• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of different occurrence types of organic matter on hydrocarbon generation in mudstones

    2022-09-23 08:14:18PengYnDuJinGongCiQingLiuXueJunZhngJunWng
    Petroleum Science 2022年4期

    Peng-Yn Du , Jin-Gong Ci ,*, Qing Liu , Xue-Jun Zhng , Jun Wng

    a State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China

    b Exploration and Development Research Institute of Shengli Oilfield Company, SINOPEC, Dongying, Shandong 257001, China

    Keywords:Soluble organic matter Mineral-bound organic matter Particulate organic matter Hydrocarbon precursor Rock-Eval VI pyrolysis

    ABSTRACT Organic matter (OM) is preserved as different occurrences in mudstones, which can affect the hydrocarbon generation process.However,little research has focused on hydrocarbon generation as a function of different occurrences of OM.This study collected a suite of mudstones in the Dongying Sag,Bohai Bay Basin, and conducted Rock-Eval VI pyrolysis after Soxhlet extraction and Na2S2O8 oxidation, aiming to quantify the OM with different occurrences and figure out the contributions of each occurrence of OM to the hydrocarbon generation. There are three types of occurrences of OM: soluble organic matter (SOM),mineral-bound organic matter(MOM),and particulate organic matter(POM).MOM is the most abundant among the three occurrence types of OM.SOM and MOM are the main hydrocarbon precursors,and their hydrocarbon contributions alternate with different kerogen types and layers. Additionally, MOMcontributed hydrocarbons are numerous at shallow depths; SOM-contributed hydrocarbons mainly occur at deep depths; and POM-contributed hydrocarbons change little with depth. These results demonstrate that MOM should be the main hydrocarbon precursor in shallow formations and that SOM is the main hydrocarbon contributor at deep depths.

    1. Introduction

    Different types of occurrences of OM in source rocks have received much attention in the areas of petroleum generation and the global carbon cycle (Berthonneau et al., 2016; Cai et al., 2007;Jarvie et al.,2007;Kennedy and Wagner,2011;Rahman et al.,2017).Learning the characteristics of different types of occurrences of OM would be significantly useful for further understanding hydrocarbon generation mechanisms in source rocks.

    Various studies have focused on OM classification in source rocks according to the OM occurrence (Kennedy et al., 2002; Zhu et al., 2016), and the physicochemical interactions between OM and clay minerals (Cai et al., 2020; Keil and Maye, 2014; Lützow et al., 2006; Zhu et al., 2020). Soluble and insoluble OM (Durand,1980; Tissot and Welte, 1984), OM combined with minerals and not combined with minerals(Keil and Mayer,2014),and structured and amorphous OM (Sebag et al., 2006; Tyson,1995) demonstrate the diversity of OM.The OM combined with minerals have various bonding mechanisms with mineral surfaces, such as ligand exchange (Kaiser et al., 2007; Kleber et al., 2007), ion exchange(Mikutta et al.,2007,2009),cation bridging(Li et al.,2015;Lützow et al.,2006),etc.Soluble OM is generally in a free state or physically adsorbed in source rocks(Tissot and Welte,1984).As the OM with different occurrences have different structures and hydrocarbon generation mechanisms,they may contribute different volumes of hydrocarbons to source rocks(Kennedy et al.,2014;Rahman et al.,2018;Tissot and Welte,1984;Yuan et al.,2013).However,there are currently few studies on the specific differences in hydrocarbon contributions of the OM with different occurrences.

    Previous studies have employed many methods to separate different occurrences of OM. Soxhlet extraction (Tissot and Welte,1984), density fractionation (Arnarson and Keil, 2001), and size fractionation (Carter et al., 2003) are always used to separate soluble OM. The OM combined with minerals can be removed by oxidizing agents such as H2O2, NaClO, and Na2S2O8(Eusterhues et al., 2003; Kiem et al., 2002; Meier and Menegatti, 1997;Mikutta et al., 2005), among which Na2S2O8is considered to be more efficient(Helfrich et al.,2007;Lützow et al.,2007).However,quantifying OM with different types of occurrences in source rocks is still a difficult problem.

    This work collected a suite of mudstones in the Dongying Sag in the depth range of 1850-5000 m. Soxhlet extraction and Na2S2O8oxidation were used to sequentially remove OM with different occurrences from the mudstones, respectively. Subsequently, the quantification of OM with different occurrences was realized by conducting Rock-Eval VI pyrolysis on raw, Soxhlet extracted, and Na2S2O8oxidized mudstones. Correspondingly, the hydrocarbon generation potential and behavior of OM with different occurrences were investigated in the whole depth profile.

    2. Materials and methods

    2.1. Materials

    2.2. Methods

    The samples were crushed into powder,screened to a 100-mesh(< 0.15 mm), and then dried for 24 h at 60°C. The dried samples were stored in a desiccator for further experiments.

