• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    日韩高清综合在线| 国产真实乱freesex| 国产欧美日韩一区二区精品| 真人一进一出gif抽搐免费| 久99久视频精品免费| 精品久久蜜臀av无| 亚洲国产欧美网| 日本黄大片高清| 亚洲片人在线观看| 麻豆国产97在线/欧美 | 好看av亚洲va欧美ⅴa在| 欧美日本视频| 韩国av一区二区三区四区| 成年版毛片免费区| 亚洲av五月六月丁香网| 亚洲中文字幕一区二区三区有码在线看 | 成熟少妇高潮喷水视频| 久久久久国产一级毛片高清牌| 九色国产91popny在线| 伦理电影免费视频| 99久久99久久久精品蜜桃| 国产精品1区2区在线观看.| 婷婷精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 亚洲人成伊人成综合网2020| 欧美黄色淫秽网站| www.精华液| 一本大道久久a久久精品| 黄色 视频免费看| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 久久久精品欧美日韩精品| 两个人视频免费观看高清| 桃色一区二区三区在线观看| 老司机深夜福利视频在线观看| 久久久久久人人人人人| 亚洲中文av在线| 久久性视频一级片| 日韩大尺度精品在线看网址| 亚洲专区中文字幕在线| 国产午夜精品久久久久久| 欧美乱妇无乱码| 久久热在线av| 国内少妇人妻偷人精品xxx网站 | www.www免费av| 国产久久久一区二区三区| 白带黄色成豆腐渣| 岛国视频午夜一区免费看| 欧美成人一区二区免费高清观看 | 亚洲欧美精品综合一区二区三区| 国内揄拍国产精品人妻在线| 99riav亚洲国产免费| 中文字幕最新亚洲高清| 每晚都被弄得嗷嗷叫到高潮| 天堂√8在线中文| 好男人在线观看高清免费视频| 欧美色视频一区免费| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 欧美日韩中文字幕国产精品一区二区三区| e午夜精品久久久久久久| 久久久久久久久中文| 午夜福利高清视频| 九色成人免费人妻av| 免费观看精品视频网站| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| 亚洲激情在线av| 99精品欧美一区二区三区四区| 亚洲国产精品999在线| 窝窝影院91人妻| 亚洲 欧美一区二区三区| 亚洲av片天天在线观看| 欧美乱码精品一区二区三区| 久久 成人 亚洲| 成人国产综合亚洲| 一区二区三区高清视频在线| 97人妻精品一区二区三区麻豆| 久久久久久免费高清国产稀缺| 久久精品人妻少妇| 99久久精品热视频| 亚洲九九香蕉| 两性夫妻黄色片| 老司机午夜福利在线观看视频| 免费在线观看日本一区| av免费在线观看网站| 12—13女人毛片做爰片一| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 亚洲自偷自拍图片 自拍| 美女免费视频网站| 一本久久中文字幕| 中文字幕高清在线视频| 午夜福利18| 18禁美女被吸乳视频| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 丰满人妻一区二区三区视频av | 免费看a级黄色片| 制服丝袜大香蕉在线| 欧美一级毛片孕妇| 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 午夜精品一区二区三区免费看| 日韩欧美 国产精品| www.999成人在线观看| 成人av在线播放网站| 一级毛片高清免费大全| 一级a爱片免费观看的视频| 国产成人精品无人区| 丰满人妻熟妇乱又伦精品不卡| 亚洲电影在线观看av| 亚洲国产欧洲综合997久久,| 久久久久久亚洲精品国产蜜桃av| 免费在线观看亚洲国产| 白带黄色成豆腐渣| 日韩三级视频一区二区三区| 可以免费在线观看a视频的电影网站| 成人高潮视频无遮挡免费网站| 亚洲片人在线观看| 在线观看免费日韩欧美大片| 精品高清国产在线一区| 国产一区二区在线观看日韩 | 久久这里只有精品中国| 久久久国产成人免费| 精品高清国产在线一区| 久久这里只有精品中国| 可以在线观看的亚洲视频| 91在线观看av| 国产欧美日韩一区二区三| 久久午夜亚洲精品久久| 在线国产一区二区在线| 国产精品香港三级国产av潘金莲| 日本一二三区视频观看| 亚洲自偷自拍图片 自拍| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| 亚洲中文日韩欧美视频| 亚洲美女视频黄频| 国产麻豆成人av免费视频| 特级一级黄色大片| 男女床上黄色一级片免费看| 国产成人欧美在线观看| 老汉色∧v一级毛片| 色综合站精品国产| 精品日产1卡2卡| 国产精品亚洲一级av第二区| 国产精品av久久久久免费| 精品久久蜜臀av无| 村上凉子中文字幕在线| 亚洲av电影在线进入| 91麻豆av在线| 