampling, a sea chest was specifically designed (details can be found in Chen et al. (2015)). We measured the SST and salinity continuously along the cruise route by means of an SBE21 (Sea-Bird Electronics) thermosalinograph installed in the sea chest, which has been widely used for observational marine chemistry studies.

    All instruments were calibrated and tested before deployment. Instrumental uncertainty in the temperature and conductivity sensors was 0.002℃ and ~0.03 ms·cm?1, respectively. Salinities given by the conductivity sensors are in practical salinity units (PSU). This information was also introduced by He et al. (2015), Chen et al. (2015) and Chen et al. (2019).

    3 Results and discussion

    3.1 Spatial patterns if δ18O and δ2H in surface seawater

    Along the voyage route northwards, seawater2H varies from ?50.0‰ to ?0.6‰, and the range of18O values is between ?5.4‰ and ?0.1‰. Both the18O and2H values of surface seawater vary spatially as a function of latitude. As expected, they decrease with increasing latitude, with the heavy isotopes being relatively enriched in the mid-latitudes and depleted in the high-latitude Arctic Ocean(Figures 1 and 2). This finding agrees with the observed changes in meteoric water due to latitudinal temperature and precipitation effects (Craig and Gordon, 1965; Criss, 1999). Latitude is also an important factor affecting spatial changes in, but only for the sampling sites at <40° latitude and >70° latitude (Figure 2). About 25% and 40% of the spatial variance ofcan be explained by the linear regression models, respectively.

    However, from 30°N to 39°N, the seawater18O and2H values show increases of 0.1‰ and 0.6‰, respectively, per degree of latitude. Salinity values follow the18O and2H patterns, but a slight decrease in the SST is observed. In particular, extremely low salinity:18O ratios occur between 36°N and 45°N, and thus the increase in the18O and2H values may be associated with the input of surface runoff (freshwater). Given the extremely high correlation between18O and2H (>0.98,=0), we further investigated regional patterns in the stable isotopic composition in surface seawater using18O. Between 40°N and 62°N, the SST sharply decreases from 20℃ to 5℃, whereas the salinity gradually decreases from 33.9 to 30.7 PSU. The corresponding18O values vary by 1.7‰ (from ?1.8‰ to ?0.1‰). From 62°N to 77°N, the SST fluctuates from ?0.7℃ to 10℃. In this latitudinal range, sharp changes in seawater salinity and18O also occur, with decreases of 11 PSU and 4.5‰, respectively. From 77°N northwards, the seawater salinity is lower, but a slight increase in the seawater18O is observed, which may be an effect of sea ice melt; sea ice usually has higher18O values than the underlying seawater because relatively more18O is incorporated into ice than the water from which it froze. During the freezing or melting of seawater, the18O values do not change much due to the small fractionation factor involved in the transition between ice and water (Beck and Münnich, 1988; Melling and Moore, 1995). In contrast, the influence of sea ice formation or melt on seawater salinity changes is large because of the extremely low salinity of sea ice (the salinity of sea ice is usually as low as 4 PSU; Ekwurzel et al., 2001). Our samples in the Arctic Ocean were collected between late July and early September of 2014, when sea ice extent is at or close to its annual minimum (Figure 3). Extensive sea ice melt led to a slight increase in seawater18O and a decrease in salinity.

    To further determine spatial patterns in the seawater stable isotopic composition, we identify different areas of the North Pacific and Arctic Oceans via a clustering analysis (Clusters 1–5 in Figure 4). Analysis of variance (ANOVA) was used to test the statistical significance of the differences between the clusters. Here, we use the 0.05 significance level. Cluster 1 samples are from the East China Sea and the Sea of Japan (30°N–40°N), where a large range of18O values are observed and the SST decreases sharply with increasing latitude.18O values and salinities in Cluster 2, which are from the region of the North Pacific Ocean, dominated by Kuroshio Current, are higher Clusters 3 and 4 were sampled over the region of the Bering Sea where there are three main currents; the Bering Slope Current, the Kamchatka Current, and the Aleutian North Slope Current (Stabeno et al., 1999). The18O values range from ?3.5‰ to ?1‰, which broadly agree with those obtained in previous surface water samplings from Bering Sea (Cooper et al., 1997). Based on the linear regression of18O with salinity by the least squares fit, the-intercept of zero salinity for18O is ?11.1‰, which is similar to the mean18O value of freshwater between meteoric water values and melted sea ice. Cooper et al. (1991) reported a freshwater18O value of approximately ?22‰ in the Yukon River, which is the largest river entering the Bering Sea. According to Macdonald et al. (1989, 1999),18O values in the sea ice and sea ice melt range from ?3‰ to ?2‰. The mean18O value of all sea ice collected during 2010 and 2011 in the Chukchi Sea were reported to be approximately ?1‰ (Cooper et al., 2016). Cluster 5 (73°N to 81°N) was sampled from the Arctic Ocean and has lower18O and salinities than the other clusters.

    Figure 2 Latitudinal distributions of SST (a), salinity (b), deuterium excess () (c),2H (d), and18O (e) in surface ocean waters.

    Figure 3 Arctic sea ice extent on 26th August 2014 (a) and monthly mean sea ice extent in August 2014 (b). Data are from NSIDC: https://nsidc.org/data/NSIDC-0051.