    2.2.1. Soxhlet extraction

    Fig.1. Location map and development of strata in the Dongying Sag(modified by Zeng et al.(2018)).(a)Study area and structural units of the Dongying Sag in the Bohai Bay Basin,China (the gray dot denotes the Dongying Sag). (b) Development of Paleogene deposits in the Dongying Sag (the gray shading indicates the research strata).

    First, approximately 10 g of sample powder was wrapped with filter paper and weighed, and then refluxed with a mixture of CH2Cl2:CH3OH at a ratio of 9:1 (vol:vol) in a Soxhlet extractor to remove the soluble OM (Cai et al., 2021). Then, the extraction was conducted at 48°C for 72 h.Last,the extraction residues were dried at 60°C for 24 h and weighed.The analytical balance was a Mettler Toledo ME104, its resolution was 0.0001 g, and the maximum permission error(MPE) was 0.0002 g.

    2.2.2. Na2S2O8oxidation

    The Soxhlet extraction residues were then subjected to Na2S2O8oxidation, which could oxidize the OM combined with minerals without damage to the mineral structure (Kiem et al., 2002;Menegatti et al., 1999). The oxidizing solvent was a mixture of Na2S2O8:NaHCO3at a mass ratio of 1:1.1(g:g).The mass ratio of the sample to Na2S2O8is approximately 1:40 (g:g) (Meier and Menegatti,1997; Mikutta et al., 2005). First, approximately 2 g of Soxhlet extraction residue was weighed and dispersed in oxidizing solvent diluted with deionized water to a total volume of 1000 mL with a pH of 7-8.5(Cai et al.,2021).Then,the oxidation treatment was performed in a water bath at 80°C for 48 h.Next,the oxidation residues were washed with deionized water several times to remove sulfate ions.Last,the washed residues were dried at 60°C for 48 h and weighed.

    2.2.3. Rock-Eval VI pyrolysis

    Rock-Eval VI pyrolysis(Vinci Technologies,France)experiments were conducted in the Experimental Research Center of the Wuxi Petroleum Geology Institute, China Petroleum & Chemical Corporation(SINOPEC).The sample was heated at 300°C in helium flow for 2.5 min,then heated from 300°C to 650°C with a heating rate of 25°C/min, and the hydrocarbon released was detected by a hydrogen flame ionization detector. CO2released during pyrolysis was detected by a thermal conductivity detector. Pyrolysis was conducted on all of the raw, extracted and oxidized samples to obtain the pyrolysis parameters of total organic carbon (TOC)content, free hydrocarbons (S1), pyrolysis hydrocarbons (S2), the hydrogen index (HI = S2/TOC), and the temperature of the maximum S2 peak(Tmax) (Behar et al., 2001; Carrie et al., 2012).

    3. Results

    The TOC contents of the raw samples first increased and then decreased with depth(Fig.2a).The TOC contents of approximately 45%of the samples were in the range of 2%-4%,approximately 14%of the samples had TOC contents higher than 4%,31%of the samples had TOC contents in the range of 1%-2%, and only approximately 10%of the samples had TOC contents less than 1%(Fig.2b).The S1 and S2 of the raw samples all increased in shallow formations and then decreased with depth;the S1 values were 0-8 mg/g,and the S2 values were 0-110 mg/g(Fig.2c and d).The kerogen types in the raw samples in each layer were mainly types I and II (Fig. 2e).

    The TOC contents of the extracted samples had a similar evolutionary trend to that of the raw samples (Fig. 2a), but approximately 53% of the TOC contents of the extracted samples were in the 1%-2% range, approximately 27% were in the 2%-4%range,10%were less than 1%and 10%were larger than 4%(Fig.2b).S1 values of the extracted samples were mostly less than 0.1 mg/g(Fig. 2c). S2 values of the extracted samples had a similar trend to the S2 values of the raw samples, and the TOC values of the extracted samples were slightly lower(Fig.2d).The kerogen types of the extracted samples were mainly I and II,while some samples in Echange to type III (Fig. 2f).

    After the subsequent Na2S2O8oxidation,the TOC contents of the oxidized samples generally changed little with depth(Fig.2a),and the TOC values of approximately 76% oxidized samples were less than 1%, approximately 14% were in the 1%-2% range, 7% were in the 2%-4% range, and only 3% were higher than 4% (Fig. 2b). S1 values of the oxidized samples were nearly 0 mg/g(Fig.2c),and S2 values were less than 2 mg/g (Fig. 2d). The kerogen types of the oxidized samples mostly changed to types II and III (Fig. 2g).

