• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Signed-rank-based test forhigh dimensional mean vector*

    2022-09-09 13:56:56LIUYanLIShimingZHANGSanguo

    LIU Yan, LI Shiming, ZHANG Sanguo?

    (1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;2 Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100049, China;3 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University,Beijing 100730, China)

    Abstract This work is concerned with tests for one-sample mean vectors under high dimensional cases. Existing high dimensional tests for mean vectors base on the assumption of elliptical distribution have been proposed recently. To extend to more distributions, we propose a signed-rank-based test. The proposed test statistic is robust and scalar-invariant. Asymptotic properties of the test statistic are established. Numerical studies show that the proposed test has a good control of the type-I error and is more efficiency. We also employ the proposed method to analyze an ophthalmic data.

    Keywords high dimensional analysis; signed-rank; one-sample test; scalar-invariance

    Suppose thatX1,…,Xn∈pare independent and identically distribution random samples with mean vectorμand covariance matrixΣ. And consider the following test

    H0:μ=μ0vs.H1:μ≠μ0.

    (1)

    undernnbecause of the singularity of the sample covariance matrix. It is a challenge to the traditional method in high dimensional situation.

    The challenge of testing (1) in high dimensional situation has attracted many researchers. Ref.[1] constructed the test statistics which avoid the inverse of the sample covariance matrix. but the test statistics can only be applied to the case ofp/n→c∈(0,1), which means that the increasing rate of the sample dimension should be same as the sample size. Ref.[2] proposed a new test statistic without any direct relationship betweenpandn. In practice, different components may have different scales. Therefore, scalar-invariant is an important property to a test statistic. Ref.[3], Ref.[4] and Ref.[5] constructed a test statistic with the property of scalar-invariant and under the assumption thatp=o(n2). Ref.[6] proposed a scalar-invariant test that allows the dimension to be arbitrarily large. But their test is not location shift invariant. However, under heavy-tailed distributions, which frequently arise in genomics and quantitative finance, the asymptotic properties of the above test statistics are not established, a natural result is that these tests tend to have unsatisfactory power. Under the assumption of elliptical distributions, Ref.[7] proposed a novel non-parametric test based on spatial-signs, which is more powerful than the test in Ref.[2] for heavy-tailed multivariate distributions and has similar power to the test in Ref.[2] for multivariate normal distribution. But their test is not scalar-invariant. Ref.[8] proposed a novel scalar-invariant test based on multivariate-sign, which is more powerful than the test in Ref.[5] for heavy-tailed multivariate distributions. And their method is under the assumption that log(p)=o(n).

    We propose a novel test for hypothesis (1) based on signed-rank method and our study have two main contributions. Firstly, the proposed test statistic works for more distributions because signed-rank method only requires that the distribution of the samples is symmetric. And the test statistic is available whenpis arbitrarily large. Secondly, we show that, under null hypothesis, the proposed test statistic is asymptotically normal. Moreover, the simulation study shows that our method is scalar-invariant and robust, and is more efficient without the assumption of elliptical distributions.

    1 A signed-rank-based high dimen-sional test

    1.1 The proposed test statistic

    Suppose thatXi,i=1,…,nare independent and identically distribution random samples with dimensionp. We denote thatX(k)=(X1k,…,Xnk),k=1,…,pas the sample of thek-th dimension. And, let (r1k,…,rnk) be the rank of (|X1k|,…,|Xnk|). To test hypothesis (1), we proposed a test statistic based on signed-rank functions, which are defined as:

    Ui=diag{sign(Xi1),…,sign(Xip)}(ri1,…,rip)T,

    wherei=1,2,…,n. Then, we consider the following U-statistic:

    (2)

    Setsi=(si1,…,sip)Twith covariance matrixΣs>0, wheresij=sign(Xij). To establish the asymptotic properties of the U statistic under the null hypothesis, we need following conditions:

    Remark1.1Condition A1 is necessary condition of the signed-rank test under null hypothesis and it indicates that the random samples have symmetric distributions. Under the first term in condition A1, we haveE(sij)=0. Under the second term in condition A1,rij≠rkjfor anyi≠kand eachjso that (r1j,…,rnj) is a permutation of all the elements in {1,…,n}. Condition A2 is similar to that applied in Ref.[2], and it is a quite mild condition on the eigenvalues ofΣs.