    Figure 4 Three-dimensional plot showing18O vs. salinity vs. latitude, which helps to identify the regional features of the seawater18O and-salinity relationship.

    3.2 δD and δ18O relationship in sea surface water

    The pioneering work by Craig (1961) reported the quantitative relationship between2H and18O in precipitation, with2H =8×18O+10, which is known as the meteoric water line (MWL). This relationship has been explained physically by an isotopic fractionation Raleigh-type mode. The robust relationship between2H and18O was also observed in Antarctic surface snow by Masson-Delmotte et al. (2008). Given that the combined application of seawater2H and18O measurements can quantitatively improve paleohydrology and palaeosalinity reconstructions (Rohling, 2007; Holloway et al., 2016), increasing attention has been paid to the use of2H for palaeosalinity reconstruction (e.g., Roberts et al., 2016). However, the seawater2H–18O relationship is still not well documented. Our observations show a high and significant correlation between2H and18O in seawater over the North Pacific and Arctic Oceans, with a slope of 7.7‰±0.1‰ per ‰ (>0.99,<0.01), which is close to both the global average seawater2H–18O slope of 7.4 (Rohling, 2007) and the slope of the global MWL derived from Global Network of Isotopes in Precipitation (GNIP) precipitation data (Rozanski et al., 1993). For the distinct regions in the North Pacific and Arctic Oceans identified by clustering (as described above), strong correlations between2H and18O in seawater were found for all clusters, despite the differences in their gradients (Figure 5). Cluster 1 had the shallowest seawater2H-18O slope of 6.9‰ per ‰. This possibly reflects the impact of continental runoff, which generally has a lower2H-18O slope than seawater (e.g., Deshpande et al., 2013). The steepest2H-18O slope (7.8‰ per ‰) was observed in Clusters 3 and 4.

    Figure 5 The relationship between seawater18O and2H for the different regions (clusters) of the North Pacific and Arctic Oceans. The dotted lines indicate the linear regressions on the data from the different clusters.denotes the significance of the relationships according to the linear regression analysis.

    3.3 Spatial variability in the d values of surface seawater

    Along the 6th CHINARE route, seawatervalues varied from ?1.3‰ to 2.5‰. In the Arctic Ocean, a significant positive correlation betweenand latitude was evident (=0.63,<0.05), but a significant negative correlation exists between seawaterand18O (=?0.68,<0.05). Given that the spatial distributions ofand18O are often used for model validation (Xu et al., 2012), the spatial distribution ofas a function of latitude that best fits thespatial distribution (Figure 2) was calculated. However, no significant correlations between the seawatervalues and latitude or18O were found over the North Pacific Ocean (Figure 2).

    Along the 6th CHINARE route from the Bering Strait to the interior of the Arctic Ocean (from 66°N northward),values of surface seawater at all sampling sites (except one) are positive, suggesting the possibly of strong runoff impacts (Xu et al., 2012). The18O-salinity relationship for the sampling sites from 66°N to 70°N shows the-intercept (salinity=0) of18O is ?24‰±6‰ (2=0.74,=8), indicating the large freshwater contribution of river runoff into the Bering Strait. The-intercept (salinity=0)18O value from 71°N to 80°N is estimated to be ?9.3‰±2.2‰ (2=0.23,=27), which reflects a fraction of melted sea ice in the surface seawater. However, this contribution is most likely very limited for seawater along our cruise track because the heavy oxygen isotopes become substantially more depleted along the cruise route into the interior of the Arctic Ocean, with a18O value as low as

    3.4 Processes controlling spatial variability in the stable isotopic composition of surface seawater

    The processes controlling variations in stable isotopes in seawater includeevaporation, precipitation, sea ice freezing and melting, and advection and diffusion of water masses from different source regions. Figure 6 shows the quantitative relationship between18O,2H, and salinity in seawater along the voyage route. A robust positive correlation is observed along the whole route, with slopes of 0.4‰±0.02‰/PSU for18O (=90,<0.01) and 2.8‰± 0.15‰/PSU forD (=90,<0.01).

    Figure 6 The relationships between surface sea salinity and seawater18O (a), and surface sea salinity andseawater2H (b) from the North Pacific and Arctic Oceans.

    To explore the other processes affecting spatial changes in seawater stable isotopes, we analyzed the oxygen isotope-salinity (18O-) relationships for the regional clusters (Figure 7).Cluster 1, which corresponds to the East China Sea and the Sea of Japan, exhibits a shallow slope of 0.2‰/PSU, which is broadly consistent with those previously reported for the Tsushima Strait (0.2‰/PSU) and the Tsushima Current in the Sea of Japan (0.3‰/PSU) (Kodaira et al., 2016). In the East China Sea and the Tsushima Strait, diluted water from Changjiang is the main driver of low salinity and18O values (Zhang et al., 1990; Kodaira et al., 2016). For the Tsushima Current, terrestrial water inputs from the Japanese Archipelago are responsible for the low salinity and18O values (Kodaira et al., 2016). Thus, surface runoff likely plays an important role in the18O changes for Cluster 1. Cluster 2 has the steepest18O-slope of 0.6‰/PSU (Figure 7), which seems to suggest that the seawater composition of this area may be predominantly controlled by evaporation/precipitation. There was no statistically significant difference in the18O-slope between Clusters 3, 4, and 1 (>0.05). The data for Cluster 5 indicate a18O-slope of 0.11‰/PSU (2=0.09), but the relationship is not statistically significant (=0.16). This implies that sea ice melting/freezing has an important impact on the18Oandsalinity values in this region. Sea ice formation/melting has large effects on seawater salinity. However, its impact on the isotopic composition in seawater is minor because of the small fractionation between sea ice and seawater. Thus, a large range of salinities rather than large changes in18O values are observed in the surface ocean where sea ice formation and melting occur. Furthermore, the seasonality of sea ice extent also results in seasonal changes in the-salinity relationship. Over the Arctic Ocean, the maximum sea ice extent generally occurs in March, and the minimum in September (Figure 4), when our sampling took place. The-salinity slopes in September may be larger than those in other seasons due to the reduction in the salinity of surface seawater caused by extensive sea ice melting in this season.

