• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial variability of δ18O and δ2H in North Pacific and Arctic Oceans surface seawater

    2022-10-18 12:57:30LIZhiqiangDINGMinghuWANGYetangDUZhihengDOUTingfeng
    Advances in Polar Science 2022年3期

    LI Zhiqiang, DING Minghu, WANG Yetang, DU Zhiheng & DOU Tingfeng

    Spatial variability of18O and2H in North Pacific and Arctic Oceans surface seawater

    LI Zhiqiang1, DING Minghu2,3, WANG Yetang4*, DU Zhiheng3& DOU Tingfeng5

    1National Marine Environmental Forecasting Center, Beijing 100081, China;2State Key Laboratory of Severe Weather and Institute of Tibetan Plateau & Polar Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China;3State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;4College of Geography and Environment, Shandong Normal University, Jinan 250014, China;5College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

    This study presents new observations of stable isotopic composition (18O,2H and deuterium excess) in surface waters of the North Pacific and Arctic Oceans that were collected during the sixth Chinese National Arctic Research Expedition (CHINARE) from mid-summer to early autumn 2014. Seawater18O and2H decrease with increasing latitudes from 39°N to 75°N, likely a result of spatial variability in evaporation/precipitation processes. This explanation is further confirmed by comparing the18O–2H relationship of seawater with that of precipitation. However, effects of freshwater inputs on seawater stable isotopic composition are also identified at 30°N–39°N. Furthermore, we finda non-significant relationship between the isotopic parameters (2H and18О) and salinity from 73°N northwards in the Arctic Ocean, implying that sea ice melting/formation may have some effect. These results suggest that the isotopic parameters2H and18О are useful for tracing marine hydrological processes.

    stable water isotopes, seawater salinity, surface seawater, North Pacific Ocean, Arctic Ocean

    1 Introduction

    The isotopic ratios of seawater18O and2H, which represent the isotopic abundance ratios of18O/16O and2H/1H, respectively, in a sample with respect to those of Vienna Standard Mean Ocean Water (VSMOW) are associated with fractionation processes that occur during all phase transitions in the hydrological cycle, including evaporation, precipitation, melting, and freezing of freshwater in the ocean. Thus, in modern oceans, seawater isotopes can serve as valuable natural tracers of sea ice melt (Macdonald et al., 1999), the source(s) of freshwater input (Khatiwala et al., 1999; Dubinina et al., 2017), and the formation of deep ocean water (Jacobs et al., 1985). They have also been used to trace the flow pathways of freshwater to the sea and to quantify the exchanges between different water masses (Gordeev et al., 1996; Bauch et al., 2005; Dubinina et al., 2017). Furthermore, the seawater stable isotopes of hydrogen and oxygen are considered important proxies for reconstructing palaeoclimate (Craig and Gordon, 1965; Sowers and Bender, 1995; Koutavas and Joanides, 2012) and palaeosalinity, an important parameter for understanding the ocean hydrological cycle (Rohling and Bigg, 1998; Singh et al., 2014).

    Several previous studies have documented that seawater18O,D, and their relationship can be used to understand oceanic hydrological processes (Conroy et al., 2014; Dubinina et al., 2017; Kumar et al., 2018). To quantify ocean isotopic signatures, many seawater18O measurements have been made across the world’s oceans from 1950 onwards (LeGrande and Schmidt, 2006). However, such observations over the North Pacific Ocean and the Arctic Ocean remain limited, and so oceanic hydrological processes remain inadequately characterized. Thus, additional seawater isotope observations are still required.

    Deuterium excess (), defined as=2H?8×18O (Dansgaard, 1964), quantifies non-equilibrium fractionation effects during phase changes. This second-order parameter depends largely on the conditions, such as relative humidity, sea surface temperature (SST), and wind speed, in the region of moisture origin, i.e., where water evaporates from the ocean surface (Dansgaard, 1964; Pang et al., 2015; Parkes et al., 2017). Thus, ocean surface conditions have a strong impact onvalues in vapor or subsequent precipitation (Uemura et al., 2008). As a result, changes in surface seawatervalues likely affect thevariations measured in vapor and precipitation. Many efforts have been made to investigate the spatial and temporal variability vapor and precipitationvalues, and to infer their main underlying processes (Aemisegger et al., 2014; Benetti et al., 2014; Pfahl and Sodemann, 2014). However, data on the spatial variability of seawatervalues and inferences regarding their underlying mechanisms are still somewhat limited.

    Here, we present new isotope data of surface seawater collected along the route of the sixth Chinese National Arctic Research Expedition (CHINARE), which took place from July to September 2014 (Figure 1). Based on this dataset, we investigate the spatial patterns in seawater stable isotopic compositions, quantify2H–18O relationships, and analyze their possible controlling factors.

    Figure 1 The route of the 6th CHINARE and the locations of the seawater isotopic composition and surface salinity samplings.

    2 Data and methods

    During the 6th CHINARE cruise (July to September of 2014), sea surface water samples were collected every 12 h along the route shown in Figure 1. The route spans the East China Sea, the Japan Sea, the Northwest Pacific Ocean, the Bering Sea, the Chukchi Sea, and the Arctic Ocean. The northern-most sampling location was at 81°N, 155°E. In total, 178 250-mL high-density polyethylene (HDPE) bottles were used to collect surface water. To prevent contamination, a 10-L bucket was used to collect surface water and first wash and then fill the bottles at each site. Then, the tightly capped bottles were placed into separate Ziploc bagsand were refrigerated. Two bottles of seawater were sampled at each location to determine whether sample contamination may have occurred.

    Stable water isotopic compositions were measured at theState Key Laboratory of Cryospheric Sciences, China by wavelength scanned cavity ring-down spectrometry (CRDS) (Picarro L1102), with an overall precision of at least 0.15‰ for18O and 0.5‰ for2H. Using the isotope ratio mass spectrometry (IRMS) method, salinity correction tovalues was considered unnecessary because the molalities of Mg, Ca, and K were lower than the values used for correction (Gonfiantini, 1981). As a modern method, near-infrared laser absorption spectroscopy techniques (including CRDS) have also proven applicable to seawater experiments (Skrzypek and Ford, 2014). The main effect (incomplete evaporation and memory effect) of salinity is related to the vaporizer. Thus, the in-time replacement of the injection pad per 100 injections of seawater samples was applied in our measurements. Isotopic compositions are reported as18O and2H values and represent the differences in the18O/16O and D/H ratios, respectively, between the samples and VSMOW.