    UnderH0, and then suppose condition A1 hold, it is easy to show that

    E(Tn)=0,

    and

    Theorem 1.1 in the following establishes the asymptotic normality ofTn.

    Theorem1.1UnderH0, and then suppose conditions A1 and A2 hold, asn→∞ andp→∞,

    (3)

    1.2 Computational issue

    2 Simulation study

    We compare the performance of the proposed test (SR) with five alternatives: Ref.[1] (BS), Ref.[2] (CQ), Ref.[5] (SKK), Ref.[7] (WPL), Ref.[8] (FZW). All the following simulations are replicated 1 000 times. And, we setn=20, 50 andp=200, 1 000.

    Table 1 stands for the performance of the six tests in Example 1. We can see that the power of SR is similar to those of BS, CQ and WPL whenΣ=Σ1, and is more than those of BS, CQ and WPL whenΣ=Σ2. It indicates that SR has better performance when the scales of different components are different. For example, when (n,p)=(20,200),Σ=Σ2andc=0.1, the power of SR, BS,CQ, and WPL are 0.547, 0.407, 0.420, and 0.394, respectively. And we observe that SR has better performance in power than SKK and FZW whenp?n. The reason is that SKK and FZW are under the assumptions thatpcannot be much larger thann. For example, when (n,p)=(20,1 000),Σ=Σ1andc=0.15, the power of SR, SKK and FZW are 0.589, 0.413 and 0.347 respectively.

    Table 1 The empirical size and power at the significance level of 5% in Example 1

    Example2In this example,Xiis generated from p-variatet-distribution with 3 degrees of freedom. The setting of mean vectorμand covarianceΣare the same as those in Example 1. And we selectc=0.1 and 0.15 forμto calculate the power.

    Table 2 shows the simulation results in Example 2. We can see that SR have better performance in power than that of other five tests in all settings. For example, when (n,p)=(50,200),Σ=Σ1andc=0.15, the power of SR is 0.773 and the power of the other tests in this setting are 0.419, 0.538, 0.549, 0.577, and 0.610 respectively. Fort-distribution is a common heavy-tailed distribution, the results in this table indicate that SR is robust. Table 3 shows the performance of the six tests in Example 3. It shows that SR are more powerful than other five tests in all settings. For example, when (n,p)=(20,1 000),Σ=Σ2, andc=0.15, the power of BS, CQ, SKK, WPL, FZW, and SR are 0.626, 0.615, 0.695, 0.653, 0.650, and 0.949, respectively. Laplace distribution is not a elliptical distribution, and Table 3 shows that SR is more effective in this situation.

    Table 2 The empirical size and power at the significance level of 5% in Example 2

    Example3In this example,Xiis generated from p-variate Laplace distribution. And we consider the same setting of mean vectorμand covarianceΣas those in Example 1. To calculate the power, we selectc=0.1 andc=0.15 whenn=20, andc=0.05 andc=0.075 whenn=50.

    Table 3 shows the performance of the six tests in Example 3. It shows that SR are more powerful than other five tests in all settings. For example, when (n,p)=(20,1 000),Σ=Σ2, andc=0.15, the power of BS, CQ, SKK, WPL, FZW, and SR are 0.626, 0.615, 0.695, 0.653, 0.650, and 0.949, respectively. Laplace distribution is not a elliptical distribution, and Table 3 shows that SR is more effective in this situation.