    4. Discussion

    4.1. Definition of OM with different occurrences

    The sequential treatment results show that OM in mudstones is mostly removed by Soxhlet extraction and Na2S2O8oxidation(Fig.2a and b).As Soxhlet extraction is a physical action that has no influence on the structure of organic matters, the organic matter that is dissolved in this process is physically adsorbed in mudstones and is defined as soluble organic matter (SOM) (Tissot and Welte,1984). Na2S2O8oxidation is a chemical reaction that can yield SO4-radicals that react with OM (Mikutta et al., 2005; Zhu et al.,2016). As Na2S2O8oxidation was treated sequentially after Soxhlet extraction,the OM removed in this process is bonding to the clay mineral interlayer or mineral surface(Helfrich et al.,2007;Lützow et al., 2007). This kind of OM is mainly an amorphous component(Cai et al., 2007, 2020; Zhu et al., 2020) and is defined as mineralbound organic matter (MOM) in this paper (Fig. 3). Thus, SOM and MOM could be progressively removed by the two sequential treatments. There is also a small amount of OM in the Na2S2O8oxidized sample(Fig.2a).As this kind of OM is mainly clumpy flocs or macromolecule polymers that can barely be physically or chemically removed(Cambardella and Elliott,1992;Keil and Mayer,2014; Lopez-Sangil and Rovira, 2013), it is defined as particulate organic matter(POM) in this work (Fig. 3).

    4.2. Quantification of OM with different occurrences

    The contents of SOM,MOM and POM can be represented by the TOC difference between the raw, extracted and oxidized samples.The hydrocarbons generated from SOM, MOM and POM can be calculated based on S1 and S2 of the raw, extracted and oxidized samples. As the denominators of TOC, S1 and S2 of the raw,extracted and oxidized samples are different, these parameters need to be calculated with the same denominator, and then the abundances and hydrocarbon parameters of SOM, MOM and POM can be calculated.

    The quantification process mainly involves two steps: first, the sample weights of the raw,extracted and oxidized samples are used to calculate the conversion factors(fe,fo),which can convert TOC,S1 and S2 of the raw,extracted,and oxidized samples to have the same denominator; second, the difference between the converted TOC,S1 and S2 of the raw,extracted,and oxidized samples is calculated to obtain the abundances and hydrocarbon contents of SOM and MOM.The calculation equations for the two steps are shown by Eq.(1)-Eq. (5) in Fig. 4.

    The sum of S1 and S2 can be used to represent the total hydrocarbons (TS) generated from each OM with different occurrences(Eq. (6)):

    The relative contents of TOC,S1,S2,and TS(represented by TOCP, S1-P, S2-P, and TS-P, respectively) of SOM, MOM and POM represent the relative abundances and hydrocarbon contributions of OM with the three occurrence types. The calculation equations are shown below(Eq. (7)-Eq.(10)):

    Fig. 2. OM and hydrocarbon characteristics of the raw samples (Raw), Soxhlet extracted samples (Extracted) and Na2S2O8 oxidized samples (Oxidized): (a) variation of TOC with increasing depth,(b)frequency distribution of TOC,(c)variation of S1 with increasing depth,(d)variation of S2 with increasing depth,and(e,f,g)kerogen types determined by HI vs Tmax in the raw, extracted and oxidized samples. The data are given in Table S1 in the Supplementary Data.

    The quantification results are shown in Table S2 in the Supplementary Data.

    4.3. Comparison of the abundances and hydrocarbon contributions of SOM, MOM, and POM

    4.3.1. Relative abundances of SOM, MOM, and POM

    The relative abundances of SOM, MOM, and POM are approximately 17.62%, 54.41%, and 27.97% on average, respectively,revealing that MOM accounts for the largest OM abundance in the source rocks (Fig. 5a).

    For samples with different kerogen types,the relative content of each occurrence type of OM would also be different.For example,in samples with type I kerogen, most of the SOM content is in the range of 0-25%, and the POM and MOM contents are in the 25%-40% and 40%-75% ranges, respectively (Fig. 5d). In samples with type II1and II2kerogen,the SOM content is mainly in the range of 0-25%, the POM content is in the 0-50% range and the MOM content is in the 35%-85% (Fig. 5d). In samples with type III kerogen, it is evident that the MOM content is the largest, with a range of 50%-80% (Fig. 5d). The average abundance of different occurrences of OM shows that TOC-PMOM>TOC-PPOM>TOC-PSOMin samples with kerogen I and II, and TOC-PMOM> TOC-PSOM> TOCPPOMin samples with kerogen III (Fig. 5b). These characteristics indicate that MOM contributes the largest amount of OM, regardless of the type of kerogen in mudstones.

    Fig. 3. Schematic of OM with different occurrences in mudstones (modified from Cai et al. (2020), Keil and Mayer (2014), and Zhu et al. (2016)).

    Fig.4. Calculation process of the abundance and hydrocarbon content of SOM,MOM,and POM(Mr,Me:mass of the raw and extracted samples in the Soxhlet extraction experiment;Me’,Mo’:mass of the extracted and oxidized samples in the Na2S2O8 oxidation experiment;Mo:mass of the oxidized samples if all the extracted samples(mass of Me)were used in the Na2S2O8 oxidation experiment;(TOCr,S1r,and S2r),(TOCe,S1e,and S2e),(TOCo,S1o,and S2o):TOC,S1,and S2 of the raw,extracted,and oxidized samples,respectively;(TOCSOM,S1SOM,and S2SOM),(TOCMOM,S1MOM,and S2MOM),(TOCPOM,S1POM,and S2POM):abundance,free hydrocarbons and pyrolysis hydrocarbons of SOM,MOM,and POM,respectively;fe,fo:conversion factor of TOC, S1, and S2 of the extracted and oxidized samples).

    4.3.2. Relative hydrocarbon contents produced by SOM, MOM, and POM

    Fig.5. Characteristics of the abundance of SOM,MOM,and POM in mudstones:(a)average contents of SOM,MOM,and POM in mudstone samples;(b,c)average content of SOM,MOM, and POM in mudstones with different types of kerogen and different layers; (d, e) abundance distribution of SOM, MOM, and POM in mudstones with different types of kerogen and different layers.

    The hydrocarbon quantification results show that the average S1-P of SOM is approximately 92.28%,which is much larger than the S1-P of MOM and POM, which are 5.01% and 2.71%, respectively(Fig.6a).SOM contributes more than 90%S1 on average to samples with each type of kerogen(Fig.6b)and contributes more than 87%S1 to samples in each layer (Fig. 6c). This reveals that SOM is the main contributor of S1,regardless of the type of kerogen or layer of the mudstones.

    The abundances and hydrocarbon characteristics of different occurrence types of OM reveal that SOM and MOM are the main contributors to hydrocarbon generation, S1 is mainly generated from SOM and S2 is mostly generated from MOM. Although the relative abundance of POM is mostly larger than that of SOM,POM still produces the fewest hydrocarbons. Moreover, the total hydrocarbon content of SOM and MOM alternately changes in mudstones with different kerogen types and different layers. In general, the hydrocarbon contributions of OM with the three occurrences in mudstones have great differences.

    4.4. Evolutionary differences of the hydrocarbons generated from SOM, MOM, and POM

    Fig.6. Characteristics of the relative hydrocarbon contents generated by SOM,MOM,and POM.(a)Average contents of S1-P,S2-P,and TS-P of the total mudstone samples;(b,d,f)distribution and average contents of S1-P, S2-P, and TS-P in mudstones with different types of kerogens; (c, e, g) distribution and average contents of S1-P, S2-P, and TS-P in mudstones of different layers.

    Fig. 7. Evolution of S1, S2, and TS of (a, d, g) SOM, (b, e, h) MOM, and (c, f, i) POM.

    In the whole depth profile, S1 is mostly generated from SOM,while little is generated from MOM and POM(Fig.7a,b,c),which is consistent with the trend of the average S1-P content of OM with the three occurrence types mentioned above.S2-P of SOM increases and S2-P of MOM decreases with depth(Fig.7d and e).S2-P of most POM is less than 30% and has no evident change throughout the whole depth(Fig.7f).In addition,at depths less than 3500 m,the S2 content contributed by SOM is less than 30%,and MOM contributes more than 50% of S2. At depths deeper than 3500 m, SOMcontributed S2 increases, even to 80%, and MOM-contributed S2 decreases to 20%.These characteristics suggest that MOM plays the main role in S2 generation at shallow depths,and SOM makes the greatest contribution to S2 generation at deep depths. The evolutionary trend of TS-P is completely similar to that of S2-P(Fig.7g,h,i),which implies that MOM and SOM would be the main precursors of the total hydrocarbons in shallow and deep depths,respectively,and that POM contributes fewer hydrocarbons at the whole depth.

    Fig. 8. Evolution of the relative abundance of (a) SOM, (b) MOM, and (c) POM.

    Fig. 9. Correlations of the relative abundance of OM and the relative hydrocarbon contents of OM with the three occurrence types: (a) SOM, (b) MOM, and (c) POM.

    The abundance of each occurrence type of OM would be an important factor affecting the differences in hydrocarbon evolution.At depths less than 3500 m, the relative content of SOM increases and MOM decreases, which coincides with the evolution of SOMcontributed and MOM-contributed hydrocarbons (Fig. 7g and h and Fig.8a and b).TOC-P and TS-P also show a positive correlation for SOM and MOM, respectively (Fig. 9a and b). At depths deeper than 3500 m, the relative content of SOM decreases and MOM increases, which evolves oppositely to the TS-P of SOM and MOM(Fig. 7g and h and Fig. 8a and b), and the correlation of TOC-P and TS-P is poor for SOM and MOM(Fig.9a and b).This reveals that the abundance of SOM and MOM would be an important factor influencing the hydrocarbon content at shallow depths, while there must be other important factors that mainly influence the hydrocarbon content contributed by SOM and MOM in deep depths. As the TOC-P and TS-P of POM have the same evolutionary trend(Figs. 7i and 8c) and the two parameters have high correlations in both shallow and deep depths (Fig. 9c), the abundance of POM would also be an important factor in its hydrocarbon content.

    5. Conclusions

    This work quantified OM with the three types of occurrences,namely, SOM, MOM, and POM, in mudstones by using Soxhlet extraction and Na2S2O8oxidation sequentially and conducting Rock-Eval VI pyrolysis on the raw,extracted,and oxidized samples,respectively.

    MOM-contributed hydrocarbons are numerous at shallow depths and decrease to nearly zero at greater depths; the trend for SOMcontributed hydrocarbons is in the other direction, with these hydrocarbons occurring at great depths;POM-contributed hydrocarbons show little change throughout the entire depth range. This demonstrates that MOM should be the main hydrocarbon precursor in shallow formations and that SOM is the main hydrocarbon contributor at deep depths.Moreover,the abundance of each occurrence type of OM is related to the local stratigraphy, and burial evolution plays a considerable role in thetransformationof each hydrocarbonprecursor.

    Acknowledgement

    This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 41672115 and 41972126),and the National Science and Technology Major Project of China(Grant No.2016ZX05006001-003).

    Appendix A. Supplementary data

    Supplementary Data to this article can be found online at https://doi.org/10.1016/j.petsci.2022.02.006.

    免费人成在线观看视频色| 久久久久久大精品| 日本熟妇午夜| 一级黄片播放器| 日本 欧美在线| 免费电影在线观看免费观看| 久久人妻av系列| a级毛片a级免费在线| 国产女主播在线喷水免费视频网站 | 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 中文字幕精品亚洲无线码一区| 乱码一卡2卡4卡精品| 长腿黑丝高跟| 不卡一级毛片| 精品久久久久久久久久免费视频| 成人无遮挡网站| 午夜影院日韩av| 日韩大尺度精品在线看网址| 毛片一级片免费看久久久久 | 成人av一区二区三区在线看| 久久人妻av系列| 日韩高清综合在线| 久久亚洲精品不卡| 国产午夜精品论理片| 午夜精品在线福利| 舔av片在线| 国产不卡一卡二| 国产毛片a区久久久久| 成人二区视频| 欧美激情在线99| 久久婷婷人人爽人人干人人爱| 亚洲专区国产一区二区| 淫妇啪啪啪对白视频| 国产亚洲av嫩草精品影院| 亚洲国产欧美人成| 亚洲精品一区av在线观看| 欧美绝顶高潮抽搐喷水| 日韩欧美在线二视频| 别揉我奶头~嗯~啊~动态视频| 岛国在线免费视频观看| 在线免费观看的www视频| 亚洲乱码一区二区免费版| 欧美日韩黄片免| 欧美最新免费一区二区三区| 精品久久久噜噜| 桃色一区二区三区在线观看| 大型黄色视频在线免费观看| 国产免费男女视频| 在线播放国产精品三级| 97超级碰碰碰精品色视频在线观看| 欧美黑人巨大hd| 少妇的逼好多水| 亚洲美女视频黄频| 成人三级黄色视频| 国产免费一级a男人的天堂| 国产精品99久久久久久久久| 午夜久久久久精精品| 99在线视频只有这里精品首页| 精品久久久久久久久av| 午夜影院日韩av| 内射极品少妇av片p| 别揉我奶头 嗯啊视频| 嫁个100分男人电影在线观看| 99热只有精品国产| 亚洲精品一区av在线观看| 国产黄片美女视频| 国产探花在线观看一区二区| 欧美丝袜亚洲另类 | 99热这里只有精品一区| 最近最新免费中文字幕在线| 亚洲国产欧美人成| 99久久精品热视频| 亚洲自拍偷在线| 国产精品久久久久久久电影| 国产免费男女视频| 成人欧美大片| 91麻豆av在线| 亚洲欧美清纯卡通| 亚洲国产欧美人成| 精品国产三级普通话版| 97碰自拍视频| 97碰自拍视频| 国产精品无大码| av天堂在线播放| 日本熟妇午夜| 久久久久免费精品人妻一区二区| 