    Based on results from four world-class laboratories (Benetti et al., 2017), when applying the CRDS method to sea-water, and additional correction of ~0.09‰ is required for18O compared with freshwater. This is slightly larger than that the IRMS method requires (0.06‰–0.02‰). However, for2H, only ~0.13‰ of extra correction is required, which is much less than that required by IRMS measurements (0.55‰–0.23‰). Regardless, the errors of both methods were minimized by applying rigorous experimental protocols and conducting calibration.

    Surface seawater was collected from an intake on the port side of the ship at approximately 4-m depth, which was designed to capture representative surface biogeochemical signals. To minimize clogging by sea ice and reduce the residence time of the sampling, a sea chest was specifically designed (details can be found in Chen et al. (2015)). We measured the SST and salinity continuously along the cruise route by means of an SBE21 (Sea-Bird Electronics) thermosalinograph installed in the sea chest, which has been widely used for observational marine chemistry studies.

    All instruments were calibrated and tested before deployment. Instrumental uncertainty in the temperature and conductivity sensors was 0.002℃ and ~0.03 ms·cm?1, respectively. Salinities given by the conductivity sensors are in practical salinity units (PSU). This information was also introduced by He et al. (2015), Chen et al. (2015) and Chen et al. (2019).

    3 Results and discussion

    3.1 Spatial patterns if δ18O and δ2H in surface seawater

    Along the voyage route northwards, seawater2H varies from ?50.0‰ to ?0.6‰, and the range of18O values is between ?5.4‰ and ?0.1‰. Both the18O and2H values of surface seawater vary spatially as a function of latitude. As expected, they decrease with increasing latitude, with the heavy isotopes being relatively enriched in the mid-latitudes and depleted in the high-latitude Arctic Ocean(Figures 1 and 2). This finding agrees with the observed changes in meteoric water due to latitudinal temperature and precipitation effects (Craig and Gordon, 1965; Criss, 1999). Latitude is also an important factor affecting spatial changes in, but only for the sampling sites at <40° latitude and >70° latitude (Figure 2). About 25% and 40% of the spatial variance ofcan be explained by the linear regression models, respectively.

    However, from 30°N to 39°N, the seawater18O and2H values show increases of 0.1‰ and 0.6‰, respectively, per degree of latitude. Salinity values follow the18O and2H patterns, but a slight decrease in the SST is observed. In particular, extremely low salinity:18O ratios occur between 36°N and 45°N, and thus the increase in the18O and2H values may be associated with the input of surface runoff (freshwater). Given the extremely high correlation between18O and2H (>0.98,=0), we further investigated regional patterns in the stable isotopic composition in surface seawater using18O. Between 40°N and 62°N, the SST sharply decreases from 20℃ to 5℃, whereas the salinity gradually decreases from 33.9 to 30.7 PSU. The corresponding18O values vary by 1.7‰ (from ?1.8‰ to ?0.1‰). From 62°N to 77°N, the SST fluctuates from ?0.7℃ to 10℃. In this latitudinal range, sharp changes in seawater salinity and18O also occur, with decreases of 11 PSU and 4.5‰, respectively. From 77°N northwards, the seawater salinity is lower, but a slight increase in the seawater18O is observed, which may be an effect of sea ice melt; sea ice usually has higher18O values than the underlying seawater because relatively more18O is incorporated into ice than the water from which it froze. During the freezing or melting of seawater, the18O values do not change much due to the small fractionation factor involved in the transition between ice and water (Beck and Münnich, 1988; Melling and Moore, 1995). In contrast, the influence of sea ice formation or melt on seawater salinity changes is large because of the extremely low salinity of sea ice (the salinity of sea ice is usually as low as 4 PSU; Ekwurzel et al., 2001). Our samples in the Arctic Ocean were collected between late July and early September of 2014, when sea ice extent is at or close to its annual minimum (Figure 3). Extensive sea ice melt led to a slight increase in seawater18O and a decrease in salinity.

    To further determine spatial patterns in the seawater stable isotopic composition, we identify different areas of the North Pacific and Arctic Oceans via a clustering analysis (Clusters 1–5 in Figure 4). Analysis of variance (ANOVA) was used to test the statistical significance of the differences between the clusters. Here, we use the 0.05 significance level. Cluster 1 samples are from the East China Sea and the Sea of Japan (30°N–40°N), where a large range of18O values are observed and the SST decreases sharply with increasing latitude.18O values and salinities in Cluster 2, which are from the region of the North Pacific Ocean, dominated by Kuroshio Current, are higher Clusters 3 and 4 were sampled over the region of the Bering Sea where there are three main currents; the Bering Slope Current, the Kamchatka Current, and the Aleutian North Slope Current (Stabeno et al., 1999). The18O values range from ?3.5‰ to ?1‰, which broadly agree with those obtained in previous surface water samplings from Bering Sea (Cooper et al., 1997). Based on the linear regression of18O with salinity by the least squares fit, the-intercept of zero salinity for18O is ?11.1‰, which is similar to the mean18O value of freshwater between meteoric water values and melted sea ice. Cooper et al. (1991) reported a freshwater18O value of approximately ?22‰ in the Yukon River, which is the largest river entering the Bering Sea. According to Macdonald et al. (1989, 1999),18O values in the sea ice and sea ice melt range from ?3‰ to ?2‰. The mean18O value of all sea ice collected during 2010 and 2011 in the Chukchi Sea were reported to be approximately ?1‰ (Cooper et al., 2016). Cluster 5 (73°N to 81°N) was sampled from the Arctic Ocean and has lower18O and salinities than the other clusters.

    Figure 2 Latitudinal distributions of SST (a), salinity (b), deuterium excess () (c),2H (d), and18O (e) in surface ocean waters.