    Table 3 The empirical size and power at the significance level of 5% in Example 3

    Example4In this example, we generateXifrom a mixed distribution. Firstly, we generateZijfrom normal distribution for 1≤j≤2p/5, generateZijfromtdistribution with 3 degrees of freedom for 2p/5+1≤j≤7p/10, and generateZijfrom Laplace distribution for 7p/10+1≤j≤p, and allZijhave mean 0 and variance 1. Then we letXi=ΓZi+μ, whereΓis ap×pmatrix withΓΓT=Σ, andZi={Zi1,…,Zip}T. And we consider the same setting of mean vectorμand covarianceΣas those in Example 1. To calculate the power, we selectc=0.1 andc=0.15 whenn=20, andc=0.05 andc=0.075 whenn=50.

    Table 4 stands for the simulation results in Example 4. We can see that the power of SR is more than those of the other five tests in all settings. For example, when (n,p)=(50,1 000),Σ=Σ2andc=0.075, the power of SR is 0.757 and the power of the other tests in this setting are 0.214, 0.271, 0.548, 0.299 and 0.613 respectively. In practice, the variates usually have different distributions. Hence, the results in Table 4 indicate that SR is supposed to have better performancein application.

    Table 4 The empirical size and power at the significance level of 5% in Example 4

    Moreover, we plot the empirical distributions of SR with the settings of four examples and compare them with the standard normal distribution. And, Fig.1 confirms the asymptotic normal distributions of SR given in Theorem 1.1.

    Fig.1 Tn under the null hypothesis with four different distributions of X

    3 Real data application

    In this section, we employ the proposed signed-rank-based method to study an ophthalmic data. This data is collected by the Beijing Tongren Eye Center and Anyang Eye Hospital. We take the data of the fifth and sixth grades of a class in the data, Apply the proposed method to study whether the visual factors and their interaction with eye habits are different in different grades.

    Fig.2 The distribution of the standard deviations

    Firstly, we remove the visual factors and their interaction with eye habits with missing values greater than 15%, and impute the sample mean into the missing values for the remaining 945 factors. Then, we letXibe the difference between the visual factors and their interaction with eye habits of thei-th student in the sixth grade and those in the fifth grade. And, we calculate standard deviations of each dimension inX, and show the distribution of the standard deviations in Fig.2. It shows that these standard deviations are different, so the scalar-invariance method are supposed to have better performance in the analysis of this data. Applying the proposed SR method, we obtain ap-value <10-9, which illustrates that the visual factors and their interaction factors of eye habits are different in different grades. Through CQ, WPL and FZW methods, thep-values obtained are 0.491 0, 0.491 3 and <10-9respectively. For the standard deviations of each dimension in the sample are different, the CQ and WPL methods are relatively ineffective, while thep-values obtained through FZW and SR methods are small.

