• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters

    2022-09-29 00:19:52DENGTaoliCHENHexinHEILingliLIShuxingXIERongjun
    無機材料學(xué)報 2022年8期
    關(guān)鍵詞:榮軍色溫白光

    DENG Taoli, CHEN Hexin, HEI Lingli, LI Shuxing, XIE Rongjun

    Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters

    DENG Taoli1,2, CHEN Hexin1, HEI Lingli1, LI Shuxing1, XIE Rongjun1

    (1. State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China; 2. College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China)

    Laser-driven white lighting sources have great potential for applications with super-high brightness, high directionality and long distance illumination, but are usually limited by their poor uniformity due to mismatch between blue laser light and phosphor converted light. In this work, a secondary phase of TiO2, BN, Al2O3or SiO2was introduced as scattering media in the Y3Al5O12: Ce3+(YAG) phosphor-in-glass (PiG) film to regulate the light path, where the optimum concentration of the secondary phase was determined, respectively. The images of illumination and speckle, angular distributions of luminance and color temperature, as well as optical properties of the white light produced by the different secondary phases based-YAG PiG films were investigated. The light uniformity in luminance and color temperature is greatly improved by introducing secondary phases, among which TiO2is demonstrated as the best one as it has the largest relative reflective index. In addition, the YAG-TiO2PiG film has the largest luminance saturation threshold of 20.12 W/mm2and the highest luminous flux of 1056.6 lm under blue laser irradiation. This work paves an avenue to choose appropriate scattering media in PiG films for realizing more uniform and brighter laser-driven white lighting source.

    light uniformity; laser-driven white lighting source; scattering; phosphor-in-glass film; optical properties

    Given the laser diodes (LDs) can bear a much higher input power density than light-emitting diodes (LEDs), laser-driven solid state lighting by combining blue LDs with phosphor converters promises super-high-brightness[1-3]. Till now, extensive investigations have been devoted to optical performances of laser-driven lighting sources, such as luminous flux, luminous efficacy, correlated color temperature (CCT) and color rendering index (CRI)[4-7], but the light uniformity receives much less attentions. In fact, the uniformity of the lighting source is an extremely important parameter for the safety uses in some special fields, including high-beam headlamps and endoscopy[8-9].

    Generally, laser light presents a Gaussian distribution (, high energy in the middle and low energy at the edge), and the phosphor converted light follows a Lambert curve (, a uniform spherical cosine emitter). This difference usually yields uneven spatial distribution of the emitted light when they are mixed. Moreover, the blue laser light has a strong emission intensity and high directionality, leading to much poorer angular color uniformity. Therefore, the “blue circle” or “yellow ring” is often observed in the laser-driven white light[10-11].

    Many efforts have been made to improve the mixing uniformity in white LEDs, for example, SiO2or TiO2particles are used as the secondary phases in phosphor layers to enhance the light scattering, which then improves the uniformity of angular CCT[12-15]. Meanwhile, optical software simulations are applied to understand the effect of scattering media, such as CaCO3, CaF2, SiO2and TiO2, on the light uniformity of white LEDs[16]. As far as we know, there are still few studies on regulating the micros-tructure of the phosphor converter for obtaining a high uniformity laser-driven white lighting source. In addition, the methods for evaluating the light uniformity have not been systematically established.

    In this work, we attempt to introduce a secondary phase (., TiO2, BN, Al2O3or SiO2) as scattering media in YAG-PiG films to improve the light uniformity of laser-driven white lighting source. Analyses of the illum-in-ation and speckle images, illuminance curve, luminance and CCT distributions of the different secondary phases based-YAG PiG films under blue laser irradiation have been done to evaluate the optical quality of the white light. This work lays a foundation for regulating the light path in phosphor converters that enable to create high performance laser-driven white lighting sources.

    1 Experimental

    1.1 Materials

    Y3Al5O12: Ce3+(YAG, Rhonda Fluorescent Materials Co., Ltd., China), Al2O3(TAIMICRON, Japan), TiO2(Zhongnuo New Material Technology Co., Ltd., China), BN (AI LAN, China) and SiO2(Sinopharm Chemical Reagent, China) are commercially available. The glass powder SiO2-Al2O3-Na2O-CaO-TiO2(XinghaiGaoke Non- metallic Mining Material Ltd., China), used as the binder, has a particle size of 1.8 μm and a softening temperature of 650 ℃. A certain proportion of ethyl cellulose (Aladdin, China, CP), terpineol (Xilong Scientific Co., Ltd., China, AR) and 2-(2-butoxyethoxy) ethyl acetate (Aladdin, China, 98%) were fully mixed at 80 ℃ for 10 h to prepare the organic vehicle. The single crystal sapphire plates (SA) with a size of 10 mm×10 mm×0.3 mm are commercially available (Crystal-Optiech, China).