    Figure 3 Arctic sea ice extent on 26th August 2014 (a) and monthly mean sea ice extent in August 2014 (b). Data are from NSIDC: https://nsidc.org/data/NSIDC-0051.

    Figure 4 Three-dimensional plot showing18O vs. salinity vs. latitude, which helps to identify the regional features of the seawater18O and-salinity relationship.

    3.2 δD and δ18O relationship in sea surface water

    The pioneering work by Craig (1961) reported the quantitative relationship between2H and18O in precipitation, with2H =8×18O+10, which is known as the meteoric water line (MWL). This relationship has been explained physically by an isotopic fractionation Raleigh-type mode. The robust relationship between2H and18O was also observed in Antarctic surface snow by Masson-Delmotte et al. (2008). Given that the combined application of seawater2H and18O measurements can quantitatively improve paleohydrology and palaeosalinity reconstructions (Rohling, 2007; Holloway et al., 2016), increasing attention has been paid to the use of2H for palaeosalinity reconstruction (e.g., Roberts et al., 2016). However, the seawater2H–18O relationship is still not well documented. Our observations show a high and significant correlation between2H and18O in seawater over the North Pacific and Arctic Oceans, with a slope of 7.7‰±0.1‰ per ‰ (>0.99,<0.01), which is close to both the global average seawater2H–18O slope of 7.4 (Rohling, 2007) and the slope of the global MWL derived from Global Network of Isotopes in Precipitation (GNIP) precipitation data (Rozanski et al., 1993). For the distinct regions in the North Pacific and Arctic Oceans identified by clustering (as described above), strong correlations between2H and18O in seawater were found for all clusters, despite the differences in their gradients (Figure 5). Cluster 1 had the shallowest seawater2H-18O slope of 6.9‰ per ‰. This possibly reflects the impact of continental runoff, which generally has a lower2H-18O slope than seawater (e.g., Deshpande et al., 2013). The steepest2H-18O slope (7.8‰ per ‰) was observed in Clusters 3 and 4.

    Figure 5 The relationship between seawater18O and2H for the different regions (clusters) of the North Pacific and Arctic Oceans. The dotted lines indicate the linear regressions on the data from the different clusters.denotes the significance of the relationships according to the linear regression analysis.

    3.3 Spatial variability in the d values of surface seawater

    Along the 6th CHINARE route, seawatervalues varied from ?1.3‰ to 2.5‰. In the Arctic Ocean, a significant positive correlation betweenand latitude was evident (=0.63,<0.05), but a significant negative correlation exists between seawaterand18O (=?0.68,<0.05). Given that the spatial distributions ofand18O are often used for model validation (Xu et al., 2012), the spatial distribution ofas a function of latitude that best fits thespatial distribution (Figure 2) was calculated. However, no significant correlations between the seawatervalues and latitude or18O were found over the North Pacific Ocean (Figure 2).

    Along the 6th CHINARE route from the Bering Strait to the interior of the Arctic Ocean (from 66°N northward),values of surface seawater at all sampling sites (except one) are positive, suggesting the possibly of strong runoff impacts (Xu et al., 2012). The18O-salinity relationship for the sampling sites from 66°N to 70°N shows the-intercept (salinity=0) of18O is ?24‰±6‰ (2=0.74,=8), indicating the large freshwater contribution of river runoff into the Bering Strait. The-intercept (salinity=0)18O value from 71°N to 80°N is estimated to be ?9.3‰±2.2‰ (2=0.23,=27), which reflects a fraction of melted sea ice in the surface seawater. However, this contribution is most likely very limited for seawater along our cruise track because the heavy oxygen isotopes become substantially more depleted along the cruise route into the interior of the Arctic Ocean, with a18O value as low as

    3.4 Processes controlling spatial variability in the stable isotopic composition of surface seawater

    The processes controlling variations in stable isotopes in seawater includeevaporation, precipitation, sea ice freezing and melting, and advection and diffusion of water masses from different source regions. Figure 6 shows the quantitative relationship between18O,2H, and salinity in seawater along the voyage route. A robust positive correlation is observed along the whole route, with slopes of 0.4‰±0.02‰/PSU for18O (=90,<0.01) and 2.8‰± 0.15‰/PSU forD (=90,<0.01).

    Figure 6 The relationships between surface sea salinity and seawater18O (a), and surface sea salinity andseawater2H (b) from the North Pacific and Arctic Oceans.

    To explore the other processes affecting spatial changes in seawater stable isotopes, we analyzed the oxygen isotope-salinity (18O-) relationships for the regional clusters (Figure 7).Cluster 1, which corresponds to the East China Sea and the Sea of Japan, exhibits a shallow slope of 0.2‰/PSU, which is broadly consistent with those previously reported for the Tsushima Strait (0.2‰/PSU) and the Tsushima Current in the Sea of Japan (0.3‰/PSU) (Kodaira et al., 2016). In the East China Sea and the Tsushima Strait, diluted water from Changjiang is the main driver of low salinity and18O values (Zhang et al., 1990; Kodaira et al., 2016). For the Tsushima Current, terrestrial water inputs from the Japanese Archipelago are responsible for the low salinity and18O values (Kodaira et al., 2016). Thus, surface runoff likely plays an important role in the18O changes for Cluster 1. Cluster 2 has the steepest18O-slope of 0.6‰/PSU (Figure 7), which seems to suggest that the seawater composition of this area may be predominantly controlled by evaporation/precipitation. There was no statistically significant difference in the18O-slope between Clusters 3, 4, and 1 (>0.05). The data for Cluster 5 indicate a18O-slope of 0.11‰/PSU (2=0.09), but the relationship is not statistically significant (=0.16). This implies that sea ice melting/freezing has an important impact on the18Oandsalinity values in this region. Sea ice formation/melting has large effects on seawater salinity. However, its impact on the isotopic composition in seawater is minor because of the small fractionation between sea ice and seawater. Thus, a large range of salinities rather than large changes in18O values are observed in the surface ocean where sea ice formation and melting occur. Furthermore, the seasonality of sea ice extent also results in seasonal changes in the-salinity relationship. Over the Arctic Ocean, the maximum sea ice extent generally occurs in March, and the minimum in September (Figure 4), when our sampling took place. The-salinity slopes in September may be larger than those in other seasons due to the reduction in the salinity of surface seawater caused by extensive sea ice melting in this season.