    Figure 7 The relationship between seawater18O and salinity for the different sections of the North Pacific and Arctic Oceans according to the clusters shown in Figure 4.

    4 Conclusions

    In this study, we present new measurements of the stable isotopic composition of surface seawater along the routes of the 6th CHINARE voyage. This campaign has helped to improve the coverage of isotopic measurements in the North Pacific and Arctic Oceans.SST and salinity were also measured. This new dataset allows us to examine the spatial variation in the stable isotopic composition, the18O-2H relationship, and the18O-salinity relationship, and hence helps trace hydrological processes.

    A strong18O-2H relationship was found, which makes it possible to extrapolate seawater2H based on18O. Seawater18O and2H values exhibit latitudinal changes, with decreasing values as latitude increases. The robust correlation between seawater18O and2H and salinity across the North Pacific and Arctic Oceans suggest that spatial pattern may largely result from evaporation/ precipitation effects. However, north of 73°N, sea ice melting plays a key role in the18O,2H, and salinity changes. This finding can be further confirmed because a significant correlation betweenand latitude is present over the Arctic Ocean but not over the North Pacific Ocean. The lack of significant correlation over the North Pacific may be associated with a decline in evaporation causing an increased sea ice extent with increased latitude, driving upvariations.

    Our new dataset still represents only three months and is subject to the temporal biases inherent in most18O and2H data. In the future, seasonal and long-term observations of seawater stable isotopes are required to examine whether the18O-2H relation varies over time. Furthermore, these data are important for studying the stability of the-salinity relationship over time (Delaygue et al., 2001; Kumar et al., 2018) because seawater isotopes are associated with varying origins and pathways of atmospheric vapor, whereas seawater salinity is not.

    This work was funded by the National Natural Science Foundation of China (Grant no. 41771064), the National Key Basic Research Program of China (Grant no. 2019YFC1509100), the Basic Research Fund of Chinese Academy of Meteorological Sciences (Grant no. 2021Z006), the Project for Outstanding Youth Innovation Team in the Universities of Shandong Province (Grant no. 2019KJH011), and the 6th CHINARE. We appreciate two anonymous reviewers, and Associate Editor, Dr. Cinzia Verde for their constructive comments that have further improved the manuscript.

    Aemisegger F, Pfahl S, Sodemann H, et al. 2014. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos Chem Phys, 14(8): 4029-4054, doi:10.5194/acp-14-4029-2014.

    Bauch D, Erlenkeuser H, Andersen N. 2005. Water mass processes on Arctic shelves as revealed from18O of H2O. Glob Planet Change, 48(1-3): 165-174, doi:10.1016/j.gloplacha.2004.12.011.

    Beck N, Münnich K O. 1988. Freezing of water: isotopic fractionation. Chem Geol, 70(1-2): 168, doi:10.1016/0009-2541(88)90693-6.

    Benetti M, Sveinbj?rnsdóttir A E, ólafsdóttir R, et al. 2017. Inter- comparison of salt effect correction for18O and2H measurements in seawater by CRDS and IRMS using the gas-H2O equilibration method. Mar Chem, 194: 114-123, doi:10.1016/j.marchem.2017.05.010.

    Benetti M, Reverdin G, Pierre C, et al. 2014. Deuterium excess in marine water vapor: dependency on relative humidity and surface wind speed during evaporation. J Geophys Res Atmos, 119(2): 584-593, doi:10.1002/2013jd020535.

    Chen B, Cai W, Chen L. 2015. The marine carbonate system of the Arctic Ocean: Assessment of internal consistency and sampling considerations, summer 2010. Mar Chem, 176: 174-188, doi: 10.1016/j.marchem.2015.09.007.

    Chen Z K, Wei L X, Li Z Q, et al. 2019. Sea fog characteristics over the Arctic pack ice in summer 2017. Mar Forecasts, 36(2): 77-87, doi:10.11737/j.issn.1003-0239.2019.02.009 (in Chinese with English abstract).

    Conroy J L, Cobb K M, Lynch-Stieglitz J, et al. 2014. Constraints on the salinity-oxygen isotope relationship in the central tropical Pacific Ocean. Mar Chem, 161: 26-33, doi:10.1016/j.marchem.2014.02.001.

    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703, doi:10.1126/science.133.3465.1702.

    Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere//Tongiorgi E (Eds). Stable isotopes in oceanographic studies and paleotemperatures. Spoleto: Cons Naz di Rech, 9-130.