    欧美一级毛片孕妇| 69精品国产乱码久久久| 叶爱在线成人免费视频播放| 午夜福利免费观看在线| 一二三四社区在线视频社区8| 老汉色av国产亚洲站长工具| 人人妻人人爽人人添夜夜欢视频| 美女高潮到喷水免费观看| 久久久久久久精品吃奶| 色婷婷av一区二区三区视频| 脱女人内裤的视频| 动漫黄色视频在线观看| 91精品三级在线观看| av超薄肉色丝袜交足视频| 日韩中文字幕视频在线看片| 亚洲av成人一区二区三| 老汉色∧v一级毛片| 久久天堂一区二区三区四区| 最近最新免费中文字幕在线| 国产亚洲午夜精品一区二区久久| 在线观看66精品国产| 国产不卡一卡二| 中文字幕人妻丝袜制服| 免费不卡黄色视频| 中文字幕精品免费在线观看视频| 97在线人人人人妻| 中文字幕另类日韩欧美亚洲嫩草| 在线av久久热| 一本综合久久免费| 精品人妻1区二区| 欧美激情极品国产一区二区三区| 国产精品美女特级片免费视频播放器 | 午夜日韩欧美国产| 十八禁高潮呻吟视频| 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| 人成视频在线观看免费观看| 久久久精品94久久精品| 日韩一区二区三区影片| 高清视频免费观看一区二区| 久久久国产成人免费| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 人妻一区二区av| 国产色视频综合| www.熟女人妻精品国产| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 黄片大片在线免费观看| 9色porny在线观看| 老司机靠b影院| 国产精品二区激情视频| 两性夫妻黄色片| av天堂久久9| 曰老女人黄片| 中文亚洲av片在线观看爽 | 国产一区二区三区在线臀色熟女 | 精品亚洲成a人片在线观看| 涩涩av久久男人的天堂| 在线永久观看黄色视频| 亚洲中文av在线| 国产福利在线免费观看视频| 亚洲天堂av无毛| 国产区一区二久久| 久久午夜综合久久蜜桃| 丰满少妇做爰视频| 黑人巨大精品欧美一区二区mp4| 91成人精品电影| h视频一区二区三区| 亚洲精品一二三| 午夜福利乱码中文字幕| 水蜜桃什么品种好| 69av精品久久久久久 | 亚洲人成电影免费在线| 天天操日日干夜夜撸| 午夜福利在线观看吧| 如日韩欧美国产精品一区二区三区| av福利片在线| 成人国语在线视频| 色尼玛亚洲综合影院| 黄片播放在线免费| 亚洲国产欧美网| 水蜜桃什么品种好| 国产在线一区二区三区精| 亚洲国产看品久久| 国产精品九九99| 18在线观看网站| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区久久| 欧美人与性动交α欧美软件| 99精品欧美一区二区三区四区| 变态另类成人亚洲欧美熟女 | 不卡av一区二区三区| 亚洲色图综合在线观看| 91精品国产国语对白视频| 中文字幕av电影在线播放| 激情在线观看视频在线高清 | 999久久久国产精品视频| 波多野结衣av一区二区av| 一进一出好大好爽视频| 性高湖久久久久久久久免费观看| 久久久久久久精品吃奶| 国产成人av教育| 午夜成年电影在线免费观看| 黄色毛片三级朝国网站| 美女国产高潮福利片在线看| 极品少妇高潮喷水抽搐| kizo精华| 18禁美女被吸乳视频| 国产亚洲午夜精品一区二区久久| 午夜精品国产一区二区电影| 成人亚洲精品一区在线观看| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 一夜夜www| 久久久国产一区二区| 成人永久免费在线观看视频 | 国产日韩一区二区三区精品不卡| 久久精品亚洲av国产电影网| 日韩大码丰满熟妇| 制服诱惑二区| 午夜激情久久久久久久| 一级毛片精品| 一二三四在线观看免费中文在| av天堂在线播放| 国产不卡av网站在线观看| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 午夜激情久久久久久久| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女 | 90打野战视频偷拍视频| 三级毛片av免费| 黄色怎么调成土黄色| 一区二区三区激情视频| 亚洲精品美女久久av网站| 国产成人一区二区三区免费视频网站| 国产精品98久久久久久宅男小说| av有码第一页| 亚洲精品中文字幕一二三四区 | 国产xxxxx性猛交| 亚洲精华国产精华精| 国产成人av激情在线播放| 国产欧美日韩一区二区三区在线| 在线看a的网站| 亚洲精品国产色婷婷电影| 999精品在线视频| 国产一区二区三区在线臀色熟女 | 日本撒尿小便嘘嘘汇集6| 热99国产精品久久久久久7| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 成年版毛片免费区| 国产精品一区二区在线观看99| 久久久久国产一级毛片高清牌| 