    Figure 7 The relationship between seawater18O and salinity for the different sections of the North Pacific and Arctic Oceans according to the clusters shown in Figure 4.

    4 Conclusions

    In this study, we present new measurements of the stable isotopic composition of surface seawater along the routes of the 6th CHINARE voyage. This campaign has helped to improve the coverage of isotopic measurements in the North Pacific and Arctic Oceans.SST and salinity were also measured. This new dataset allows us to examine the spatial variation in the stable isotopic composition, the18O-2H relationship, and the18O-salinity relationship, and hence helps trace hydrological processes.

    A strong18O-2H relationship was found, which makes it possible to extrapolate seawater2H based on18O. Seawater18O and2H values exhibit latitudinal changes, with decreasing values as latitude increases. The robust correlation between seawater18O and2H and salinity across the North Pacific and Arctic Oceans suggest that spatial pattern may largely result from evaporation/ precipitation effects. However, north of 73°N, sea ice melting plays a key role in the18O,2H, and salinity changes. This finding can be further confirmed because a significant correlation betweenand latitude is present over the Arctic Ocean but not over the North Pacific Ocean. The lack of significant correlation over the North Pacific may be associated with a decline in evaporation causing an increased sea ice extent with increased latitude, driving upvariations.

    Our new dataset still represents only three months and is subject to the temporal biases inherent in most18O and2H data. In the future, seasonal and long-term observations of seawater stable isotopes are required to examine whether the18O-2H relation varies over time. Furthermore, these data are important for studying the stability of the-salinity relationship over time (Delaygue et al., 2001; Kumar et al., 2018) because seawater isotopes are associated with varying origins and pathways of atmospheric vapor, whereas seawater salinity is not.

    This work was funded by the National Natural Science Foundation of China (Grant no. 41771064), the National Key Basic Research Program of China (Grant no. 2019YFC1509100), the Basic Research Fund of Chinese Academy of Meteorological Sciences (Grant no. 2021Z006), the Project for Outstanding Youth Innovation Team in the Universities of Shandong Province (Grant no. 2019KJH011), and the 6th CHINARE. We appreciate two anonymous reviewers, and Associate Editor, Dr. Cinzia Verde for their constructive comments that have further improved the manuscript.

    Aemisegger F, Pfahl S, Sodemann H, et al. 2014. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos Chem Phys, 14(8): 4029-4054, doi:10.5194/acp-14-4029-2014.

    Bauch D, Erlenkeuser H, Andersen N. 2005. Water mass processes on Arctic shelves as revealed from18O of H2O. Glob Planet Change, 48(1-3): 165-174, doi:10.1016/j.gloplacha.2004.12.011.

    Beck N, Münnich K O. 1988. Freezing of water: isotopic fractionation. Chem Geol, 70(1-2): 168, doi:10.1016/0009-2541(88)90693-6.

    Benetti M, Sveinbj?rnsdóttir A E, ólafsdóttir R, et al. 2017. Inter- comparison of salt effect correction for18O and2H measurements in seawater by CRDS and IRMS using the gas-H2O equilibration method. Mar Chem, 194: 114-123, doi:10.1016/j.marchem.2017.05.010.

    Benetti M, Reverdin G, Pierre C, et al. 2014. Deuterium excess in marine water vapor: dependency on relative humidity and surface wind speed during evaporation. J Geophys Res Atmos, 119(2): 584-593, doi:10.1002/2013jd020535.

    Chen B, Cai W, Chen L. 2015. The marine carbonate system of the Arctic Ocean: Assessment of internal consistency and sampling considerations, summer 2010. Mar Chem, 176: 174-188, doi: 10.1016/j.marchem.2015.09.007.

    Chen Z K, Wei L X, Li Z Q, et al. 2019. Sea fog characteristics over the Arctic pack ice in summer 2017. Mar Forecasts, 36(2): 77-87, doi:10.11737/j.issn.1003-0239.2019.02.009 (in Chinese with English abstract).

    Conroy J L, Cobb K M, Lynch-Stieglitz J, et al. 2014. Constraints on the salinity-oxygen isotope relationship in the central tropical Pacific Ocean. Mar Chem, 161: 26-33, doi:10.1016/j.marchem.2014.02.001.

    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703, doi:10.1126/science.133.3465.1702.

    Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere//Tongiorgi E (Eds). Stable isotopes in oceanographic studies and paleotemperatures. Spoleto: Cons Naz di Rech, 9-130.

    Criss R E. 1999. Principles of stable isotope distribution. New York: Oxford University Press.

    Cooper L W, Olsen C R, Solomon D K, et al. 1991. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed. Water Resour Res, 27(9): 2171-2179, doi:10.1029/91wr01243.

    Cooper L W, Whitledge T E, Grebmeier J M, et al. 1997. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait. J Geophys Res Ocean, 102(C6): 12563-12573, doi:10.1029/97jc00015.

    Cooper L W, Frey K E, Logvinova C, et al. 2016. Variations in the proportions of melted sea ice and runoff in surface waters of the Chukchi Sea: a retrospective analysis, 1990–2012, and analysis of the implications of melted sea ice in an under-ice bloom. Deep Sea Res Part II Top Stud Oceanogr, 130: 6-13, doi:10.1016/j.dsr2.2016.04.014.

    Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468, doi:10.3402/tellusa.v16i4.8993.

    Delaygue G, Bard E, Rollion C, et al. 2001. Oxygen isotope/salinity relationship in the northern Indian Ocean. J Geophys Res Oceans, 106(C3): 4565-4574, doi:10.1029/1999jc000061.

    Deshpande R D, Muraleedharan P M, Singh R L, et al. 2013. Spatio-temporal distributions of18O,D and salinity in the Arabian Sea: identifying processes and controls. Mar Chem, 157: 144-161, doi:10.1016/j.marchem.2013.10.001.

    Dubinina E O, Kossova S A, Miroshnikov A Y, et al. 2017. Isotope (D,18О) systematics in waters of the Russian Arctic seas. Geochem Int, 55(11): 1022-1032, doi:10.1134/S0016702917110052.