    Criss R E. 1999. Principles of stable isotope distribution. New York: Oxford University Press.

    Cooper L W, Olsen C R, Solomon D K, et al. 1991. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed. Water Resour Res, 27(9): 2171-2179, doi:10.1029/91wr01243.

    Cooper L W, Whitledge T E, Grebmeier J M, et al. 1997. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait. J Geophys Res Ocean, 102(C6): 12563-12573, doi:10.1029/97jc00015.

    Cooper L W, Frey K E, Logvinova C, et al. 2016. Variations in the proportions of melted sea ice and runoff in surface waters of the Chukchi Sea: a retrospective analysis, 1990–2012, and analysis of the implications of melted sea ice in an under-ice bloom. Deep Sea Res Part II Top Stud Oceanogr, 130: 6-13, doi:10.1016/j.dsr2.2016.04.014.

    Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468, doi:10.3402/tellusa.v16i4.8993.

    Delaygue G, Bard E, Rollion C, et al. 2001. Oxygen isotope/salinity relationship in the northern Indian Ocean. J Geophys Res Oceans, 106(C3): 4565-4574, doi:10.1029/1999jc000061.

    Deshpande R D, Muraleedharan P M, Singh R L, et al. 2013. Spatio-temporal distributions of18O,D and salinity in the Arabian Sea: identifying processes and controls. Mar Chem, 157: 144-161, doi:10.1016/j.marchem.2013.10.001.

    Dubinina E O, Kossova S A, Miroshnikov A Y, et al. 2017. Isotope (D,18О) systematics in waters of the Russian Arctic seas. Geochem Int, 55(11): 1022-1032, doi:10.1134/S0016702917110052.

    Ekwurzel B, Schlosser P, Mortlock R A, et al. 2001. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. J Geophys Res, 106(C5): 9075-9092, doi:10.1029/ 1999jc000024.

    Gonfiantini R. 1981. The-notation and the mass-spectrometric measurement techniques//Gat J R, Gonfiantini R (Eds). Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Tech Rep Ser 210. Vienna: International Atomic Energy Agency, 337.

    Gordeev V V, Martin J M, Sidorov I S, et al. 1996. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci, 296(6): 664-691, doi:10.2475/ajs. 296.6.664.

    He Y, Liu N, Chen H X, et al. 2015. Observed features of temperature, salinity and current in central Chukchi Sea during the summer of 2012. Acta Oceanol Sin, 34(5): 51-59, doi:10.1007/s13131-015-0642-7.

    Holloway M D, Sime L C, Singarayer J S, et al. 2016. Reconstructing paleosalinity from18O: Coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene. Quat Sci Rev, 131: 350-364, doi:10.1016/j.quascirev.2015.07.007.

    Jacobs S S, Fairbanks R G, Horibe Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater//Jacobs S S. Oceanology of the Antarctic Continental Shelf, Volume 43. Washington D. C.: American Geophysical Union, 59-85, doi:10.1029/ar043p0059.

    Khatiwala S P, Fairbanks R G, Houghton R W. 1999. Freshwater sources to the coastal ocean off northeastern North America: evidence from H218O/H216O. J Geophys Res, 104(C8): 18241-18255, doi:10.1029/1999jc900155.

    Kodaira T, Horikawa K, Zhang J, et al. 2016. Relationship between seawater oxygen isotope ratio and salinity in the Tsushima Current, the Sea of Japan. Geochemistry, 50: 263-277, doi:10.14934/ chikyukagaku.50.263.

    Koutavas A, Joanides S. 2012. El Ni?o–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography, 27(4): PA4208, doi:10.1029/2012PA002378.

    Kumar P K, Singh A, Ramesh R. 2018. Controls on18O,D and18O-salinity relationship in the northern Indian Ocean. Mar Chem, 207: 55-62, doi:10.1016/j.marchem.2018.10.010.

    LeGrande A N, Schmidt G A. 2006. Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett, 33(12): L12604, doi:10.1029/2006gl026011.

    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1989. Composition and modification of water masses in the Mackenzie shelf estuary. J Geophys Res, 94(C12): 18057-18070, doi:10.1029/jc094ic12p18057.

    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1999. Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophys Res Lett, 26(15): 2223-2226, doi:10.1029/1999gl900508.

    Masson-Delmotte V, Hou S, Ekaykin A, et al. 2008. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim, 21(13): 3359-3387, doi:10.1175/2007jcli2139.1.

    Melling H, Moore R M. 1995. Modification of halocline source waters during freezing on the Beaufort Sea shelf: evidence from oxygen isotopes and dissolved nutrients. Cont Shelf Res, 15(1): 89-113, doi:10.1016/0278-4343(94)P1814-R.

    Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379): 66-70, doi:10.1038/nature 10705.

    Pang H, Hou S, Landais A, et al. 2015. Spatial distribution of17O-excess in surface snow along a traverse from Zhongshan Station to Dome A, East Antarctica. Earth Planet Sci Lett, 414: 126-133, doi:10.1016/j. epsl.2015.01.014.

    Parkes S D, McCabe M F, Griffiths A D, et al. 2017. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment. Hydrol Earth Syst Sci, 21(1): 533-548, doi:10.5194/ hess-21-533-2017.