    1.2 Fabrication of PiG Films

    The YAG, YAG-TiO2, YAG-BN, YAG-Al2O3and YAG- SiO2PiG films were produced by using a blade-coating method. The phosphor slurry was prepared by fully admixing YAG, glass powders, organic vehicles, and the scattering medium (, Al2O3, TiO2, BN or SiO2) in an agate mortar. The weight ratio of the YAG phosphor to glass powder (PtG ratio) was fixed at 3:7, and the secondary TiO2, BN, Al2O3or SiO2was added with the optimal contents of 20%, 25%, 30% and 30% in mass relative to the phosphor, respectively (Fig. S1, Table S1). The evenly mixed slurry was blade-coated on the SA substrate with a film thickness of 35 μm. Finally, all films were heat-treated at 120 ℃ for 60 min to volatilize the organic glue, and then fired at 650 ℃for 10 min in a Muffle furnace.

    1.3 Characterizations

    The microstructure and elemental mappings were obtained by using a field-emission scanningmicroscope (SEM, SU70, Hitachi, Japan) equipped with an energy dispersive X-ray spectroscope (EDS, X-MaxN, Oxford

    Instruments, UK). The emission spectra and decay curves were measured by using the fluorescence spectrometer (FLS980, Edinburgh Instruments Ltd, UK). The speckle images were captured by a CCD camera (ARTCAM- 0134AR-WOM Series) under the excitation of blue laser (em=445 nm). The luminance uniformity and the light spot diameter were measured in a transmissive configu-ration by using an imaging colorimeter (IC-PMI16- XBND3, Radiant Zemax, USA) under a laser power of 0.015 W. The optical properties of all PiG films under high power density laser irradiation were measured in a transmissive configuration by using a sphere-spectroradiometer system. This system specially consists of a high-power blue laser light source (LSR445CP-FC-48W,Lasever, Ningbo, China) and an integrating sphere (diameter of 30 cm, Labsphere) that is connected to a CCD spectr-ometer (HR4000, Ocean Optics). The incident laser spot has a nearly circular area of 0.5 mm2. The optical power of the blue laser, controlled by the input current, was measured with a laser powermeter (LP-3C, Physcience Opto- Electronics, Beijing, China). The uniformity of color temperature was tested by using an optical test platform from different angles in the range of 10°~170°. The measurement platform consists of an incident blue laser, a sample stand, a semicircular protractor with a radius of about 30 cm, and a spectral color illuminometer (SPIC- 200, Everfine, China). The temperature of the light spot was measured by using an infrared (IR) thermal imager (TIX580, Fluke, USA).

    2 Results and discussion

    2.1 Morphologies of YAG-based PiG films

    The cross-section and top-view SEM images of YAG, YAG-TiO2, YAG-BN, YAG-Al2O3and YAG-SiO2PiG films are shown in Fig.1. All of the phosphor layers with different scattering media (TiO2, BN, Al2O3, SiO2) are uniform with a thickness of 35 μm, where the phosphor particles are well-distributed in the glass matrix. A amount of pores are detected in the YAG-TiO2, YAG-BN and YAG-SiO2PiG films, but the YAG-Al2O3PiG film is smooth and compact, which is probably due to the excellent wetting behavior of Al2O3particles. The SEM-EDS mappings show that TiO2is evenly distributed around the YAG phosphor particle, and no interfacial reactions occur during the firing process, evidenced by the smooth boundary between YAG particles and the glass matrix (Fig.1(k-o)). It is also true for other secondary phases. In addition, the photoluminescence spectra and lifetime of YAG-PiG films are not affected by adding the secondary phases (Fig. S2).

    Fig. 1 (a-e) Cross-section and (f-j) top-view SEM images of (a, f) YAG, (b, g)YAG-TiO2, (c, h) YAG-BN, (d, i) YAG-Al2O3, (e, j) YAG-SiO2 PiG films; (k-o) SEM image of the selected area of the YAG-TiO2 PiG film and corresponding EDS mappings of Y, Al, Ca and Ti

    Fig. 2 (a-e) Illumination images of laser-driven white light sources from YAG, YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films under excitation of a laser power density of 1.72 W/mm2, and (f-j) speckle images of YAG, YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films under 445 nm laser excitation

    2.2 Uniformity of the laser-driven white light

    The laser-driven white lighting sources were fabricated by pumping the YAG, YAG-TiO2, YAG-BN, YAG-Al2O3or YAG-SiO2PiG film with blue laser at a power density of 1.72 W/mm2, and their light uniformity is preliminarily evaluatedillumination images (Fig. 2(a-e)). An obvious “blue center” is observed from the YAG PiG film without the addition of secondary phases, and the brightness of the spot center is much higher than that at the edge. By contrast, the light becomes uniform when the YAG-TiO2, YAG-BN, YAG-Al2O3or YAG-SiO2PiG film is used. Further, the light uniformity was detected by the speckle analysis from a CCD detector, as shown in Fig. 2(f-j). It is clear to find that the speckle is serious for the YAG PiG film, and it can be eliminated to some extent with the introduction of TiO2, BN, Al2O3or SiO2. Among them, the YAG-TiO2PiG film has the best uniformity, followed by the YAG-Al2O3and YAG-BN PiG films.