    Ekwurzel B, Schlosser P, Mortlock R A, et al. 2001. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. J Geophys Res, 106(C5): 9075-9092, doi:10.1029/ 1999jc000024.

    Gonfiantini R. 1981. The-notation and the mass-spectrometric measurement techniques//Gat J R, Gonfiantini R (Eds). Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Tech Rep Ser 210. Vienna: International Atomic Energy Agency, 337.

    Gordeev V V, Martin J M, Sidorov I S, et al. 1996. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci, 296(6): 664-691, doi:10.2475/ajs. 296.6.664.

    He Y, Liu N, Chen H X, et al. 2015. Observed features of temperature, salinity and current in central Chukchi Sea during the summer of 2012. Acta Oceanol Sin, 34(5): 51-59, doi:10.1007/s13131-015-0642-7.

    Holloway M D, Sime L C, Singarayer J S, et al. 2016. Reconstructing paleosalinity from18O: Coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene. Quat Sci Rev, 131: 350-364, doi:10.1016/j.quascirev.2015.07.007.

    Jacobs S S, Fairbanks R G, Horibe Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater//Jacobs S S. Oceanology of the Antarctic Continental Shelf, Volume 43. Washington D. C.: American Geophysical Union, 59-85, doi:10.1029/ar043p0059.

    Khatiwala S P, Fairbanks R G, Houghton R W. 1999. Freshwater sources to the coastal ocean off northeastern North America: evidence from H218O/H216O. J Geophys Res, 104(C8): 18241-18255, doi:10.1029/1999jc900155.

    Kodaira T, Horikawa K, Zhang J, et al. 2016. Relationship between seawater oxygen isotope ratio and salinity in the Tsushima Current, the Sea of Japan. Geochemistry, 50: 263-277, doi:10.14934/ chikyukagaku.50.263.

    Koutavas A, Joanides S. 2012. El Ni?o–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography, 27(4): PA4208, doi:10.1029/2012PA002378.

    Kumar P K, Singh A, Ramesh R. 2018. Controls on18O,D and18O-salinity relationship in the northern Indian Ocean. Mar Chem, 207: 55-62, doi:10.1016/j.marchem.2018.10.010.

    LeGrande A N, Schmidt G A. 2006. Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett, 33(12): L12604, doi:10.1029/2006gl026011.

    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1989. Composition and modification of water masses in the Mackenzie shelf estuary. J Geophys Res, 94(C12): 18057-18070, doi:10.1029/jc094ic12p18057.

    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1999. Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophys Res Lett, 26(15): 2223-2226, doi:10.1029/1999gl900508.

    Masson-Delmotte V, Hou S, Ekaykin A, et al. 2008. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim, 21(13): 3359-3387, doi:10.1175/2007jcli2139.1.

    Melling H, Moore R M. 1995. Modification of halocline source waters during freezing on the Beaufort Sea shelf: evidence from oxygen isotopes and dissolved nutrients. Cont Shelf Res, 15(1): 89-113, doi:10.1016/0278-4343(94)P1814-R.

    Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379): 66-70, doi:10.1038/nature 10705.

    Pang H, Hou S, Landais A, et al. 2015. Spatial distribution of17O-excess in surface snow along a traverse from Zhongshan Station to Dome A, East Antarctica. Earth Planet Sci Lett, 414: 126-133, doi:10.1016/j. epsl.2015.01.014.

    Parkes S D, McCabe M F, Griffiths A D, et al. 2017. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment. Hydrol Earth Syst Sci, 21(1): 533-548, doi:10.5194/ hess-21-533-2017.

    Pfahl S, Sodemann H. 2014. What controls deuterium excess in global precipitation? Clim Past, 10(2): 771-781, doi:10.5194/cp-10-771- 2014.

    Rohling E J, Bigg G R. 1998. Paleosalinity and δ18O: a critical assessment. J Geophys Res: Oceans, 103(C1): 1307-1318, doi:10.1029/97jc01047.

    Rohling E J. 2007. Progress in paleosalinity: overview and presentation of a new approach. Paleoceanography, 22(3): PA3215, doi:10.1029/ 2007pa001437.

    Roberts J, Gottschalk J, Skinner L C, et al. 2016. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc Natl Acad Sci, 113(3): 514-519, doi:10.1073/pnas. 1511252113.

    Rozanski K, Araguás-Araguás L, Gonfiantini R. 1993. Isotopic pattern in modern global precipitation//Swart P K, Lohmann K C, Mckenzie J, et al (Eds). Climate change in continental isotopic records, Volume 78.Washington D. C.: American Geophysical Union, 1-36, doi:10.1029/ gm078p0001.

    Singh A, Mohiuddin A, Ramesh R, et al. 2014. Estimating the loss of Himalayan glaciers under global warming using the δ18O-salinity relation in the Bay of Bengal. Environ Sci Technol Lett, 1(5): 249-253, doi:10.1021/ez500076z.

    Skrzypek G, Ford D. 2014. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument. Environ Sci Technol, 48(5): 2827-2834, doi:10.1021/es4049412.

    Stabeno P J, Schumacher J D, Ohtani K. 1999. The physical oceanography of the Bering Sea//Loughlin T R, Ohtani K (Eds). Dynamics of the Bering Sea. Fairbanks: University of Alaska Sea Grant, AK-SG-99-03, 1-28.

    Sowers T, Bender M. 1995. Climate records covering the last deglaciation. Science, 269(5221): 210-214, doi:10.1126/science.269.5221.210.

    Uemura R, Matsui Y, Yoshimura K, et al. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res, 113(D19): D19114, doi:10.1029/2008jd010209.

    Xu X, Werner M, Butzin M, et al. 2012. Water isotope variations in the global ocean model MPI-OM. Geosci Model Dev, 5(3): 809-818.

    Zhang J, Letolle R, Martin J M, et al. 1990. Stable oxygen isotope distribution in the Huanghe (Yellow River) and the Changjiang (Yangtze River) estuarine systems. Cont Shelf Res, 10(4): 369-384, doi:10.1016/0278-4343(90)90057-S.