在线观看免费视频日本深夜| 99精国产麻豆久久婷婷| 桃花免费在线播放| 国产人伦9x9x在线观看| 中文字幕av电影在线播放| 一区二区三区乱码不卡18| 国产精品久久久久久精品电影小说| 久久婷婷成人综合色麻豆| 考比视频在线观看| 国产亚洲精品久久久久5区| 男人操女人黄网站| 亚洲成国产人片在线观看| 99国产精品99久久久久| 亚洲熟女毛片儿| 国产xxxxx性猛交| 久久中文字幕人妻熟女| 国产精品美女特级片免费视频播放器 | 高潮久久久久久久久久久不卡| 乱人伦中国视频| 久久99一区二区三区| 天堂8中文在线网| 韩国精品一区二区三区| 丝袜人妻中文字幕| 欧美性长视频在线观看| 亚洲成av片中文字幕在线观看| 国产成人免费观看mmmm| 国产成人欧美| 久久亚洲真实| 一本久久精品| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费视频内射| 大陆偷拍与自拍| 亚洲欧洲日产国产| 精品人妻1区二区| 国产有黄有色有爽视频| 一夜夜www| 国产一区二区三区视频了| 人人妻,人人澡人人爽秒播| 久久久精品免费免费高清| 亚洲中文av在线| 成人手机av| 成人三级做爰电影| 色老头精品视频在线观看| 亚洲全国av大片| 国产精品二区激情视频| 男女边摸边吃奶| 夫妻午夜视频| av电影中文网址| 嫩草影视91久久| 天堂动漫精品| 男人操女人黄网站| 在线观看免费高清a一片| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| av天堂久久9| av线在线观看网站| 国产精品成人在线| 国产精品99久久99久久久不卡| av有码第一页| 国产在线精品亚洲第一网站| 日韩视频在线欧美| 精品国产一区二区久久| 麻豆乱淫一区二区| 亚洲中文av在线| a在线观看视频网站| 亚洲第一av免费看| 久久毛片免费看一区二区三区| 女人久久www免费人成看片| 在线观看免费日韩欧美大片| 国产在线观看jvid| 亚洲第一青青草原| 日本a在线网址| 亚洲av日韩在线播放| 国产在线观看jvid| 亚洲,欧美精品.| 最近最新免费中文字幕在线| 少妇的丰满在线观看| 亚洲午夜理论影院| 久久久久久人人人人人| 五月开心婷婷网| 国产精品美女特级片免费视频播放器 | 国产男女超爽视频在线观看| 热99re8久久精品国产| 精品少妇久久久久久888优播| 亚洲全国av大片| 国产有黄有色有爽视频| 黄色a级毛片大全视频| 国产淫语在线视频| 成年女人毛片免费观看观看9 | 搡老岳熟女国产| 成人黄色视频免费在线看| 国产精品久久久久成人av| 中文字幕人妻丝袜一区二区| 国产成人啪精品午夜网站| 蜜桃国产av成人99| 国产成人精品在线电影| 三级毛片av免费| 国产高清videossex| 黑人操中国人逼视频| 欧美精品亚洲一区二区| 国产野战对白在线观看| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 真人做人爱边吃奶动态| 丝瓜视频免费看黄片| 极品教师在线免费播放| 国产麻豆69| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 亚洲第一青青草原| 成年人黄色毛片网站| 美女福利国产在线| 国产野战对白在线观看| 亚洲一码二码三码区别大吗| 国产男女内射视频| 久久 成人 亚洲| 18禁黄网站禁片午夜丰满| 多毛熟女@视频| 动漫黄色视频在线观看| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 亚洲综合色网址| 国产精品一区二区精品视频观看| 午夜福利欧美成人| 日韩大码丰满熟妇| 精品一区二区三区av网在线观看 | 国产av一区二区精品久久| 嫁个100分男人电影在线观看| 精品视频人人做人人爽| 视频在线观看一区二区三区| 久久久国产一区二区| 在线观看www视频免费| 国产免费现黄频在线看| 少妇的丰满在线观看| netflix在线观看网站| 丁香六月天网| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 久久久久久人人人人人| 亚洲人成77777在线视频| 黑人猛操日本美女一级片| 91字幕亚洲| 国产成人精品久久二区二区91| 精品国产一区二区久久| 免费在线观看视频国产中文字幕亚洲| 国产日韩欧美亚洲二区| 久久国产精品大桥未久av| 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 多毛熟女@视频| 12—13女人毛片做爰片一| 国产成人精品在线电影| 成年女人毛片免费观看观看9 | 精品少妇久久久久久888优播| www.