小说图片视频综合网站| 中文字幕人妻丝袜一区二区| 女人被狂操c到高潮| 一本大道久久a久久精品| 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 两个人视频免费观看高清| e午夜精品久久久久久久| 久久久久久国产a免费观看| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区| 午夜精品一区二区三区免费看| 免费人成视频x8x8入口观看| 琪琪午夜伦伦电影理论片6080| 国产男靠女视频免费网站| 久热爱精品视频在线9| 岛国在线观看网站| 高潮久久久久久久久久久不卡| 亚洲精品国产一区二区精华液| 久99久视频精品免费| 中国美女看黄片| 91av网站免费观看| 午夜福利视频1000在线观看| 色播亚洲综合网| 亚洲国产精品成人综合色| 少妇裸体淫交视频免费看高清 | 91麻豆精品激情在线观看国产| 亚洲国产欧洲综合997久久,| 美女黄网站色视频| 久久久久久国产a免费观看| 午夜福利免费观看在线| 免费高清视频大片| 99热只有精品国产| 欧美在线黄色| 欧美黑人欧美精品刺激| 他把我摸到了高潮在线观看| 亚洲,欧美精品.| 色综合站精品国产| 亚洲九九香蕉| 69av精品久久久久久| 欧美性猛交╳xxx乱大交人| 国产成人精品无人区| 国内毛片毛片毛片毛片毛片| 极品教师在线免费播放| or卡值多少钱| 日韩欧美免费精品| 丝袜人妻中文字幕| 欧美成人一区二区免费高清观看 | 国产又色又爽无遮挡免费看| 香蕉av资源在线| 久久99热这里只有精品18| 国产精品久久久久久精品电影| 一a级毛片在线观看| 国产亚洲精品第一综合不卡| 日本五十路高清| 一进一出抽搐gif免费好疼| 巨乳人妻的诱惑在线观看| 夜夜看夜夜爽夜夜摸| 好男人电影高清在线观看| 两个人免费观看高清视频| 免费av毛片视频| 他把我摸到了高潮在线观看| 99在线人妻在线中文字幕| 久久久精品欧美日韩精品| 在线观看美女被高潮喷水网站 | 变态另类成人亚洲欧美熟女| 国产精品乱码一区二三区的特点| 一区二区三区激情视频| 妹子高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲片人在线观看| 色噜噜av男人的天堂激情| 久久久久久久久久黄片| 中出人妻视频一区二区| 午夜激情福利司机影院| 50天的宝宝边吃奶边哭怎么回事| 久久香蕉精品热| 国产乱人伦免费视频| 又粗又爽又猛毛片免费看| 草草在线视频免费看| 岛国视频午夜一区免费看| 人成视频在线观看免费观看| 在线观看美女被高潮喷水网站 | 两个人的视频大全免费| 神马国产精品三级电影在线观看 | 一进一出抽搐动态| 亚洲五月婷婷丁香| 国产亚洲av嫩草精品影院| www.精华液| www.熟女人妻精品国产| 久久 成人 亚洲| 国产精品一区二区精品视频观看| 久热爱精品视频在线9| 村上凉子中文字幕在线| 五月伊人婷婷丁香| 美女黄网站色视频| 99国产综合亚洲精品| 一个人免费在线观看电影 | 丰满人妻一区二区三区视频av | 久久中文字幕人妻熟女| 嫩草影院精品99| 国产精品久久视频播放| 两性夫妻黄色片| 人妻久久中文字幕网| 人妻丰满熟妇av一区二区三区| 欧美久久黑人一区二区| www日本在线高清视频| 一边摸一边做爽爽视频免费| 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 亚洲无线在线观看| 久久午夜亚洲精品久久| av福利片在线| 亚洲男人的天堂狠狠| 日韩大尺度精品在线看网址| 国产成人精品久久二区二区免费| 国产精品一区二区精品视频观看| 精品国产亚洲在线| 日韩欧美 国产精品| 美女黄网站色视频| 露出奶头的视频| 国产精品久久视频播放| 色综合欧美亚洲国产小说| 国产久久久一区二区三区| 亚洲国产欧美网| 国产一区二区三区视频了| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 熟女电影av网| 亚洲自拍偷在线| www.999成人在线观看| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 亚洲精华国产精华精| 国产成人aa在线观看| 可以免费在线观看a视频的电影网站| 久久伊人香网站| 亚洲va日本ⅴa欧美va伊人久久| 国产人伦9x9x在线观看| 怎么达到女性高潮| 日韩中文字幕欧美一区二区| 日韩免费av在线播放| 久久99热这里只有精品18| 九色成人免费人妻av| 欧美成人性av电影在线观看| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久人妻精品电影| 男女视频在线观看网站免费 | 成人高潮视频无遮挡免费网站| 国产精品1区2区在线观看.