    10.13679/j.advps.2021.0053

    16 November 2021;

    22 August 2022;

    30 September 2022

    : Li Z Q, Ding M H, Wang Y T, et al. Spatial variability of18O and2H in North Pacific and Arctic Oceans surface seawater. Adv Polar Sci, 2022, 33(3): 244-252,doi:10.13679/j.advps.2021.0053

    , ORCID: 0000-0003-2499-1147, E-mail: wangyetang@163.com

    美女高潮的动态| 99热这里只有是精品在线观看| 成年免费大片在线观看| 精品少妇久久久久久888优播| 国产午夜精品久久久久久一区二区三区| 成年美女黄网站色视频大全免费 | 免费久久久久久久精品成人欧美视频 | 婷婷色综合www| 亚洲精品国产av成人精品| 简卡轻食公司| 亚洲欧美日韩另类电影网站 | 日韩电影二区| 久久亚洲国产成人精品v| 午夜免费观看性视频| 秋霞在线观看毛片| 麻豆精品久久久久久蜜桃| 熟妇人妻不卡中文字幕| 99热这里只有是精品50| 老熟女久久久| 伊人久久国产一区二区| 亚洲精品第二区| 在线免费观看不下载黄p国产| 国产免费视频播放在线视频| 精品一区在线观看国产| 在线观看三级黄色| 精品午夜福利在线看| 久久人人爽人人爽人人片va| 欧美少妇被猛烈插入视频| 久久精品久久精品一区二区三区| 国产成人精品婷婷| 18禁在线播放成人免费| av免费在线看不卡| 99久久中文字幕三级久久日本| 国产精品秋霞免费鲁丝片| 一级毛片 在线播放| 2018国产大陆天天弄谢| 偷拍熟女少妇极品色| 少妇裸体淫交视频免费看高清| 国产 精品1| 青春草视频在线免费观看| 亚洲第一区二区三区不卡| 亚洲av男天堂| 下体分泌物呈黄色| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 国产视频内射| 成人高潮视频无遮挡免费网站| 男人舔奶头视频| 日本猛色少妇xxxxx猛交久久| 亚洲综合精品二区| 联通29元200g的流量卡| 这个男人来自地球电影免费观看 | 久久久欧美国产精品| 亚洲无线观看免费| 国产色婷婷99| 美女xxoo啪啪120秒动态图| 国产精品久久久久久av不卡| 国产精品99久久99久久久不卡 | 免费观看的影片在线观看| 欧美日韩国产mv在线观看视频 | 五月开心婷婷网| 亚洲第一区二区三区不卡| 国产精品无大码| 亚洲内射少妇av| 精品一区在线观看国产| 嫩草影院新地址| 久久久久精品久久久久真实原创| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩卡通动漫| 丰满少妇做爰视频| 午夜激情福利司机影院| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久v下载方式| 精品视频人人做人人爽| 亚洲在久久综合| 亚洲欧美精品自产自拍| 亚洲av中文av极速乱| 国产精品av视频在线免费观看| 久久久久久久久大av| 一级毛片电影观看| 毛片一级片免费看久久久久| 我要看黄色一级片免费的| 久久精品久久久久久久性| 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 久久热精品热| 久久青草综合色| 熟妇人妻不卡中文字幕| 交换朋友夫妻互换小说| 我要看日韩黄色一级片| 成年av动漫网址| 成人亚洲精品一区在线观看 | 午夜免费鲁丝| av又黄又爽大尺度在线免费看| 蜜桃在线观看..| 亚洲av成人精品一区久久| 亚洲人成网站高清观看| 日日啪夜夜爽| 亚洲国产毛片av蜜桃av| 亚洲在久久综合| 亚洲欧美一区二区三区黑人 | 国产91av在线免费观看| 亚洲丝袜综合中文字幕| h日本视频在线播放| 久久久亚洲精品成人影院| 欧美日韩视频精品一区| 国国产精品蜜臀av免费| 天天躁日日操中文字幕| 国产视频内射| 成人午夜精彩视频在线观看| 国产有黄有色有爽视频| 亚州av有码| a 毛片基地| 国产又色又爽无遮挡免| 深夜a级毛片| 啦啦啦视频在线资源免费观看| 免费黄网站久久成人精品| 色网站视频免费| 欧美精品国产亚洲| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| 高清日韩中文字幕在线| 国产美女午夜福利| 少妇高潮的动态图| 一边亲一边摸免费视频| 妹子高潮喷水视频| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| 五月天丁香电影| 亚洲第一av免费看| av网站免费在线观看视频| 少妇的逼好多水| 免费黄色在线免费观看| 亚洲色图av天堂| 国产精品人妻久久久影院| 黄色视频在线播放观看不卡| 色综合色国产| 国产亚洲91精品色在线| 一区二区三区四区激情视频| av在线app专区| h日本视频在线播放| 男女边摸边吃奶| 2018国产大陆天天弄谢| 综合色丁香网| 美女视频免费永久观看网站| 日日摸夜夜添夜夜添av毛片| 免费av不卡在线播放| 在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 久久这里有精品视频免费| 国产精品福利在线免费观看| 99久国产av精品国产电影| 国产日韩欧美在线精品| 一级毛片黄色毛片免费观看视频| 亚洲av不卡在线观看| 女人十人毛片免费观看3o分钟| 国产视频首页在线观看| 啦啦啦视频在线资源免费观看| 亚洲欧美清纯卡通| 亚洲美女搞黄在线观看| 午夜免费男女啪啪视频观看| 1000部很黄的大片| 中文精品一卡2卡3卡4更新| 天天躁日日操中文字幕| 在线亚洲精品国产二区图片欧美 | 国产精品人妻久久久影院| 六月丁香七月| 纯流量卡能插随身wifi吗| 尾随美女入室| 高清av免费在线| 免费av中文字幕在线| 免费av中文字幕在线| 成人毛片a级毛片在线播放| 亚洲真实伦在线观看| 3wmmmm亚洲av在线观看| 亚洲av电影在线观看一区二区三区| 97热精品久久久久久| 香蕉精品网在线| 麻豆成人av视频| 久久99精品国语久久久| 多毛熟女@视频| 在线免费十八禁| 久久久久久久亚洲中文字幕| 最近中文字幕2019免费版| 日韩伦理黄色片| 国产黄片视频在线免费观看| 免费看av在线观看网站| 91狼人影院| av播播在线观看一区| 啦啦啦在线观看免费高清www| 舔av片在线| 国产中年淑女户外野战色| 在线观看一区二区三区激情| 在线看a的网站| 午夜激情久久久久久久| 日韩亚洲欧美综合| 国产免费又黄又爽又色| 成人美女网站在线观看视频| 又黄又爽又刺激的免费视频.