    In addition, the luminance uniformity of the light spot was further evaluated by using the imaging colorimeter (Fig. 3(a)). The luminance of 6×6 matrix points was measured for each light spot. The luminance standard deviationcan be calculated with the formula (1):

    Fig. 3 (a) Luminance of light spots in YAG, YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films under excitation with a laser power of 0.015 W, respectively, (b) luminance distribution curves along the light spot diameter, and (c) photograph of the light spot at a distance of 10 m when the YAG-BN PiG film pumped by a blue LD

    Table 1 Luminance uniformity of YAG-based PiG films with different scattering media

    Further, the light uniformity was evaluated by the CCT and illuminance distribution curves of the white light source at different angles (10°~170°). The “blue center” of the YAGPiG film is reflected by higher CCT values at the center (Fig. 4(a)). The CCT uniformity (Uni) can be defined as the ratio of the minimum CCT (min) to the average CCT (ave), as given in formula (2):

    As summarized in Table 2, the CCT uniformity increases from 10.4% (YAG) to 48.3% (YAG-SiO2), 89.3% (YAG-Al2O3), 94.1% (YAG-BN) and 94.8% (YAG-TiO2), respectively. It means that YAG-TiO2and YAG-BN PiG films can produce better uniformity in CCT. Moreover, the illuminance curve is much closer to the standard cosine curve when the secondary phase is introduced into the YAG PiG film (Fig. 4(b)).

    The above results show that the introduction of a secondary phase can effectively improve the light uniformity of the YAG PiG film, but the effects are different from each other. To understand this difference, we calculate the relative reflective index () for each secondary phase by the Formula (3):

    Fig. 4 (a) CCT and (b) illuminance distribution curves at different angles (10°–170°) of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films

    Table 2 CCT uniformity of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, YAG-SiO2 PiG films under blue laser excitation

    Table 3 Relative refractive indexes of secondary phases introduced into the YAG-PiG film

    = (1?2)2/ (1+2)2(3)

    Where1is the refractive index of the glass (., 1.5), and2is the refractive index of the secondary phase (Table 3). A largermeans stronger scattering ability, and more uniform light is thus produced. In addition, the pores generated in the PiG film also enhance the light scattering, which definitely contributes to the impr-ovement of the light uniformity. As a result, the YAG- TiO2PiG film with a highestshows the best uniformity in light, luminance and CCT, followed by the YAG-BN and YAG-Al2O3PiG films. It indicates that the secondary phase with a higher relative reflective index enables to produce uniform white light, which provides a selection rule for scattering centers.

    2.3 Optical performances

    As shown in Fig. 5, the internal quantum efficiency (IQE) of the YAG-PiG film is slightly reduced by adding the secondary phase, which may be caused by some unexpected reactions between the phosphor particles and the secondary phases during the sintering process. There is a big drop in absorption efficiency (AE), due to the enhanced light scattering caused by the secondary phases in the PiG films. Therefore, the external quantum effici-ency (EQE) largely declines with the addition of secon-dary phases, typically for BN, which results in the dece-as-ing luminous efficacy of the white light in YAG-basedPiG films (Fig.5(c)).On one hand, less absorption means less heat generation under laser light excitation. On the other hand, the smaller IQE will create more heat, thus increasing the temperature of the PiG films. A balance between them finally determines the total heat prod-uction, and the temperature of the light spot decreases from 185.6 ℃(YAG PiG film) to 98.3, 113.9, 135.5℃for YAG-TiO2, YAG-BN and YAG-Al2O3PiG films, respectively. But for the YAG-SiO2PiG film, the temper-ature increases up to 348.0 ℃ (Fig. S3). As we know, thermal quenching of luminescence usually occurs rapidly at the temperature higher than 200 ℃[17], so the YAG-SiO2PiG film has the lowest luminous flux and luminance saturation threshold. The YAG-TiO2PiG film has the largest luminance saturation threshold of 20.12 W/mm2(11.73 W/mm2for the YAG-PiG film), and hence the highest luminous flux of 1056.6 lm (Fig. 5(b)).

    3 Conclusions

    In this work, the secondary phase of TiO2, BN, Al2O3or SiO2with varying refractive indexes was introduced into the YAG PiG film as scattering centers to obtain high light uniformity laser-driven white lighting sources. The addition of TiO2resulted in the best multidi-me-nsional uniformity in illumination image, speckle image, illuminance curve, CCT and luminance distribution, followed by BN and Al2O3, which is basically consistent with their relative reflective index. In addition, the luminous flux and saturation threshold of the YAG PiG film were improved by introducing the secondary phase except for SiO2, due to the less heat generation under blue laser excitation. The YAG-TiO2PiG film presents a maximal luminance saturation threshold of 20.12 W/mm2and a highest luminous flux of 1056.6 lm. This work provides a simple method for evaluating the light unif-ormity of the white light from multiple dimensions, and suggests a rule for selecting scattering media to realize uniform laser-driven white lighting sources with high luminance.

    Fig. 5 (a) Quantum efficiency and absorption efficiency, (b) luminous flux, and (c) luminous efficacy of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films

    Supporting materials

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20220074.

    [1] WIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting., 2013, 7(6): 963–993.

    [2] LI S, WANG L, HIROSAKI N,. Color conversion materials for high-brightness laser-driven solid-state lighting., 2018, 12(12): 1800173.

    [3] LIANG Y, DING X, YAN C,. Phosphor-in-glass (PIG) conve-rter sintered by a fast Joule heating process for high-power laser- driven white lighting., 2021, 29(10): 14218.