| 神马国产精品三级电影在线观看 | 亚洲第一欧美日韩一区二区三区| 国产激情欧美一区二区| 久久婷婷成人综合色麻豆| 无遮挡黄片免费观看| 视频区欧美日本亚洲| 欧美日韩乱码在线| 久9热在线精品视频| 国内精品久久久久精免费| 国产精品国产高清国产av| 三级国产精品欧美在线观看 | 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 麻豆av在线久日| 午夜精品久久久久久毛片777| 国产又黄又爽又无遮挡在线| 精品福利观看| 国产av在哪里看| 美女黄网站色视频| 国产精品久久视频播放| 桃色一区二区三区在线观看| 99国产精品99久久久久| 99国产精品一区二区三区| 久久香蕉精品热| 五月伊人婷婷丁香| 国产精品av久久久久免费| 久久精品成人免费网站| 法律面前人人平等表现在哪些方面| 国产1区2区3区精品| 夜夜看夜夜爽夜夜摸| 天堂动漫精品| av福利片在线| xxx96com| 国产亚洲精品久久久久久毛片| 午夜福利18| 99精品欧美一区二区三区四区| 又大又爽又粗| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 97碰自拍视频| 18禁国产床啪视频网站| 露出奶头的视频| 精品久久蜜臀av无| 久久精品国产综合久久久| 免费在线观看影片大全网站| 亚洲国产欧美人成| 最近在线观看免费完整版| √禁漫天堂资源中文www| 全区人妻精品视频| 国产av一区二区精品久久| 99国产综合亚洲精品| svipshipincom国产片| 丁香六月欧美| 成人国产一区最新在线观看| 国产一区二区激情短视频| 成人国语在线视频| 可以在线观看毛片的网站| 久久精品91蜜桃| 黄色女人牲交| 又大又爽又粗| 人妻丰满熟妇av一区二区三区| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 制服诱惑二区| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 亚洲熟妇熟女久久| 国产精品亚洲av一区麻豆| 曰老女人黄片| 午夜免费观看网址| 国产欧美日韩一区二区精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人久久性| 18禁美女被吸乳视频| 国产人伦9x9x在线观看| 老司机在亚洲福利影院| 午夜视频精品福利| 欧美性猛交黑人性爽| 亚洲一卡2卡3卡4卡5卡精品中文| 久久午夜综合久久蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 午夜久久久久精精品| 日韩国内少妇激情av| 精品电影一区二区在线| a级毛片a级免费在线| 欧美色视频一区免费| 亚洲在线自拍视频| av中文乱码字幕在线| 日本 av在线| 久久人妻福利社区极品人妻图片| 在线看三级毛片| 日本熟妇午夜| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av高清一级| 国产片内射在线| 变态另类成人亚洲欧美熟女| 2021天堂中文幕一二区在线观| 精品久久久久久久末码| 国产黄a三级三级三级人| 免费在线观看黄色视频的| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 床上黄色一级片| 在线观看美女被高潮喷水网站 | 国产视频一区二区在线看| 99re在线观看精品视频| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 午夜视频精品福利| 国产av不卡久久| 日本一区二区免费在线视频| 亚洲国产欧美网| 一区福利在线观看| 国产精品久久视频播放| √禁漫天堂资源中文www| 熟女电影av网| 最近视频中文字幕2019在线8| 在线观看日韩欧美| 日日夜夜操网爽| 免费在线观看影片大全网站| 亚洲男人天堂网一区| 麻豆国产av国片精品| 脱女人内裤的视频| 老汉色∧v一级毛片| 91成年电影在线观看| 操出白浆在线播放| 欧美激情久久久久久爽电影| 黄色女人牲交| 国产成人一区二区三区免费视频网站| 免费无遮挡裸体视频| 亚洲,欧美精品.| www.www免费av| 怎么达到女性高潮| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久5区| 久久久久精品国产欧美久久久| 国产精品久久久久久亚洲av鲁大| 岛国视频午夜一区免费看| а√天堂www在线а√下载| 日韩欧美国产在线观看| 丁香欧美五月| 无人区码免费观看不卡| 又黄又粗又硬又大视频| 一区福利在线观看| 无人区码免费观看不卡| 在线观看www视频免费| 波多野结衣高清作品| 午夜精品在线福利| 岛国在线观看网站| 亚洲国产欧美人成| 夜夜夜夜夜久久久久| 白带黄色成豆腐渣| 久久久国产精品麻豆| 两个人看的免费小视频| 国产男靠女视频免费网站| 人成视频在线观看免费观看| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 日本 欧美在线| 国产av麻豆久久久久久久| 午夜a级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲精品国产色婷小说| 