| 人妻制服诱惑在线中文字幕| 观看av在线不卡| av在线播放精品| 久久久久久久大尺度免费视频| 中文字幕久久专区| 网址你懂的国产日韩在线| 小蜜桃在线观看免费完整版高清| 香蕉精品网在线| 国产欧美日韩一区二区三区在线 | 黑人猛操日本美女一级片| 国产精品一区www在线观看| 人人妻人人看人人澡| 两个人的视频大全免费| 日日撸夜夜添| 亚洲四区av| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 深爱激情五月婷婷| 99久久精品国产国产毛片| 日日啪夜夜爽| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91 | 免费黄色在线免费观看| 亚洲性久久影院| 亚洲欧美成人综合另类久久久| 亚洲va在线va天堂va国产| 少妇的逼水好多| 精品国产乱码久久久久久小说| 欧美xxxx黑人xx丫x性爽| 又黄又爽又刺激的免费视频.| av网站免费在线观看视频| 女人十人毛片免费观看3o分钟| 国产亚洲av片在线观看秒播厂| 久久久久久久久久久免费av| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花 | 熟女电影av网| 婷婷色麻豆天堂久久| 欧美一区二区亚洲| 女的被弄到高潮叫床怎么办| 人人妻人人看人人澡| 欧美亚洲 丝袜 人妻 在线| 免费大片18禁| 少妇熟女欧美另类| 免费看不卡的av| 国内揄拍国产精品人妻在线| 美女cb高潮喷水在线观看| 在线观看人妻少妇| 22中文网久久字幕| 综合色丁香网| 国产色婷婷99| 婷婷色综合大香蕉| a 毛片基地| 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 婷婷色av中文字幕| 久久久久久久久久人人人人人人| 亚州av有码| 国产69精品久久久久777片| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 狠狠精品人妻久久久久久综合| 久久这里有精品视频免费| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 中文在线观看免费www的网站| 肉色欧美久久久久久久蜜桃| 成人漫画全彩无遮挡| 日日啪夜夜爽| 边亲边吃奶的免费视频| av一本久久久久| 国产精品熟女久久久久浪| 国产色婷婷99| freevideosex欧美| 久久影院123| 亚洲欧美中文字幕日韩二区| 国产伦在线观看视频一区| 亚洲国产精品专区欧美| 一本一本综合久久| 国产成人精品一,二区| 国产黄色免费在线视频| 国产黄片视频在线免费观看| av线在线观看网站| 插逼视频在线观看| 美女国产视频在线观看| 王馨瑶露胸无遮挡在线观看| 精品亚洲乱码少妇综合久久| 男女免费视频国产| 成人影院久久| 日韩免费高清中文字幕av| 99久久精品一区二区三区| 黄片无遮挡物在线观看| 日日摸夜夜添夜夜爱| 国产69精品久久久久777片| 伊人久久精品亚洲午夜| 少妇人妻 视频| 美女脱内裤让男人舔精品视频| 男女无遮挡免费网站观看| 日本黄大片高清| 国产精品欧美亚洲77777| 日本黄色片子视频| 久久久久久久久久人人人人人人| 汤姆久久久久久久影院中文字幕| 日韩大片免费观看网站| 在线观看美女被高潮喷水网站| 欧美日韩在线观看h| 午夜激情久久久久久久| 极品教师在线视频| 两个人的视频大全免费| 日韩精品有码人妻一区| 免费黄色在线免费观看| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 婷婷色综合大香蕉| 王馨瑶露胸无遮挡在线观看| 新久久久久国产一级毛片| 日本黄大片高清| 黑人猛操日本美女一级片| 国产v大片淫在线免费观看| 亚洲中文av在线| 日本猛色少妇xxxxx猛交久久| 大香蕉97超碰在线| 国产免费又黄又爽又色| 只有这里有精品99| 一级二级三级毛片免费看| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 亚洲精品国产成人久久av| 成年av动漫网址| 国产永久视频网站| av国产精品久久久久影院| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 寂寞人妻少妇视频99o| 高清欧美精品videossex| 成人亚洲欧美一区二区av| 91久久精品国产一区二区成人| 亚洲性久久影院| 亚洲国产精品一区三区| 久久av网站| 99九九线精品视频在线观看视频| 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 在线播放无遮挡| 国产亚洲最大av| av视频免费观看在线观看| 大片电影免费在线观看免费| a级一级毛片免费在线观看| 男女边吃奶边做爰视频| av视频免费观看在线观看| 欧美另类一区| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 中国美白少妇内射xxxbb| 亚洲av电影在线观看一区二区三区| 国产 一区 欧美 日韩| 日本wwww免费看| 国产91av在线免费观看| 亚洲综合色惰| 在线观看一区二区三区激情| 少妇的逼好多水| 亚洲丝袜综合中文字幕| 精品久久久久久久久av| 亚洲第一av免费看| 亚洲国产欧美人成| 中文资源天堂在线| 国产综合精华液| 另类亚洲欧美激情| 在线观看美女被高潮喷水网站| 久热这里只有精品99| 多毛熟女@视频| 小蜜桃在线观看免费完整版高清| 国产精品秋霞免费鲁丝片| 国产精品国产三级国产专区5o| 99精国产麻豆久久婷婷| 欧美性感艳星| 亚洲国产精品国产精品| av播播在线观看一区| 老司机影院成人| 黄色配什么色好看| 18禁在线播放成人免费| 一级爰片在线观看| 九九在线视频观看精品| 成人18禁高潮啪啪吃奶动态图 | 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 91精品国产国语对白视频| 日本欧美视频一区| 只有这里有精品99| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线 | a 毛片基地| 久久久久国产网址| 亚洲av福利一区| 久久精品国产亚洲av天美| 国产精品偷伦视频观看了| 五月天丁香电影| 99精国产麻豆久久婷婷| 久久青草综合色| 18+在线观看网站| 最近最新中文字幕免费大全7| 天堂8中文在线网| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 天美传媒精品一区二区| 久久精品国产a三级三级三级| 国产黄频视频在线观看| 国产精品蜜桃在线观看| 七月丁香在线播放| 成人一区二区视频在线观看| 国产高清国产精品国产三级 | 欧美成人a在线观看| 黄色日韩在线| 欧美成人a在线观看| 黄色一级大片看看| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| 国产精品福利在线免费观看| 国产精品一区www在线观看| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久av不卡| 十八禁网站网址无遮挡 | 午夜福利影视在线免费观看| 99视频精品全部免费 在线| 国产免费视频播放在线视频| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 内射极品少妇av片p| 成人漫画全彩无遮挡| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图 | 精品久久久久久久久亚洲| 狂野欧美白嫩少妇大欣赏| 人妻夜夜爽99麻豆av| 我要看黄色一级片免费的| 亚洲成色77777| 校园人妻丝袜中文字幕| 国产在线男女| 日本猛色少妇xxxxx猛交久久| 内地一区二区视频在线| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 久久热精品热| 男人和女人高潮做爰伦理| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 国产精品一区二区在线观看99| 美女高潮的动态| 十八禁网站网址无遮挡 | 欧美激情极品国产一区二区三区 | av天堂中文字幕网| 亚洲自偷自拍三级| 亚洲美女搞黄在线观看| 日韩欧美 国产精品| 亚洲国产最新在线播放| 亚洲性久久影院| 免费不卡的大黄色大毛片视频在线观看| 嫩草影院新地址| av视频免费观看在线观看| 我的女老师完整版在线观看| 亚洲精品国产av蜜桃| 国产免费一级a男人的天堂| videossex国产| 欧美激情极品国产一区二区三区 | 男女下面进入的视频免费午夜| 日韩三级伦理在线观看| 高清毛片免费看| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 老司机影院毛片| 嫩草影院入口| 色5月婷婷丁香| 丰满乱子伦码专区| tube8黄色片| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品古装| 丝瓜视频免费看黄片| 日韩一本色道免费dvd| 日本欧美国产在线视频| 成人亚洲欧美一区二区av| 欧美成人a在线观看| 小蜜桃在线观看免费完整版高清| 日韩欧美 国产精品| 老司机影院成人| 午夜福利在线观看免费完整高清在| 欧美日韩视频精品一区| 成人特级av手机在线观看| 丝袜喷水一区| 成人黄色视频免费在线看| 少妇人妻精品综合一区二区| 人妻夜夜爽99麻豆av| 大片免费播放器 马上看| 麻豆成人av视频| 亚洲国产精品一区三区| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 国产亚洲一区二区精品| 男女边摸边吃奶| 国产精品一区www在线观看| av网站免费在线观看视频| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| 性色avwww在线观看| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 色视频www国产| freevideosex欧美| 韩国高清视频一区二区三区| 在线观看免费日韩欧美大片 | 日本wwww免费看| av黄色大香蕉| 九九久久精品国产亚洲av麻豆| 亚洲精品第二区| 成年美女黄网站色视频大全免费 | 亚洲欧美中文字幕日韩二区| 欧美日韩一区二区视频在线观看视频在线| 伦理电影免费视频| 亚洲不卡免费看| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的 | 久热久热在线精品观看| 日日啪夜夜撸| 亚洲欧美日韩另类电影网站 | 久久99热这里只有精品18| 老熟女久久久| 亚洲国产欧美人成| 九草在线视频观看| 我要看黄色一级片免费的| 久久久午夜欧美精品| 久久久久久久久久久丰满| 97在线视频观看| 国产白丝娇喘喷水9色精品| 亚洲国产色片| 亚洲精品,欧美精品| 久久久久久久国产电影| 一级片'在线观看视频| kizo精华| 午夜福利影视在线免费观看| 蜜臀久久99精品久久宅男| 午夜精品国产一区二区电影| 大码成人一级视频| 免费看光身美女| 午夜福利影视在线免费观看| 国产精品国产三级专区第一集| 麻豆国产97在线/欧美| 99国产精品免费福利视频| 国产精品熟女久久久久浪| 国产黄频视频在线观看| 国产在线一区二区三区精| 午夜激情久久久久久久| 在线播放无遮挡| 一区二区三区免费毛片| 亚洲真实伦在线观看| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 我要看黄色一级片免费的| 久久久久久九九精品二区国产| 美女内射精品一级片tv| 国产av码专区亚洲av| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| 亚洲精品456在线播放app| 少妇的逼好多水| 大香蕉久久网| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 乱码一卡2卡4卡精品| 日本av手机在线免费观看| 国产高清不卡午夜福利| 欧美精品亚洲一区二区| 亚洲av.av天堂| 久久精品国产亚洲av涩爱| 亚洲四区av| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 欧美一区二区亚洲| 人妻夜夜爽99麻豆av| 亚洲图色成人| 亚洲国产精品一区三区| 精品熟女少妇av免费看| 免费在线观看成人毛片| 大码成人一级视频| 网址你懂的国产日韩在线| 日韩亚洲欧美综合| 国产精品偷伦视频观看了| 丝瓜视频免费看黄片| 一级片'在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 热re99久久精品国产66热6| 精品久久久久久电影网| 欧美97在线视频| 黄色怎么调成土黄色| 国产成人精品福利久久| 午夜老司机福利剧场| 日韩欧美 国产精品| 免费看av在线观看网站| 深夜a级毛片| 国产深夜福利视频在线观看| 国产精品欧美亚洲77777| 国产精品.久久久| 熟女人妻精品中文字幕| 亚洲天堂av无毛| av在线app专区| 国产高清国产精品国产三级 | 日本猛色少妇xxxxx猛交久久| 少妇精品久久久久久久|