    [4] ZHENG P, LI S, WANG L,. Unique color converter archit-ecture enabling Phosphor-in-Glass (PiG) films suitable for high- power and high-luminance laser-driven white lighting., 2018, 10(17): 14930–14940.

    [5] YOU S, LI S, ZHENG P,. A thermally robust La3Si6N11: Ce-in-glass film for high-brightness blue-laser-driven solid state lighting., 2019, 13(2): 1800216.

    [6] YAO Q, HU P, SUN P,. YAG:Ce3+transparent ceramic phos-phors brighten the next-generation laser-driven lighting., 2020, 32(19): 1907888.

    [7] PENG Y, HUANG Y, LEI Z,. Rapid and efficient preparation of phosphor-in-glass converter by induction heating for high-power white LEDs/LDs.,2021, 29: 102839.

    [8] AVANAKI A, ESPIG K, KIMPE T,. Perceptual uniformity of commonly used color spaces.Proceedings of SPIE-The International Society for Optical Engineering, 2014: 9041.

    [9] LIU P, GUAN Z, ZHOU T,. Laser regulation for variable color temperature lighting with low energy consumption by microlens arrays.., 2021, 60(19): 5652–5661.

    [10] MA Y, LUO X. Small-divergent-angle uniform illumination with enhanced luminance of transmissive phosphor-converted white laser diode by secondary optics design., 2019, 122: 14–22.

    [11] CHEN K, HAN H, CHEN H,. White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2nanoparticles., 2014, 6(10): 5378–5383.

    [12] WU B, LUO X, ZHENG H,. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode., 2011, 19(24): 24115–24121.

    [13] LIU J, WANG W, LU X,. Controlling phosphor particle distribution for high-angular-color-uniformity and low-cost LEDs based on thermalcapillary flow., 2021, 68(2): 592-596.

    [14] LAI M, QUOCANH N D, MA H,. Scattering effect of SiO2particles on correlated color temperature uniformity of multi-chip white light LEDs., 2016, 39(4): 468–472.

    [15] HOU Y, CHEN C, YING S,. The effects of TiO2diffuser- loaded encapsulation on corrected color temperature uniformity of remote phosphor white leds., 2019, 9(4): 675.

    [16] NGUYEN A Q D, NGUYEN T T, LEE H. Selection of scattering enhancement particles for improving color homogeneity and luminous flux of phosphor-converted LEDs., 2017, 40(4): 307–312.

    [17] XU Y, LI S, ZHENG P,. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation., 2019, 7(37): 11449–11456.

    Supporting materials:

    Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters

    DENG Taoli1,2, CHEN Hexin1, HEI Lingli1, LI Shuxing1, XIE Rongjun1

    (1. State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Key Laboratory of Surface and Interface Engineering for High performance Materials, College of Materials, Xiamen University, Xiamen 361005, China; 2. College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China)

    Fig. S1 CCT (a) and illuminance (b) distribution curves at different angles (10°~170°) of YAG PiG films with different TiO2,BN, Al2O3, or SiO2contents

    Table S1 CCT uniformity of YAGPiG films with different TiO2,BN, Al2O3, or SiO2contents under blue laser excitation

    UniCCT/%010%15%20%25%30% TiO210.491.594.394.89191 BN10.473.686.988.494.190.9 Al2O310.418.1–84.2–89.3 SiO210.412.113.719.416.248.3

    Fig. S2 Photoluminescence spectra and lifetime of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, YAG-SiO2PiG films

    Fig. S3 Temperatures of light spots of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, YAG-SiO2PiG films

    第二相引入熒光轉(zhuǎn)換材料實現(xiàn)激光驅(qū)動高均勻性白光光源

    鄧陶麗1,2, 陳河莘1, 黑玲麗1, 李淑星1, 解榮軍1

    (1. 廈門大學(xué) 材料學(xué)院, 固體表面物理化學(xué)國家重點實驗室, 福建省表界面工程與高性能材料重點實驗室, 廈門 361005; 2. 安順學(xué)院 化學(xué)化工學(xué)院, 安順 561000)

    激光驅(qū)動的白光光源在超高亮度、高準直性和遠距離照明領(lǐng)域具有很大的應(yīng)用潛力, 但由于藍光激光和轉(zhuǎn)換熒光在光源性質(zhì)上的失配, 造成激光驅(qū)動白光光源的光均勻性差。本研究在Y3Al5O12: Ce3+(YAG)熒光玻璃薄膜(PiG)中引入不同種類的第二相, 如TiO2、BN、Al2O3或SiO2作為散射介質(zhì)來調(diào)節(jié)光路, 并對第二相的摻雜濃度分別進行了優(yōu)化。研究分析了摻入不同種類第二相的YAG PiG獲得激光驅(qū)動白光光源的實物照明圖像和散斑圖像、亮度和色溫的角分布情況及其光學(xué)性質(zhì)。結(jié)果發(fā)現(xiàn), 引入第二相大大改善了白光光源的亮度和色溫均勻性, 其中具有最大相對反射率的YAG-TiO2PiG, 獲得綜合性能最佳的高均勻性白光光源, 在藍光激光激發(fā)下, 其發(fā)光飽和閾值和光通量值達到最高, 分別為20.12 W/mm2和1056.6 lm。本研究為熒光轉(zhuǎn)換材料中散射介質(zhì)的選擇提供了指導(dǎo), 為實現(xiàn)高均勻性、高亮度的激光驅(qū)動白光光源奠定了基礎(chǔ)。