    Pfahl S, Sodemann H. 2014. What controls deuterium excess in global precipitation? Clim Past, 10(2): 771-781, doi:10.5194/cp-10-771- 2014.

    Rohling E J, Bigg G R. 1998. Paleosalinity and δ18O: a critical assessment. J Geophys Res: Oceans, 103(C1): 1307-1318, doi:10.1029/97jc01047.

    Rohling E J. 2007. Progress in paleosalinity: overview and presentation of a new approach. Paleoceanography, 22(3): PA3215, doi:10.1029/ 2007pa001437.

    Roberts J, Gottschalk J, Skinner L C, et al. 2016. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc Natl Acad Sci, 113(3): 514-519, doi:10.1073/pnas. 1511252113.

    Rozanski K, Araguás-Araguás L, Gonfiantini R. 1993. Isotopic pattern in modern global precipitation//Swart P K, Lohmann K C, Mckenzie J, et al (Eds). Climate change in continental isotopic records, Volume 78.Washington D. C.: American Geophysical Union, 1-36, doi:10.1029/ gm078p0001.

    Singh A, Mohiuddin A, Ramesh R, et al. 2014. Estimating the loss of Himalayan glaciers under global warming using the δ18O-salinity relation in the Bay of Bengal. Environ Sci Technol Lett, 1(5): 249-253, doi:10.1021/ez500076z.

    Skrzypek G, Ford D. 2014. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument. Environ Sci Technol, 48(5): 2827-2834, doi:10.1021/es4049412.

    Stabeno P J, Schumacher J D, Ohtani K. 1999. The physical oceanography of the Bering Sea//Loughlin T R, Ohtani K (Eds). Dynamics of the Bering Sea. Fairbanks: University of Alaska Sea Grant, AK-SG-99-03, 1-28.

    Sowers T, Bender M. 1995. Climate records covering the last deglaciation. Science, 269(5221): 210-214, doi:10.1126/science.269.5221.210.

    Uemura R, Matsui Y, Yoshimura K, et al. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res, 113(D19): D19114, doi:10.1029/2008jd010209.

    Xu X, Werner M, Butzin M, et al. 2012. Water isotope variations in the global ocean model MPI-OM. Geosci Model Dev, 5(3): 809-818.

    Zhang J, Letolle R, Martin J M, et al. 1990. Stable oxygen isotope distribution in the Huanghe (Yellow River) and the Changjiang (Yangtze River) estuarine systems. Cont Shelf Res, 10(4): 369-384, doi:10.1016/0278-4343(90)90057-S.

    10.13679/j.advps.2021.0053

    16 November 2021;

    22 August 2022;

    30 September 2022

    : Li Z Q, Ding M H, Wang Y T, et al. Spatial variability of18O and2H in North Pacific and Arctic Oceans surface seawater. Adv Polar Sci, 2022, 33(3): 244-252,doi:10.13679/j.advps.2021.0053