国产在线男女| 久久国产精品人妻蜜桃| 国产69精品久久久久777片| 久久午夜福利片| 搡女人真爽免费视频火全软件 | 亚洲欧美清纯卡通| 91久久精品国产一区二区成人| 毛片一级片免费看久久久久 | 麻豆国产97在线/欧美| 久久这里只有精品中国| 国产午夜精品久久久久久一区二区三区 | 日本 av在线| 亚洲成人久久性| 国产白丝娇喘喷水9色精品| 成人欧美大片| 亚洲人成网站高清观看| 日本三级黄在线观看| 成人亚洲精品av一区二区| 无人区码免费观看不卡| 成年人黄色毛片网站| 日日啪夜夜撸| 免费看a级黄色片| 亚洲,欧美,日韩| 精品久久久久久成人av| 日韩欧美免费精品| 日韩欧美三级三区| 美女黄网站色视频| 热99在线观看视频| 国产精品福利在线免费观看| 久久久久久九九精品二区国产| 免费观看在线日韩| 国产白丝娇喘喷水9色精品| 国产探花在线观看一区二区| 欧洲精品卡2卡3卡4卡5卡区| 男人狂女人下面高潮的视频| 精品无人区乱码1区二区| 国产精品美女特级片免费视频播放器| 日韩亚洲欧美综合| 男女视频在线观看网站免费| 极品教师在线免费播放| 免费看美女性在线毛片视频| 琪琪午夜伦伦电影理论片6080| 久久久久久国产a免费观看| 久久人人爽人人爽人人片va| 国产av不卡久久| 国产av不卡久久| www.色视频.com| 男女做爰动态图高潮gif福利片| 村上凉子中文字幕在线| 一进一出抽搐gif免费好疼| h日本视频在线播放| 亚洲国产日韩欧美精品在线观看| 99久久精品一区二区三区| 九色国产91popny在线| 国产av一区在线观看免费| 又爽又黄a免费视频| 国产又黄又爽又无遮挡在线| 老司机午夜福利在线观看视频| 成年免费大片在线观看| 午夜爱爱视频在线播放| 一边摸一边抽搐一进一小说| 亚洲国产精品成人综合色| 国产精品久久视频播放| 欧美成人一区二区免费高清观看| 色播亚洲综合网| 在线观看午夜福利视频| 亚洲五月天丁香| 69av精品久久久久久| 国产精品久久视频播放| 中国美女看黄片| 一区二区三区免费毛片| 国产高清有码在线观看视频| 亚洲av熟女| 在线观看午夜福利视频| 嫁个100分男人电影在线观看| 国内精品宾馆在线| 最近在线观看免费完整版| 成人av在线播放网站| 亚洲人与动物交配视频| 非洲黑人性xxxx精品又粗又长| 韩国av在线不卡| 最新在线观看一区二区三区| 久久久国产成人精品二区| 成人亚洲精品av一区二区| 少妇的逼水好多| 国产视频一区二区在线看| 久久香蕉精品热| 欧美一区二区精品小视频在线| 嫩草影视91久久| 村上凉子中文字幕在线| 国产男靠女视频免费网站| 欧美+亚洲+日韩+国产| 成人av一区二区三区在线看| 1000部很黄的大片| 动漫黄色视频在线观看| 久久久久久九九精品二区国产| 99国产极品粉嫩在线观看| 日本色播在线视频| 婷婷色综合大香蕉| 精品久久久久久久末码| 亚洲一级一片aⅴ在线观看| 成人国产麻豆网| 日韩欧美精品v在线| 3wmmmm亚洲av在线观看| 国产免费av片在线观看野外av| 午夜a级毛片| 日韩中字成人| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 88av欧美| 天堂√8在线中文| 亚洲性夜色夜夜综合| or卡值多少钱| 欧美日韩乱码在线| 露出奶头的视频| 狠狠狠狠99中文字幕| 高清毛片免费观看视频网站| 成年人黄色毛片网站| 男人和女人高潮做爰伦理| 久久久久国内视频| 欧美色视频一区免费| 18禁黄网站禁片午夜丰满| 精品无人区乱码1区二区| 91麻豆av在线| 免费黄网站久久成人精品| 性欧美人与动物交配| 中文在线观看免费www的网站| 午夜精品一区二区三区免费看| 中文字幕久久专区| 在线国产一区二区在线| 中文字幕av在线有码专区| 日日摸夜夜添夜夜添av毛片 | 黄片wwwwww| 五月伊人婷婷丁香| 日韩精品有码人妻一区| 久久久久久久久大av| 国产精品一区二区三区四区久久| 国产国拍精品亚洲av在线观看| 丰满人妻一区二区三区视频av| 国产精品国产三级国产av玫瑰| 精品久久久久久久久亚洲 | a在线观看视频网站| 国产淫片久久久久久久久| 午夜激情欧美在线| 亚洲av不卡在线观看| 精品久久久久久成人av| 十八禁国产超污无遮挡网站| 国产精品亚洲美女久久久| 少妇熟女aⅴ在线视频| 夜夜看夜夜爽夜夜摸| 亚洲乱码一区二区免费版| 国产蜜桃级精品一区二区三区| 欧美性猛交╳xxx乱大交人| 一个人观看的视频www高清免费观看| 国产精华一区二区三区| 亚洲人成伊人成综合网2020| 久久精品国产99精品国产亚洲性色| 亚洲男人的天堂狠狠| 真人做人爱边吃奶动态| 欧美激情国产日韩精品一区| 日本-黄色视频高清免费观看| 2021天堂中文幕一二区在线观| 亚洲美女视频黄频| 噜噜噜噜噜久久久久久91| 偷拍熟女少妇极品色| 一边摸一边抽搐一进一小说| 少妇人妻精品综合一区二区 | 久久精品国产亚洲av天美| 又黄又爽又刺激的免费视频.| 中文资源天堂在线| 动漫黄色视频在线观看| 亚洲自拍偷在线| 亚洲熟妇中文字幕五十中出| 狠狠狠狠99中文字幕| 成人av在线播放网站| 国产精品久久电影中文字幕| 成人一区二区视频在线观看| 亚洲性久久影院| 波野结衣二区三区在线| 搡老岳熟女国产| 国产国拍精品亚洲av在线观看| 久久6这里有精品| 国产真实乱freesex| 日本三级黄在线观看| 中文字幕久久专区| 欧美激情久久久久久爽电影| 国产精品一区二区性色av| 一区福利在线观看| 69人妻影院| 国产麻豆成人av免费视频| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看日本一区| 国产精品1区2区在线观看.| 一进一出抽搐gif免费好疼| 男女下面进入的视频免费午夜| 综合色av麻豆| 一本一本综合久久| xxxwww97欧美| 久久久久久久久久久丰满 | 伦精品一区二区三区| 国产精品乱码一区二三区的特点| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| 3wmmmm亚洲av在线观看| 午夜福利18| 亚洲七黄色美女视频| 亚洲久久久久久中文字幕| 在线观看免费视频日本深夜| 久久精品夜夜夜夜夜久久蜜豆| 亚洲18禁久久av| 亚洲av一区综合| 国产淫片久久久久久久久| 国产精品久久电影中文字幕| 国产激情偷乱视频一区二区| 亚洲av二区三区四区| 亚洲成人精品中文字幕电影| 国产男人的电影天堂91| 一个人免费在线观看电影| 欧美成人一区二区免费高清观看| 简卡轻食公司| 成人鲁丝片一二三区免费| 国产av麻豆久久久久久久| 一个人看的www免费观看视频| 22中文网久久字幕| 99热只有精品国产| 男女之事视频高清在线观看| 禁无遮挡网站| 亚洲不卡免费看| 免费看光身美女| 人人妻,人人澡人人爽秒播| 亚洲自偷自拍三级| 久久久久久久精品吃奶| xxxwww97欧美| 国产精品一区二区免费欧美| 在线观看66精品国产| 久久精品夜夜夜夜夜久久蜜豆| 99国产精品一区二区蜜桃av| 精品人妻熟女av久视频| 美女被艹到高潮喷水动态| 国产午夜福利久久久久久| 18禁黄网站禁片免费观看直播| 变态另类丝袜制服| 99riav亚洲国产免费| 久久精品国产亚洲av天美| 内射极品少妇av片p| 国产精品久久久久久亚洲av鲁大| 黄色女人牲交| 性插视频无遮挡在线免费观看| 干丝袜人妻中文字幕| 日日夜夜操网爽| 日韩一本色道免费dvd| 淫秽高清视频在线观看| 久久精品国产亚洲网站| 波多野结衣巨乳人妻| av在线蜜桃| 精品久久久久久久久av| 99在线视频只有这里精品首页| 成人综合一区亚洲| 久久久久久九九精品二区国产| 琪琪午夜伦伦电影理论片6080| 一进一出抽搐动态| netflix在线观看网站| 村上凉子中文字幕在线| 嫩草影院精品99| 美女高潮的动态| 一个人看视频在线观看www免费| 一级a爱片免费观看的视频| 日本免费a在线| 两人在一起打扑克的视频| 免费观看精品视频网站| 波多野结衣巨乳人妻| 夜夜夜夜夜久久久久| av专区在线播放| 色在线成人网| 久久久国产成人精品二区| 久久草成人影院| netflix在线观看网站| 国产av在哪里看| or卡值多少钱| 国产亚洲欧美98| 精品国内亚洲2022精品成人| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日本色播在线视频| 天天躁日日操中文字幕| av黄色大香蕉| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 波多野结衣高清无吗| 日本a在线网址| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| avwww免费| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 人人妻人人澡欧美一区二区| 国产黄色小视频在线观看| 精品99又大又爽又粗少妇毛片 | 国产一区二区亚洲精品在线观看| 亚洲人与动物交配视频| 国产伦在线观看视频一区| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添av毛片 | 91精品国产九色| 久久精品人妻少妇| 欧美在线一区亚洲| 在线播放国产精品三级| 日本黄大片高清| 亚洲精品色激情综合| 能在线免费观看的黄片| 亚洲,欧美,日韩| 久久精品国产自在天天线| 最近最新免费中文字幕在线| 十八禁国产超污无遮挡网站| 我的老师免费观看完整版| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 亚洲经典国产精华液单| 黄色女人牲交| 午夜精品在线福利| 蜜桃久久精品国产亚洲av| 免费看光身美女| 一级a爱片免费观看的视频| 少妇的逼好多水| 一区二区三区激情视频| 男女啪啪激烈高潮av片| 俄罗斯特黄特色一大片| 九九爱精品视频在线观看| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 嫩草影视91久久| 国产黄色小视频在线观看| 亚洲久久久久久中文字幕| 999久久久精品免费观看国产| 亚洲内射少妇av| 美女高潮的动态| 在线观看免费视频日本深夜| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 少妇高潮的动态图| 亚洲国产欧洲综合997久久,| 欧美3d第一页| 在线a可以看的网站| 久久久久久久久久黄片| 韩国av在线不卡| av专区在线播放| 国产av一区在线观看免费| 一边摸一边抽搐一进一小说| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 国产久久久一区二区三区| 一区二区三区激情视频| 久久久久久大精品| 老司机福利观看| 欧美区成人在线视频| 一级毛片久久久久久久久女| 级片在线观看| 日日啪夜夜撸| 男女视频在线观看网站免费| 中文字幕久久专区| 黄片wwwwww| 18禁裸乳无遮挡免费网站照片| 色综合婷婷激情| 国产免费av片在线观看野外av| 一进一出抽搐动态| 亚洲av二区三区四区| 欧美日韩中文字幕国产精品一区二区三区| 成年女人毛片免费观看观看9| av天堂中文字幕网| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 日本黄色视频三级网站网址| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 国产黄色小视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美精品v在线| 毛片女人毛片| 免费看光身美女| 精品乱码久久久久久99久播| 成年免费大片在线观看| 免费观看在线日韩| 乱人视频在线观看| 级片在线观看| 男人舔奶头视频| 亚洲五月天丁香| 韩国av一区二区三区四区| 亚洲av美国av| 色av中文字幕| .国产精品久久| 日本爱情动作片www.在线观看 | 亚洲av第一区精品v没综合| 亚洲图色成人| 精品不卡国产一区二区三区| 美女xxoo啪啪120秒动态图| av在线老鸭窝| 婷婷精品国产亚洲av在线| 日日干狠狠操夜夜爽| 窝窝影院91人妻| 99久久精品热视频| 中文字幕精品亚洲无线码一区| 亚洲色图av天堂| 长腿黑丝高跟| 高清在线国产一区| 国产高清视频在线播放一区| 国产一区二区在线av高清观看| 黄色丝袜av网址大全| 免费av不卡在线播放| 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久久久丰满 | 亚洲经典国产精华液单| 国产主播在线观看一区二区| a在线观看视频网站| 国产精品99久久久久久久久| 亚洲精品粉嫩美女一区| 国产综合懂色| 成年女人看的毛片在线观看| 亚洲黑人精品在线| 国产精品电影一区二区三区| 国产精品,欧美在线| x7x7x7水蜜桃| 一区二区三区高清视频在线| 午夜福利在线观看吧| 国产伦在线观看视频一区| 熟女人妻精品中文字幕| 在线播放无遮挡| 久久精品影院6| 国内精品久久久久久久电影| 身体一侧抽搐| 日韩强制内射视频| 欧美高清成人免费视频www| 日本精品一区二区三区蜜桃| 韩国av在线不卡| 日本成人三级电影网站| 欧美日韩中文字幕国产精品一区二区三区| 亚洲第一电影网av| 在线观看av片永久免费下载| 国内精品宾馆在线| 国语自产精品视频在线第100页| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 亚洲一级一片aⅴ在线观看| 成人二区视频| 国产男靠女视频免费网站| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 午夜视频国产福利| 国产精品日韩av在线免费观看| 午夜精品一区二区三区免费看| 黄色女人牲交| 麻豆av噜噜一区二区三区| 亚洲av中文av极速乱 | 不卡视频在线观看欧美| АⅤ资源中文在线天堂| 日韩大尺度精品在线看网址| 亚洲一级一片aⅴ在线观看| 国产又黄又爽又无遮挡在线| 一进一出好大好爽视频| 亚洲人成网站在线播| 欧美bdsm另类| 最新在线观看一区二区三区| 国产午夜精品久久久久久一区二区三区 | 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 免费观看精品视频网站| 天堂动漫精品| 国产色婷婷99| 国产高清视频在线观看网站| 日本一本二区三区精品| 国产精品一及| 久久国产精品人妻蜜桃| 99热网站在线观看| 亚洲在线自拍视频| 日本精品一区二区三区蜜桃| 又黄又爽又刺激的免费视频.| 免费不卡的大黄色大毛片视频在线观看 | 亚洲专区国产一区二区| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看 | 国产乱人视频| 三级毛片av免费| 亚洲成人久久性| 在线免费观看不下载黄p国产 | 亚洲四区av| 国产精品一区二区性色av| 精品一区二区三区视频在线| 悠悠久久av| 午夜激情福利司机影院| 97碰自拍视频| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| 色视频www国产| 搡老岳熟女国产| 欧美极品一区二区三区四区| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 国产免费av片在线观看野外av| 99久久成人亚洲精品观看| 九九久久精品国产亚洲av麻豆| 久久久久久久久久久丰满 | 男女视频在线观看网站免费| 不卡视频在线观看欧美| 亚洲欧美日韩卡通动漫| 亚洲专区国产一区二区| 成人无遮挡网站| 永久网站在线| 熟女人妻精品中文字幕| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 国产不卡一卡二| 中文在线观看免费www的网站|