    光均勻性; 激光驅(qū)動白光光源; 光散射; 熒光玻璃薄膜; 光學(xué)性質(zhì)

    O482

    A

    1000-324X(2022)08-0891-06

    10.15541/jim20220074

    date:2022-02-15;

    date: 2022-03-23;

    2022-04-07

    National Natural Science Foundation of China (51832005, U2005213); Fujian Provincial Science and Technology Project (2020I0002)

    DENG Taoli (1989–), female, PhD candidate. E-mail: dengtaoli77@163.com

    鄧陶麗(1989–), 女, 博士研究生. E-mail: dengtaoli77@163.com

    LI Shuxing, PhD. E-mail: lishuxing@xmu.edu.cn; XIE Rongjun, professor. E-mail: rjxie@xmu.edu.cn

    李淑星, 博士. E-mail: lishuxing@xmu.edu.cn; 解榮軍, 教授. E-mail: rjxie@xmu.edu.cn

    猜你喜歡
    榮軍色溫白光
    Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
    Traffic flow prediction based on BILSTM model and data denoising scheme
    An extended smart driver model considering electronic throttle angle changes with memory
    Stabilization strategy of a car-following model with multiple time delays of the drivers?
    學(xué)生臺燈色溫 不宜超過4000K
    科教新報(2020年22期)2020-06-11 08:48:29
    基于DALI協(xié)議的色溫可調(diào)節(jié)LED照明控制器
    白光LED無線通信的研究進展
    白光(選頁)
    中國房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    白光LED照明通信關(guān)鍵技術(shù)及發(fā)展趨勢研究
    一级毛片精品| 青草久久国产| 19禁男女啪啪无遮挡网站| 日韩欧美国产一区二区入口| 真实男女啪啪啪动态图| 国产精品 国内视频| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 久久精品亚洲精品国产色婷小说| 男女之事视频高清在线观看| 成人永久免费在线观看视频| 成人午夜高清在线视频| 国产精品一区二区精品视频观看| 别揉我奶头~嗯~啊~动态视频| 日本黄大片高清| 国产成人av教育| 2021天堂中文幕一二区在线观| 国产精品亚洲av一区麻豆| 国内揄拍国产精品人妻在线| 亚洲在线自拍视频| 国产精品,欧美在线| 国产在线精品亚洲第一网站| 综合色av麻豆| 麻豆成人av在线观看| 中出人妻视频一区二区| 舔av片在线| av国产免费在线观看| 国产精品1区2区在线观看.| 免费在线观看日本一区| 禁无遮挡网站| 久久中文字幕一级| 我的老师免费观看完整版| 久久久久免费精品人妻一区二区| 99久国产av精品| 中亚洲国语对白在线视频| 97超视频在线观看视频| 亚洲 欧美 日韩 在线 免费| 熟女少妇亚洲综合色aaa.| 一夜夜www| 无遮挡黄片免费观看| 白带黄色成豆腐渣| 久久国产精品人妻蜜桃| 午夜激情欧美在线| 亚洲黑人精品在线| 日韩成人在线观看一区二区三区| 亚洲专区字幕在线| 国产久久久一区二区三区| 欧美成人一区二区免费高清观看 | 九色成人免费人妻av| 少妇熟女aⅴ在线视频| 国产1区2区3区精品| 午夜成年电影在线免费观看| 三级毛片av免费| 国产亚洲精品久久久com| 成人午夜高清在线视频| 国产精品九九99| 久久精品国产亚洲av香蕉五月| 此物有八面人人有两片| 亚洲av五月六月丁香网| 成人精品一区二区免费| www.熟女人妻精品国产| 久久久国产成人精品二区| 最近在线观看免费完整版| 18禁美女被吸乳视频| 国产亚洲欧美在线一区二区| a级毛片a级免费在线| 亚洲美女视频黄频| 国产精品久久久av美女十八| 国产亚洲av高清不卡| 成人永久免费在线观看视频| 国产高清videossex| 成人三级做爰电影| av片东京热男人的天堂| 99riav亚洲国产免费| 成人午夜高清在线视频| av在线天堂中文字幕| 久久精品影院6| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月天丁香| 宅男免费午夜| 老熟妇乱子伦视频在线观看| 国产精品亚洲美女久久久| 极品教师在线免费播放| 岛国在线观看网站| tocl精华| 亚洲无线在线观看| 波多野结衣高清无吗| 午夜两性在线视频| 国产精品乱码一区二三区的特点| 啦啦啦观看免费观看视频高清| www国产在线视频色| 在线观看免费午夜福利视频| 一边摸一边抽搐一进一小说| 99国产综合亚洲精品| 哪里可以看免费的av片| 久久久成人免费电影| 丁香欧美五月| 久久精品人妻少妇| 色哟哟哟哟哟哟| 三级男女做爰猛烈吃奶摸视频| 免费看光身美女| 真人做人爱边吃奶动态| 久久久精品大字幕| 色尼玛亚洲综合影院| 亚洲欧美日韩高清专用| 嫩草影院入口| 亚洲七黄色美女视频| 黄片小视频在线播放| 最新中文字幕久久久久 | ponron亚洲| 深夜精品福利| 亚洲av成人不卡在线观看播放网| 免费av不卡在线播放| 亚洲欧美日韩高清在线视频| 国产激情久久老熟女| 久9热在线精品视频| 午夜福利视频1000在线观看| 51午夜福利影视在线观看| 久久九九热精品免费| 精品久久久久久久末码| 最近最新中文字幕大全免费视频| 国产成年人精品一区二区| 变态另类丝袜制服| 久久久水蜜桃国产精品网| 午夜福利欧美成人| 色在线成人网| 精华霜和精华液先用哪个| 久久人人精品亚洲av| 又粗又爽又猛毛片免费看| 日韩免费av在线播放| 国产99白浆流出| 三级国产精品欧美在线观看 | 亚洲国产精品sss在线观看| 亚洲精品一区av在线观看| 欧美又色又爽又黄视频| 成人av一区二区三区在线看| 日本黄色视频三级网站网址| 久久香蕉精品热| av天堂中文字幕网| 日本黄大片高清| 不卡一级毛片| 欧美日韩黄片免| 999久久久精品免费观看国产| av在线蜜桃| 身体一侧抽搐| 精品一区二区三区视频在线观看免费| 亚洲熟女毛片儿| 久久久久久人人人人人| 亚洲真实伦在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲电影在线观看av| 国产精品1区2区在线观看.| 曰老女人黄片| 国产精品1区2区在线观看.| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽| 白带黄色成豆腐渣| 亚洲精品一卡2卡三卡4卡5卡| 不卡av一区二区三区| 熟妇人妻久久中文字幕3abv| 国产精品乱码一区二三区的特点| 亚洲最大成人中文| 欧美精品啪啪一区二区三区| 白带黄色成豆腐渣| 全区人妻精品视频| 99视频精品全部免费 在线 | 搡老妇女老女人老熟妇| 国产精品 国内视频| 久久性视频一级片| 在线观看免费午夜福利视频| 狂野欧美白嫩少妇大欣赏| 国产精品美女特级片免费视频播放器 | av欧美777| 国产91精品成人一区二区三区| 亚洲av美国av| 色综合站精品国产| 久久久国产精品麻豆| 国产精品av久久久久免费| 国内毛片毛片毛片毛片毛片| 亚洲五月天丁香| 国产精品美女特级片免费视频播放器 | 精品一区二区三区四区五区乱码| xxxwww97欧美| 午夜福利成人在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 99热这里只有是精品50| 久久久久久久久中文| 免费看光身美女| 欧美日韩综合久久久久久 | 久久久久精品国产欧美久久久| 制服人妻中文乱码| 久久国产精品人妻蜜桃| 欧美大码av| 麻豆一二三区av精品| 丁香六月欧美| 一本综合久久免费| 曰老女人黄片| 精品不卡国产一区二区三区| 麻豆久久精品国产亚洲av| 国产精品久久久久久久电影 | 欧美乱妇无乱码| 午夜精品在线福利| 亚洲欧美一区二区三区黑人| 欧美日韩中文字幕国产精品一区二区三区| 1024香蕉在线观看| 亚洲国产欧美人成| 免费看美女性在线毛片视频| 18美女黄网站色大片免费观看| av女优亚洲男人天堂 | 成年版毛片免费区| 精品福利观看| 国产野战对白在线观看| 国产精品av视频在线免费观看| 国产精品久久久久久精品电影| 日韩欧美一区二区三区在线观看| 国产一区在线观看成人免费| 国产私拍福利视频在线观看| 久久香蕉国产精品| 免费观看人在逋| 欧美xxxx黑人xx丫x性爽| 国产成人aa在线观看| 国产单亲对白刺激| 一本精品99久久精品77| 波多野结衣巨乳人妻| 国产乱人伦免费视频| 国产毛片a区久久久久| 亚洲成人免费电影在线观看| 麻豆久久精品国产亚洲av| 国产精品影院久久| 美女午夜性视频免费| 99在线人妻在线中文字幕| 亚洲熟妇熟女久久| 偷拍熟女少妇极品色| 欧美zozozo另类| 色精品久久人妻99蜜桃| 免费观看的影片在线观看| 欧美黄色淫秽网站| 国产高清三级在线| 国产亚洲精品一区二区www| 又紧又爽又黄一区二区| 国产乱人视频| 亚洲美女视频黄频| 九九热线精品视视频播放| 一个人免费在线观看电影 | 香蕉久久夜色| 女同久久另类99精品国产91| 日韩精品青青久久久久久| 免费av毛片视频| 久久久水蜜桃国产精品网| www.www免费av| 又爽又黄无遮挡网站| 亚洲在线自拍视频| www日本在线高清视频| 老汉色∧v一级毛片| 啦啦啦免费观看视频1| 国产一区二区激情短视频| 久久亚洲真实| x7x7x7水蜜桃| 天堂网av新在线| 黄色日韩在线| 久久人人精品亚洲av| 91麻豆精品激情在线观看国产| 亚洲精品美女久久av网站| 欧美性猛交╳xxx乱大交人| 亚洲五月婷婷丁香| 在线看三级毛片| 国产av一区在线观看免费| 久久精品亚洲精品国产色婷小说| 悠悠久久av| 国内揄拍国产精品人妻在线| 久久中文字幕一级| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区国产精品乱码| 