国产蜜桃级精品一区二区三区| 精品一区二区三区四区五区乱码| 亚洲国产高清在线一区二区三| 成在线人永久免费视频| 亚洲男人的天堂狠狠| 久久精品人妻少妇| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| a在线观看视频网站| 国产精品乱码一区二三区的特点| 舔av片在线| 欧美另类亚洲清纯唯美| 亚洲精品中文字幕在线视频| 在线观看美女被高潮喷水网站 | 欧美zozozo另类| 无限看片的www在线观看| 麻豆国产97在线/欧美 | 国产av麻豆久久久久久久| 丰满人妻一区二区三区视频av | 精品久久久久久久久久免费视频| 国产精品影院久久| a级毛片在线看网站| 午夜日韩欧美国产| 麻豆国产97在线/欧美 | 免费在线观看日本一区| 精品国产美女av久久久久小说| 97超级碰碰碰精品色视频在线观看| 国产乱人伦免费视频| a级毛片a级免费在线| 国产探花在线观看一区二区| 巨乳人妻的诱惑在线观看| 一本一本综合久久| 国语自产精品视频在线第100页| av在线天堂中文字幕| 国产亚洲精品综合一区在线观看 | 亚洲欧美激情综合另类| 一区二区三区激情视频| 精品久久久久久久末码| 久久精品亚洲精品国产色婷小说| 国产私拍福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 18禁观看日本| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 老司机午夜十八禁免费视频| 成人国产一区最新在线观看| 最近最新免费中文字幕在线| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 午夜久久久久精精品| 丁香欧美五月| 操出白浆在线播放| 国产精品亚洲一级av第二区| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 麻豆国产97在线/欧美 | 国内精品一区二区在线观看| 制服丝袜大香蕉在线| 国产成人av激情在线播放| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 日本五十路高清| 亚洲色图 男人天堂 中文字幕| 搞女人的毛片| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 久久99热这里只有精品18| aaaaa片日本免费| 999久久久精品免费观看国产| 国产成人影院久久av| 免费无遮挡裸体视频| 欧美日韩亚洲综合一区二区三区_| 亚洲av成人精品一区久久| 久久婷婷人人爽人人干人人爱| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 两性夫妻黄色片| 欧美成人午夜精品| 又大又爽又粗| 亚洲 欧美 日韩 在线 免费| 亚洲一码二码三码区别大吗| 国产精品野战在线观看| 亚洲av成人av| 欧美性猛交黑人性爽| 精品久久久久久久久久久久久| 美女大奶头视频| 亚洲成a人片在线一区二区| 日本免费一区二区三区高清不卡| 高清毛片免费观看视频网站| 国内精品一区二区在线观看| 男女之事视频高清在线观看| 天堂av国产一区二区熟女人妻 | 老鸭窝网址在线观看| 在线十欧美十亚洲十日本专区| 九九热线精品视视频播放| 啦啦啦韩国在线观看视频| 欧美黄色片欧美黄色片| 亚洲av成人精品一区久久| 精品国产美女av久久久久小说| 特大巨黑吊av在线直播| 最好的美女福利视频网| 桃色一区二区三区在线观看| 村上凉子中文字幕在线| 99热6这里只有精品| 一进一出抽搐gif免费好疼| 国产av又大| 老熟妇仑乱视频hdxx| 国产av又大| 伊人久久大香线蕉亚洲五| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 法律面前人人平等表现在哪些方面| 在线永久观看黄色视频| 久久久久精品国产欧美久久久| av国产免费在线观看| 欧美3d第一页| 搡老岳熟女国产| 亚洲avbb在线观看| 久久99热这里只有精品18| 国产精品久久电影中文字幕| 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 久久这里只有精品中国| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 男插女下体视频免费在线播放| 久热爱精品视频在线9| 黄片大片在线免费观看| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 在线观看www视频免费| 男人的好看免费观看在线视频 | 欧美成人性av电影在线观看| 少妇熟女aⅴ在线视频| 亚洲精品中文字幕一二三四区| 国产伦在线观看视频一区| 久久久久久久精品吃奶| 欧美三级亚洲精品| 一级作爱视频免费观看| 一进一出抽搐gif免费好疼| 最近在线观看免费完整版| 999精品在线视频| 免费在线观看黄色视频的|