自偷自拍.com| 亚洲九九香蕉| 多毛熟女@视频| 飞空精品影院首页| 电影成人av| 成人精品一区二区免费| avwww免费| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 国产又色又爽无遮挡免费看| 午夜福利在线观看吧| 天堂动漫精品| 婷婷成人精品国产| 精品一区二区三卡| 精品免费久久久久久久清纯 | 下体分泌物呈黄色| 欧美亚洲日本最大视频资源| 成年动漫av网址| 免费女性裸体啪啪无遮挡网站| 亚洲专区中文字幕在线| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 国产日韩欧美在线精品| 人妻一区二区av| aaaaa片日本免费| 日韩免费高清中文字幕av| 亚洲专区中文字幕在线| 亚洲国产欧美一区二区综合| 搡老熟女国产l中国老女人| 狠狠精品人妻久久久久久综合| av视频免费观看在线观看| 精品一区二区三区四区五区乱码| 中文亚洲av片在线观看爽 | 国产真人三级小视频在线观看| 欧美黄色片欧美黄色片| 一区在线观看完整版| 亚洲免费av在线视频| 黄色成人免费大全| 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 两性夫妻黄色片| 亚洲综合色网址| 老汉色∧v一级毛片| 80岁老熟妇乱子伦牲交| 国产精品美女特级片免费视频播放器 | 国产aⅴ精品一区二区三区波| 精品国产亚洲在线| videosex国产| 国产aⅴ精品一区二区三区波| 建设人人有责人人尽责人人享有的| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 91字幕亚洲| 亚洲一区二区三区欧美精品| 国产亚洲精品一区二区www | 一本一本久久a久久精品综合妖精| 日本vs欧美在线观看视频| 岛国在线观看网站| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 国产无遮挡羞羞视频在线观看| 国产亚洲精品久久久久5区| 国产99久久九九免费精品| 一个人免费看片子| 最新的欧美精品一区二区| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 99精品久久久久人妻精品| 老司机深夜福利视频在线观看| av视频免费观看在线观看| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 日韩欧美一区视频在线观看| 桃红色精品国产亚洲av| 大码成人一级视频| 精品一区二区三区视频在线观看免费 | av视频免费观看在线观看| 国产精品美女特级片免费视频播放器 | 一二三四在线观看免费中文在| 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| 欧美亚洲 丝袜 人妻 在线| 制服诱惑二区| 中文字幕高清在线视频| 午夜福利一区二区在线看| 香蕉国产在线看| 国产精品熟女久久久久浪| 亚洲中文av在线| 黄片播放在线免费| 国产野战对白在线观看| 久久天躁狠狠躁夜夜2o2o| 国产1区2区3区精品| 日本欧美视频一区| 亚洲国产av影院在线观看| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 中文字幕人妻熟女乱码| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| 欧美精品人与动牲交sv欧美| 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 12—13女人毛片做爰片一| 久久精品成人免费网站| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 国产成人av激情在线播放| 久久久欧美国产精品| 亚洲综合色网址| videos熟女内射| 热re99久久精品国产66热6| 在线天堂中文资源库| 18禁黄网站禁片午夜丰满| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人| 淫妇啪啪啪对白视频| 女人高潮潮喷娇喘18禁视频| 成人黄色视频免费在线看| 久热爱精品视频在线9| 日本a在线网址| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 人妻久久中文字幕网| 成人av一区二区三区在线看| 国产在线免费精品| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区视频在线观看免费 | 精品久久久精品久久久| 久久精品aⅴ一区二区三区四区| 成年人黄色毛片网站| 99九九在线精品视频| 国产又爽黄色视频| 桃红色精品国产亚洲av| 女人爽到高潮嗷嗷叫在线视频| 久久天堂一区二区三区四区| 久久这里只有精品19| 变态另类成人亚洲欧美熟女 | 18在线观看网站| 欧美精品啪啪一区二区三区| 亚洲avbb在线观看| 热re99久久国产66热| 日韩欧美一区二区三区在线观看 | 国产伦人伦偷精品视频| 看免费av毛片| av欧美777| 国产单亲对白刺激| 好男人电影高清在线观看| 中国美女看黄片| 