在线观看免费视频日本深夜| 午夜福利欧美成人| 亚洲狠狠婷婷综合久久图片| 欧美成狂野欧美在线观看| 国产单亲对白刺激| 日日摸夜夜添夜夜添小说| av天堂中文字幕网| 巨乳人妻的诱惑在线观看| 色综合站精品国产| 午夜福利视频1000在线观看| 欧美国产日韩亚洲一区| 啦啦啦韩国在线观看视频| 国产人伦9x9x在线观看| 91av网站免费观看| 亚洲 欧美 日韩 在线 免费| 久久中文字幕一级| 国产精品99久久99久久久不卡| 久久中文字幕一级| 极品教师在线免费播放| 免费观看的影片在线观看| 国产97色在线日韩免费| 制服人妻中文乱码| 中文字幕高清在线视频| 精品国产亚洲在线| 国产精品香港三级国产av潘金莲| 国产三级黄色录像| 男女视频在线观看网站免费| 18禁黄网站禁片午夜丰满| 午夜久久久久精精品| 免费在线观看视频国产中文字幕亚洲| 夜夜看夜夜爽夜夜摸| 日韩 欧美 亚洲 中文字幕| 久久香蕉国产精品| 毛片女人毛片| xxxwww97欧美| 免费一级毛片在线播放高清视频| 老司机在亚洲福利影院| 91av网一区二区| 极品教师在线免费播放| 操出白浆在线播放| 最新美女视频免费是黄的| 不卡av一区二区三区| 欧美又色又爽又黄视频| 免费高清视频大片| 又大又爽又粗| 亚洲av电影不卡..在线观看| 欧美日韩瑟瑟在线播放| 久久人人精品亚洲av| 综合色av麻豆| 亚洲国产色片| 亚洲人成网站高清观看| 婷婷精品国产亚洲av| 国产真人三级小视频在线观看| 俄罗斯特黄特色一大片| 午夜激情福利司机影院| 欧美最黄视频在线播放免费| 国产黄片美女视频| 美女免费视频网站| 91av网站免费观看| www国产在线视频色| 看黄色毛片网站| 三级国产精品欧美在线观看 | 久久久国产成人免费| 亚洲第一电影网av| 不卡av一区二区三区| 久久国产乱子伦精品免费另类| 国产精品自产拍在线观看55亚洲| 午夜精品久久久久久毛片777| 久久午夜综合久久蜜桃| 亚洲色图av天堂| 中文字幕人成人乱码亚洲影| 偷拍熟女少妇极品色| 精品无人区乱码1区二区| 国产激情偷乱视频一区二区| 1000部很黄的大片| 亚洲,欧美精品.| 久久精品91无色码中文字幕| 亚洲av电影不卡..在线观看| 国产精品99久久久久久久久| 亚洲av成人不卡在线观看播放网| 99热只有精品国产| 一本久久中文字幕| 99久久成人亚洲精品观看| 成年版毛片免费区| 美女午夜性视频免费| 日日干狠狠操夜夜爽| aaaaa片日本免费| 亚洲国产欧美网| 一进一出抽搐gif免费好疼| 18禁国产床啪视频网站| 亚洲精华国产精华精| 国产久久久一区二区三区| 曰老女人黄片| 美女免费视频网站| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 亚洲最大成人中文| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸| 国产亚洲精品久久久com| 久久热在线av| 日韩欧美 国产精品| 久久久久久大精品| 成年免费大片在线观看| 又黄又粗又硬又大视频| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 狂野欧美激情性xxxx| 久久国产精品影院| 亚洲精品美女久久久久99蜜臀| 久久九九热精品免费| 亚洲av成人精品一区久久| 999精品在线视频| 精品久久久久久久毛片微露脸| 精品一区二区三区四区五区乱码| 少妇的逼水好多| 国产精品影院久久| 精品久久久久久久毛片微露脸| 桃色一区二区三区在线观看| 国产精品亚洲美女久久久| 国产爱豆传媒在线观看| 亚洲成人中文字幕在线播放| cao死你这个sao货| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 久久亚洲精品不卡| 亚洲色图 男人天堂 中文字幕| 美女被艹到高潮喷水动态| 国产精品综合久久久久久久免费| 精品久久久久久久毛片微露脸| 久久久国产成人精品二区| 成年版毛片免费区| 欧美黄色片欧美黄色片| 青草久久国产| 窝窝影院91人妻| 国产av在哪里看| 欧美成人性av电影在线观看| 欧美另类亚洲清纯唯美| 亚洲欧美精品综合一区二区三区| 国产91精品成人一区二区三区| 久久午夜亚洲精品久久| 久久久精品大字幕| 国内少妇人妻偷人精品xxx网站 | 亚洲avbb在线观看| 国产午夜精品久久久久久| 一本久久中文字幕| 亚洲 欧美一区二区三区| 精品久久久久久,| 老鸭窝网址在线观看| www.熟女人妻精品国产| 99久久久亚洲精品蜜臀av| 欧美性猛交╳xxx乱大交人| 欧洲精品卡2卡3卡4卡5卡区| 中文亚洲av片在线观看爽| 国产亚洲欧美在线一区二区| 性欧美人与动物交配| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 精品无人区乱码1区二区| 日韩国内少妇激情av| 久久中文看片网| 精品久久蜜臀av无| 欧美日韩综合久久久久久 | 老熟妇仑乱视频hdxx| 搡老妇女老女人老熟妇| 国产久久久一区二区三区| 国产午夜福利久久久久久| 国产精品自产拍在线观看55亚洲| 久久久久国产一级毛片高清牌| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲男人的天堂狠狠| 两个人的视频大全免费| 视频区欧美日本亚洲| 人妻久久中文字幕网| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 国产成人欧美在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久亚洲av鲁大| 久久中文字幕一级| 日韩欧美在线二视频| 高清在线国产一区| ponron亚洲| 法律面前人人平等表现在哪些方面| 国产1区2区3区精品| 亚洲精品一卡2卡三卡4卡5卡| 91av网一区二区| 亚洲av电影在线进入| 久久久国产成人免费| 中文字幕最新亚洲高清| 老熟妇仑乱视频hdxx| 亚洲av熟女| 免费在线观看日本一区| 亚洲成人中文字幕在线播放| 青草久久国产| 久久久久免费精品人妻一区二区| 欧美午夜高清在线| 中文字幕精品亚洲无线码一区| 国产黄片美女视频| 成人特级av手机在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 亚洲av熟女| 美女被艹到高潮喷水动态| 热99在线观看视频| 日韩有码中文字幕| 曰老女人黄片| 久久香蕉国产精品| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看| 成人无遮挡网站| 中文资源天堂在线| 欧美午夜高清在线| 欧美黄色淫秽网站| 黄色 视频免费看| 母亲3免费完整高清在线观看| 国产成人精品久久二区二区免费| 在线永久观看黄色视频| 在线看三级毛片| 亚洲 欧美 日韩 在线 免费| 51午夜福利影视在线观看| 窝窝影院91人妻| 在线永久观看黄色视频| 亚洲人成伊人成综合网2020| 国产午夜福利久久久久久| 亚洲精品中文字幕一二三四区| 天堂网av新在线| 国产主播在线观看一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲精品一卡2卡三卡4卡5卡| 国产三级黄色录像| 高清在线国产一区| 亚洲乱码一区二区免费版| 禁无遮挡网站| 757午夜福利合集在线观看| 久久香蕉国产精品| 欧美大码av| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 男女下面进入的视频免费午夜| xxxwww97欧美| 色哟哟哟哟哟哟| 夜夜爽天天搞| 99久久精品一区二区三区| 午夜a级毛片| 在线免费观看不下载黄p国产 | 国产亚洲精品综合一区在线观看| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 国产三级在线视频| 精品熟女少妇八av免费久了| 九九在线视频观看精品| 久久中文字幕一级| 国产精品野战在线观看| 免费电影在线观看免费观看| 人妻久久中文字幕网| 亚洲美女黄片视频| 99久久国产精品久久久| 999久久久精品免费观看国产| 亚洲国产精品成人综合色| netflix在线观看网站| 日韩欧美三级三区| 欧美中文综合在线视频| 久久久国产欧美日韩av| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 免费看十八禁软件| 在线播放国产精品三级| av在线蜜桃| 日韩高清综合在线| 亚洲av五月六月丁香网| 免费观看人在逋| 亚洲av成人一区二区三| 床上黄色一级片| 天堂网av新在线| 久久精品国产清高在天天线| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 久久久国产成人精品二区| 亚洲av成人不卡在线观看播放网| 别揉我奶头~嗯~啊~动态视频| 夜夜看夜夜爽夜夜摸| 又大又爽又粗| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| 一本综合久久免费| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合| 美女高潮喷水抽搐中文字幕| 欧美国产日韩亚洲一区| 日韩人妻高清精品专区| 久久中文字幕一级| 制服人妻中文乱码| 此物有八面人人有两片| 母亲3免费完整高清在线观看| 日韩大尺度精品在线看网址| 午夜影院日韩av| www.www免费av| 国产亚洲精品av在线| 精品国产美女av久久久久小说| 99久久国产精品久久久| 成年版毛片免费区| 欧美性猛交黑人性爽| 精品久久久久久久久久久久久| 久久精品人妻少妇| 这个男人来自地球电影免费观看| 人人妻人人看人人澡| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 天堂动漫精品| 亚洲精品456在线播放app | 熟女人妻精品中文字幕| 午夜视频精品福利| 毛片女人毛片| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 日韩欧美 国产精品| 中文字幕精品亚洲无线码一区| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 神马国产精品三级电影在线观看| 久久这里只有精品19| 村上凉子中文字幕在线| 性欧美人与动物交配| www日本黄色视频网| 亚洲国产精品久久男人天堂| 精品乱码久久久久久99久播| 国内精品久久久久精免费| 亚洲精品美女久久av网站| 啦啦啦观看免费观看视频高清| 亚洲精品美女久久av网站| 亚洲av中文字字幕乱码综合| 极品教师在线免费播放| 757午夜福利合集在线观看| 夜夜爽天天搞|