    , ORCID: 0000-0003-2499-1147, E-mail: wangyetang@163.com

    免费高清在线观看日韩| 99久久综合免费| 91麻豆av在线| 香蕉国产在线看| 日本a在线网址| 精品久久久久久久毛片微露脸 | 美女中出高潮动态图| 男女午夜视频在线观看| 亚洲情色 制服丝袜| 久久中文字幕一级| 十八禁网站免费在线| 精品一区二区三卡| 新久久久久国产一级毛片| 精品亚洲成a人片在线观看| 国产精品二区激情视频| 亚洲av日韩在线播放| 1024视频免费在线观看| 51午夜福利影视在线观看| 国产一区有黄有色的免费视频| 国产精品 国内视频| 精品久久久久久久毛片微露脸 | 欧美97在线视频| 国产精品一区二区精品视频观看| 热99国产精品久久久久久7| 美女国产高潮福利片在线看| 国产精品熟女久久久久浪| 久久99热这里只频精品6学生| 最新在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 日本一区二区免费在线视频| 亚洲人成电影观看| 日本黄色日本黄色录像| 亚洲精品美女久久久久99蜜臀| 日韩电影二区| 国产日韩欧美亚洲二区| 老熟女久久久| 啦啦啦免费观看视频1| 99久久人妻综合| 日韩,欧美,国产一区二区三区| 最新的欧美精品一区二区| 欧美中文综合在线视频| 又黄又粗又硬又大视频| 丁香六月天网| 日本a在线网址| 成人国产av品久久久| 一区二区三区乱码不卡18| 飞空精品影院首页| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 啦啦啦啦在线视频资源| 国产三级黄色录像| 日韩制服骚丝袜av| 亚洲欧美清纯卡通| 亚洲精品一区蜜桃| 国产男女超爽视频在线观看| 精品久久蜜臀av无| 老司机在亚洲福利影院| 国产精品国产av在线观看| 欧美在线一区亚洲| 大片电影免费在线观看免费| 夜夜骑夜夜射夜夜干| 人人妻,人人澡人人爽秒播| 亚洲成人国产一区在线观看| 午夜福利在线观看吧| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 另类亚洲欧美激情| 在线观看免费日韩欧美大片| 日日夜夜操网爽| 婷婷成人精品国产| 日韩视频一区二区在线观看| 日韩中文字幕视频在线看片| 一二三四在线观看免费中文在| 一区福利在线观看| 免费av中文字幕在线| 中文字幕高清在线视频| 免费黄频网站在线观看国产| 黑丝袜美女国产一区| 国产一区二区在线观看av| 日本猛色少妇xxxxx猛交久久| 日本wwww免费看| 伊人久久大香线蕉亚洲五| av免费在线观看网站| 日韩 亚洲 欧美在线| 欧美性长视频在线观看| 99热这里只有精品一区 | 精品久久久久久成人av| 久久久久久人人人人人| 久久 成人 亚洲| 欧美日韩亚洲国产一区二区在线观看| 麻豆国产97在线/欧美 | 国产精品九九99| 极品教师在线免费播放| 国内毛片毛片毛片毛片毛片| 欧美黑人巨大hd| 亚洲成人国产一区在线观看| 亚洲av五月六月丁香网| 国产人伦9x9x在线观看| 午夜激情福利司机影院| 国产成人av教育| 一本一本综合久久| 男插女下体视频免费在线播放| 精品一区二区三区四区五区乱码| 制服诱惑二区| 亚洲人成电影免费在线| 欧美日韩亚洲国产一区二区在线观看| 黑人欧美特级aaaaaa片| 99热这里只有精品一区 | 国语自产精品视频在线第100页| 日日摸夜夜添夜夜添小说| 欧美大码av| 亚洲天堂国产精品一区在线| 亚洲欧美日韩高清在线视频| 国产亚洲精品综合一区在线观看 | 欧美性猛交╳xxx乱大交人| or卡值多少钱| 老鸭窝网址在线观看| 久久精品91无色码中文字幕| 男人的好看免费观看在线视频 | 欧美精品亚洲一区二区| 中文亚洲av片在线观看爽| ponron亚洲| 日韩精品免费视频一区二区三区| 一个人免费在线观看的高清视频| 亚洲五月天丁香| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线观看免费| 中文字幕高清在线视频| 精品一区二区三区av网在线观看| 最新在线观看一区二区三区| 免费看日本二区| 一卡2卡三卡四卡精品乱码亚洲| √禁漫天堂资源中文www| 亚洲avbb在线观看| 久久久久九九精品影院| 麻豆av在线久日| 非洲黑人性xxxx精品又粗又长| 国内久久婷婷六月综合欲色啪| 首页视频小说图片口味搜索| 日韩高清综合在线| a在线观看视频网站| 岛国在线免费视频观看| 99国产综合亚洲精品| 亚洲av第一区精品v没综合| 久久久久九九精品影院| 黑人操中国人逼视频| 搡老岳熟女国产| a级毛片在线看网站| 亚洲av成人精品一区久久| 老司机靠b影院| 欧美一区二区国产精品久久精品 | 欧美成人午夜精品| 成在线人永久免费视频| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 国产区一区二久久| 日本成人三级电影网站| 亚洲中文av在线| 女人被狂操c到高潮| 一级毛片精品| 国产精品乱码一区二三区的特点| 91麻豆av在线| 国产精品一区二区三区四区久久| 巨乳人妻的诱惑在线观看| www.自偷自拍.com| 99国产精品一区二区三区| 黑人欧美特级aaaaaa片| 观看免费一级毛片| 精品少妇一区二区三区视频日本电影| 国产精品综合久久久久久久免费| 亚洲成人国产一区在线观看| 变态另类丝袜制服| 成年人黄色毛片网站| 久久香蕉激情| 老司机福利观看| 日日爽夜夜爽网站| 777久久人妻少妇嫩草av网站| 欧美成人午夜精品| 国产一区在线观看成人免费| 女生性感内裤真人,穿戴方法视频| 桃红色精品国产亚洲av| 久久久久久亚洲精品国产蜜桃av| 一个人免费在线观看电影 | 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 亚洲欧美精品综合一区二区三区| 日韩精品中文字幕看吧| 亚洲午夜理论影院| 日韩高清综合在线| 日本一区二区免费在线视频| 欧美极品一区二区三区四区| 99国产精品一区二区蜜桃av| 给我免费播放毛片高清在线观看| 精品一区二区三区四区五区乱码| 一级毛片女人18水好多| 成人精品一区二区免费| 三级男女做爰猛烈吃奶摸视频| 大型黄色视频在线免费观看| 色综合亚洲欧美另类图片| 精品国产乱码久久久久久男人| tocl精华| www.精华液| 精品久久久久久久人妻蜜臀av| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻1区二区| 国产精品一及| 欧美日韩中文字幕国产精品一区二区三区| 我要搜黄色片| 国产亚洲精品一区二区www| 三级男女做爰猛烈吃奶摸视频| 夜夜看夜夜爽夜夜摸| 麻豆成人av在线观看| 妹子高潮喷水视频| 午夜福利欧美成人| 免费在线观看完整版高清| 一二三四社区在线视频社区8| 性色av乱码一区二区三区2| 亚洲熟妇中文字幕五十中出| 精品免费久久久久久久清纯| a在线观看视频网站| 国产片内射在线| 在线观看舔阴道视频| 麻豆成人av在线观看| 亚洲乱码一区二区免费版| 久久久水蜜桃国产精品网| 久久精品成人免费网站| 亚洲在线自拍视频| 一区二区三区激情视频| 国产又色又爽无遮挡免费看| а√天堂www在线а√下载| 麻豆国产av国片精品| 国产探花在线观看一区二区| 久久婷婷成人综合色麻豆| 国产蜜桃级精品一区二区三区| 欧美黑人巨大hd| 午夜成年电影在线免费观看| 欧美日韩精品网址| 日韩欧美国产一区二区入口| 亚洲熟妇中文字幕五十中出| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 99久久99久久久精品蜜桃| 久久久久久人人人人人| 国产91精品成人一区二区三区| 免费人成视频x8x8入口观看| 女人被狂操c到高潮| 国产免费男女视频| 国产av在哪里看| 91成年电影在线观看| 日本一区二区免费在线视频| 欧美久久黑人一区二区| 成人国产综合亚洲| 丁香欧美五月| 午夜亚洲福利在线播放| 18美女黄网站色大片免费观看| 成人亚洲精品av一区二区| 一本综合久久免费| 国产精品久久久久久亚洲av鲁大| 亚洲精品美女久久av网站| 真人一进一出gif抽搐免费| 国产片内射在线| 精品久久久久久久人妻蜜臀av| 黄色 视频免费看| 国产成年人精品一区二区| 俺也久久电影网| 99热这里只有精品一区 | 一边摸一边抽搐一进一小说| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 97人妻精品一区二区三区麻豆| 我要搜黄色片| 亚洲欧美激情综合另类| 免费一级毛片在线播放高清视频| 老汉色∧v一级毛片| 变态另类丝袜制服| 又大又爽又粗| 国内久久婷婷六月综合欲色啪| 午夜激情av网站| av国产免费在线观看| 搡老妇女老女人老熟妇| 久久精品国产99精品国产亚洲性色| 麻豆一二三区av精品| www.自偷自拍.com| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 真人做人爱边吃奶动态| 91字幕亚洲| av有码第一页| 午夜老司机福利片| 日日夜夜操网爽| 99久久久亚洲精品蜜臀av| 天堂动漫精品| 亚洲成av人片免费观看| 精品久久久久久久久久久久久| 黑人巨大精品欧美一区二区mp4| 一进一出好大好爽视频| 国产成人精品无人区| 欧美另类亚洲清纯唯美| 亚洲精品美女久久久久99蜜臀| 日韩成人在线观看一区二区三区| 久久精品综合一区二区三区| 成人av在线播放网站| 欧美最黄视频在线播放免费| 国内少妇人妻偷人精品xxx网站 | 天堂√8在线中文| 亚洲人与动物交配视频| 亚洲午夜理论影院| 国产野战对白在线观看| 香蕉丝袜av| av片东京热男人的天堂| 91在线观看av| 久久国产乱子伦精品免费另类| 欧美日韩亚洲综合一区二区三区_| 最新在线观看一区二区三区| 特级一级黄色大片| av天堂在线播放| 琪琪午夜伦伦电影理论片6080| 桃色一区二区三区在线观看| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区| 一夜夜www| 欧美一级毛片孕妇| 国产成+人综合+亚洲专区| 国产一区二区在线观看日韩 | 最近最新中文字幕大全电影3| 国产精品国产高清国产av| 草草在线视频免费看| 久久精品91无色码中文字幕| 国产精品电影一区二区三区| 国产在线观看jvid| 国产精品日韩av在线免费观看| 国产成人aa在线观看| 看片在线看免费视频| 好男人电影高清在线观看| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色| 激情在线观看视频在线高清| 国产精品一区二区三区四区久久| 亚洲欧美激情综合另类| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 一进一出抽搐动态| 亚洲午夜精品一区,二区,三区| 免费在线观看完整版高清| aaaaa片日本免费| 日韩国内少妇激情av| 亚洲精品久久成人aⅴ小说| 黄片大片在线免费观看| 99国产精品99久久久久| 在线视频色国产色| 一边摸一边抽搐一进一小说| 亚洲 欧美一区二区三区| av天堂在线播放| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 亚洲美女黄片视频| 在线观看午夜福利视频| 真人做人爱边吃奶动态| av欧美777| 制服诱惑二区| 老司机深夜福利视频在线观看| 久久婷婷人人爽人人干人人爱| 国产真实乱freesex| 亚洲午夜精品一区,二区,三区| 一二三四社区在线视频社区8| 在线看三级毛片| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| www国产在线视频色| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播| 黑人巨大精品欧美一区二区mp4| 久久久久久久午夜电影| 色综合欧美亚洲国产小说| 999精品在线视频| 一个人免费在线观看电影 | 日韩欧美国产在线观看| 亚洲专区中文字幕在线| 亚洲av熟女| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 男人的好看免费观看在线视频 | a级毛片a级免费在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕日韩| 国产精品自产拍在线观看55亚洲| 熟女少妇亚洲综合色aaa.| 变态另类成人亚洲欧美熟女| 丰满人妻一区二区三区视频av | 99热这里只有是精品50| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 99国产精品99久久久久| 国产av一区二区精品久久| 国产视频内射| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 国产久久久一区二区三区| 国产高清视频在线播放一区| 亚洲精品中文字幕一二三四区| 看免费av毛片| avwww免费| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 亚洲精品色激情综合| 久久伊人香网站| 国产av在哪里看| 午夜精品在线福利| 亚洲一区中文字幕在线| 露出奶头的视频| 99热这里只有是精品50| 色噜噜av男人的天堂激情| bbb黄色大片| 全区人妻精品视频| 国产伦人伦偷精品视频| 看片在线看免费视频| 亚洲精品美女久久久久99蜜臀| 欧美国产日韩亚洲一区| 无遮挡黄片免费观看| 亚洲欧美日韩高清专用| 在线十欧美十亚洲十日本专区| 久久精品影院6| 亚洲第一电影网av| 男人舔奶头视频| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 精品免费久久久久久久清纯| 麻豆一二三区av精品| 深夜精品福利| 国产v大片淫在线免费观看| 国产精品综合久久久久久久免费| 狠狠狠狠99中文字幕| www国产在线视频色| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看 | 亚洲午夜精品一区,二区,三区| 色综合站精品国产| 国产片内射在线| 啦啦啦免费观看视频1| x7x7x7水蜜桃| 黄色 视频免费看| www.www免费av| 99国产精品一区二区三区| 国产精品日韩av在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美又色又爽又黄视频| 最近在线观看免费完整版| 又紧又爽又黄一区二区| 欧美日韩乱码在线| 人人妻人人看人人澡| 国产高清视频在线观看网站| 色尼玛亚洲综合影院| 在线视频色国产色| 很黄的视频免费| 午夜视频精品福利| 禁无遮挡网站| 国产精品免费视频内射| 国产伦人伦偷精品视频| 中文字幕久久专区| 黄片小视频在线播放| 国产精品 欧美亚洲| 美女午夜性视频免费| 99在线视频只有这里精品首页| www.www免费av| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 欧美午夜高清在线| av超薄肉色丝袜交足视频| 亚洲第一电影网av| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕| 午夜影院日韩av| 免费观看人在逋| 丰满人妻熟妇乱又伦精品不卡| 亚洲av电影不卡..在线观看| 亚洲一区中文字幕在线| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美精品济南到| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 男人舔奶头视频| 又粗又爽又猛毛片免费看| 亚洲精品美女久久av网站| 在线播放国产精品三级| 久久婷婷成人综合色麻豆| 久久天躁狠狠躁夜夜2o2o| 50天的宝宝边吃奶边哭怎么回事| 精品乱码久久久久久99久播| 久9热在线精品视频| 老司机靠b影院| 精品欧美国产一区二区三| 国产熟女xx| 露出奶头的视频| 亚洲欧美激情综合另类| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩亚洲综合一区二区三区_| 最近在线观看免费完整版| 欧美日韩亚洲国产一区二区在线观看| 国内精品久久久久精免费| 国产一区二区三区视频了| 高清毛片免费观看视频网站| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 亚洲国产欧美人成| 国产成人一区二区三区免费视频网站| 亚洲中文字幕日韩| 久久中文字幕一级| 99国产精品99久久久久| 丁香欧美五月| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费电影在线观看| 久久久久国内视频| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 免费看日本二区| 久久国产乱子伦精品免费另类| 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 欧美日韩乱码在线| 一本精品99久久精品77| 国产又色又爽无遮挡免费看| 午夜精品久久久久久毛片777| 欧美三级亚洲精品| 俺也久久电影网| 天堂影院成人在线观看| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 午夜两性在线视频| 我要搜黄色片| 国产成+人综合+亚洲专区| 免费观看人在逋| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一小说| 手机成人av网站| 夜夜爽天天搞| 国内精品久久久久精免费| 长腿黑丝高跟| xxxwww97欧美| av福利片在线观看| cao死你这个sao货| 在线播放国产精品三级| 不卡av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人aa在线观看| 久热爱精品视频在线9| 国产精品一及| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 丁香欧美五月| 久99久视频精品免费| 成人永久免费在线观看视频| 亚洲精品国产精品久久久不卡| 亚洲人与动物交配视频| 国产精品免费视频内射| 免费高清视频大片| 91老司机精品| 中文字幕人成人乱码亚洲影| 毛片女人毛片| 国产一级毛片七仙女欲春2| 香蕉丝袜av| 成人三级做爰电影| 国产av在哪里看| 夜夜夜夜夜久久久久| 在线观看66精品国产| 中文字幕熟女人妻在线| 精品久久久久久久人妻蜜臀av| av在线播放免费不卡| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 日日夜夜操网爽| 亚洲,欧美精品.| 三级毛片av免费| 观看免费一级毛片| 又黄又粗又硬又大视频| 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人| 成在线人永久免费视频| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久亚洲av鲁大| 香蕉av资源在线| 成人三级做爰电影| ponron亚洲| 夜夜爽天天搞| 黄色丝袜av网址大全| 在线观看一区二区三区| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | 变态另类成人亚洲欧美熟女| 国产av不卡久久| 男女那种视频在线观看| 欧美在线黄色| 日本三级黄在线观看| 亚洲一码二码三码区别大吗| 在线观看免费午夜福利视频| 亚洲最大成人中文| 亚洲精品在线观看二区| 欧美性猛交╳xxx乱大交人| 国产亚洲精品一区二区www| 午夜福利18| 亚洲avbb在线观看| 少妇粗大呻吟视频| 亚洲一码二码三码区别大吗| 国内精品一区二区在线观看| 黄色视频不卡| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18|