久久精品亚洲精品国产色婷小说| 久久久久精品人妻al黑| 欧美另类亚洲清纯唯美| 老熟女久久久| 日本av免费视频播放| 国产精品98久久久久久宅男小说| 丝袜美腿诱惑在线| 久久青草综合色| 免费在线观看完整版高清| 午夜激情久久久久久久| 成人av一区二区三区在线看| 久久人人97超碰香蕉20202| 午夜福利在线观看吧| 免费日韩欧美在线观看| 一个人免费在线观看的高清视频| av天堂久久9| 老汉色∧v一级毛片| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 麻豆乱淫一区二区| 99国产精品一区二区蜜桃av | 日本一区二区免费在线视频| 欧美成人午夜精品| 精品国产乱码久久久久久男人| 我的亚洲天堂| 国产免费av片在线观看野外av| 老司机福利观看| 成人特级黄色片久久久久久久 | 人妻久久中文字幕网| 韩国精品一区二区三区| tocl精华| 欧美精品亚洲一区二区| 国产成人精品无人区| 五月天丁香电影| 亚洲av日韩在线播放| 搡老熟女国产l中国老女人| 日本黄色日本黄色录像| 国产在线视频一区二区| 午夜成年电影在线免费观看| 十八禁高潮呻吟视频| 制服诱惑二区| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久 | 亚洲熟妇熟女久久| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 国产区一区二久久| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕在线视频| 免费看十八禁软件| 国产精品99久久99久久久不卡| 高清黄色对白视频在线免费看| netflix在线观看网站| 日韩熟女老妇一区二区性免费视频| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 高清av免费在线| 日本欧美视频一区| 国产亚洲欧美精品永久| 涩涩av久久男人的天堂| 一区二区av电影网| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看影片大全网站| 免费观看a级毛片全部| 国产精品亚洲一级av第二区| 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 国产日韩欧美在线精品| 中文字幕人妻熟女乱码| 水蜜桃什么品种好| 天天操日日干夜夜撸| 午夜免费鲁丝| 国产主播在线观看一区二区| 亚洲综合色网址| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说 | 男男h啪啪无遮挡| 欧美日韩中文字幕国产精品一区二区三区 | 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 久久久久网色| 天天操日日干夜夜撸| a级毛片黄视频| 在线看a的网站| av不卡在线播放| 久久中文字幕一级| 色综合婷婷激情| 露出奶头的视频| 色播在线永久视频| 成人免费观看视频高清| 亚洲成人手机| 亚洲av电影在线进入| 免费一级毛片在线播放高清视频 | 国产91精品成人一区二区三区 | 欧美变态另类bdsm刘玥| www.熟女人妻精品国产| 高清视频免费观看一区二区| 99精品在免费线老司机午夜| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 美女高潮喷水抽搐中文字幕| 国产一区二区三区在线臀色熟女 | 久久国产精品男人的天堂亚洲| 十八禁人妻一区二区| 高清在线国产一区| 人妻 亚洲 视频| 搡老乐熟女国产| 亚洲精品国产精品久久久不卡| 99国产精品99久久久久| 欧美日本中文国产一区发布| 国产99久久九九免费精品| 国产欧美日韩精品亚洲av| 制服人妻中文乱码| 国产91精品成人一区二区三区 | 欧美 日韩 精品 国产| 最黄视频免费看| www.自偷自拍.com| 亚洲国产av影院在线观看| 韩国精品一区二区三区| 操美女的视频在线观看| 国产精品影院久久| av片东京热男人的天堂| 午夜福利视频在线观看免费| 午夜成年电影在线免费观看| 精品乱码久久久久久99久播| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 人人妻人人添人人爽欧美一区卜| 欧美日本中文国产一区发布| 99国产精品99久久久久| 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 亚洲一码二码三码区别大吗| 激情在线观看视频在线高清 | 叶爱在线成人免费视频播放| 不卡av一区二区三区| 在线看a的网站| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 久热爱精品视频在线9| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮|