• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    欧美变态另类bdsm刘玥| 国产成人freesex在线| 免费搜索国产男女视频| 男女啪啪激烈高潮av片| 国产中年淑女户外野战色| 热99在线观看视频| 久久精品国产鲁丝片午夜精品| 1024手机看黄色片| 成人av在线播放网站| 99久国产av精品国产电影| 国产成人aa在线观看| 一级毛片我不卡| 国产精品久久视频播放| 午夜福利在线观看吧| 国语对白做爰xxxⅹ性视频网站| 精品久久久久久久末码| 最后的刺客免费高清国语| 日韩欧美精品免费久久| 亚洲va在线va天堂va国产| 亚洲综合精品二区| 亚洲va在线va天堂va国产| 日韩中字成人| 久久精品熟女亚洲av麻豆精品 | 99热6这里只有精品| 亚洲精品自拍成人| 乱码一卡2卡4卡精品| 国产综合懂色| 亚洲av成人精品一区久久| 精品国内亚洲2022精品成人| 人人妻人人看人人澡| 国产综合懂色| 中文字幕久久专区| 天堂av国产一区二区熟女人妻| 成人午夜精彩视频在线观看| 中文资源天堂在线| 日韩,欧美,国产一区二区三区 | 色综合站精品国产| 中国国产av一级| 日本免费a在线| 日本免费a在线| 97在线视频观看| 在线天堂最新版资源| 秋霞在线观看毛片| 亚洲国产精品专区欧美| 久久精品久久久久久久性| 九九在线视频观看精品| 99久国产av精品| 18禁在线无遮挡免费观看视频| 性插视频无遮挡在线免费观看| 色综合站精品国产| 热99在线观看视频| 成人国产麻豆网| 日韩欧美精品v在线| 免费av不卡在线播放| 国产精品一区www在线观看| 亚洲欧美成人综合另类久久久 | 亚洲精品成人久久久久久| 蜜臀久久99精品久久宅男| 日韩一本色道免费dvd| av福利片在线观看| 亚洲欧美日韩东京热| 人人妻人人澡人人爽人人夜夜 | 日产精品乱码卡一卡2卡三| 在线播放国产精品三级| 久久久久久久国产电影| 欧美成人午夜免费资源| 国产又色又爽无遮挡免| 国语自产精品视频在线第100页| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩无卡精品| 国产av不卡久久| 午夜福利在线观看吧| 国产视频内射| 午夜久久久久精精品| 人人妻人人看人人澡| 国产毛片a区久久久久| 99久久九九国产精品国产免费| 日本黄色视频三级网站网址| 欧美又色又爽又黄视频| av国产免费在线观看| 日韩欧美三级三区| 欧美性猛交黑人性爽| 国产精品久久久久久av不卡| 久久久久网色| 色视频www国产| 久久久久久久久久久丰满| 久久精品熟女亚洲av麻豆精品 | 乱码一卡2卡4卡精品| 91精品一卡2卡3卡4卡| 成年女人看的毛片在线观看| 亚洲精品乱久久久久久| 秋霞在线观看毛片| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| 精品免费久久久久久久清纯| 老女人水多毛片| 久久精品91蜜桃| 美女黄网站色视频| 日本爱情动作片www.在线观看| 亚洲av熟女| 日韩制服骚丝袜av| 日韩成人av中文字幕在线观看| 亚洲成人av在线免费| kizo精华| 夜夜看夜夜爽夜夜摸| 永久免费av网站大全| 免费播放大片免费观看视频在线观看 | 青春草视频在线免费观看| 精品国产一区二区三区久久久樱花 | 国产男人的电影天堂91| 日本黄色片子视频| 大香蕉久久网| 亚洲av成人av| 少妇熟女欧美另类| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 亚洲成人久久爱视频| 97超碰精品成人国产| 国产真实伦视频高清在线观看| 精品免费久久久久久久清纯| 国产精品嫩草影院av在线观看| av在线观看视频网站免费| 亚洲精品自拍成人| 亚洲自偷自拍三级| 六月丁香七月| 一级黄片播放器| 成人亚洲精品av一区二区| 可以在线观看毛片的网站| 中国美白少妇内射xxxbb| 亚洲天堂国产精品一区在线| 三级国产精品片| 亚洲精品国产av成人精品| 一级毛片久久久久久久久女| 美女xxoo啪啪120秒动态图| 欧美性猛交黑人性爽| 精品久久久久久电影网 | 亚洲欧美成人综合另类久久久 | 乱系列少妇在线播放| 淫秽高清视频在线观看| 日韩av在线大香蕉| 免费观看的影片在线观看| 好男人在线观看高清免费视频| 最后的刺客免费高清国语| 中文字幕精品亚洲无线码一区| 99热全是精品| 午夜激情福利司机影院| 熟女人妻精品中文字幕| 插阴视频在线观看视频| 久久韩国三级中文字幕| 色哟哟·www| 亚洲欧美精品专区久久| 亚洲中文字幕日韩| 国产极品精品免费视频能看的| 午夜免费男女啪啪视频观看| 国产日韩欧美在线精品| 乱系列少妇在线播放| 午夜免费激情av| 日韩高清综合在线| 中文乱码字字幕精品一区二区三区 | 亚洲av成人精品一区久久| 麻豆av噜噜一区二区三区| 国模一区二区三区四区视频| 国产黄a三级三级三级人| 边亲边吃奶的免费视频| 日韩在线高清观看一区二区三区| 美女被艹到高潮喷水动态| 成人鲁丝片一二三区免费| 丰满少妇做爰视频| 观看美女的网站| 久久久精品94久久精品| 99热这里只有是精品50| 国内揄拍国产精品人妻在线| 在线a可以看的网站| 国产免费又黄又爽又色| 大香蕉97超碰在线| 岛国在线免费视频观看| or卡值多少钱| 狠狠狠狠99中文字幕| 97在线视频观看| 丰满乱子伦码专区| 高清日韩中文字幕在线| 又粗又硬又长又爽又黄的视频| 日本wwww免费看| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 99久久精品热视频| 高清视频免费观看一区二区 | 国产高清视频在线观看网站| 久久国产乱子免费精品| 91久久精品国产一区二区成人| 国产黄片视频在线免费观看| 最近中文字幕高清免费大全6| 国产免费视频播放在线视频 | 国产av不卡久久| 国产在线男女| 少妇人妻精品综合一区二区| 久久人人爽人人片av| 日本黄色片子视频| 中文字幕人妻熟人妻熟丝袜美| 美女被艹到高潮喷水动态| 色5月婷婷丁香| 中文亚洲av片在线观看爽| 国产爱豆传媒在线观看| 黄片无遮挡物在线观看| 看非洲黑人一级黄片| 亚洲18禁久久av| 久久久久久久午夜电影| 九九热线精品视视频播放| 免费观看性生交大片5| 3wmmmm亚洲av在线观看| 国产精品国产三级专区第一集| 中文天堂在线官网| 2022亚洲国产成人精品| 哪个播放器可以免费观看大片| 菩萨蛮人人尽说江南好唐韦庄 | 爱豆传媒免费全集在线观看| 久久久久久伊人网av| 美女国产视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久久久久久久免| 欧美成人精品欧美一级黄| 欧美成人午夜免费资源| 大又大粗又爽又黄少妇毛片口| 99热这里只有是精品50| 99热这里只有精品一区| 真实男女啪啪啪动态图| 日韩视频在线欧美| 免费一级毛片在线播放高清视频| 亚洲人成网站在线观看播放| 亚洲精华国产精华液的使用体验| 亚洲成av人片在线播放无| 国产探花极品一区二区| 亚洲av二区三区四区| 少妇熟女aⅴ在线视频| 高清午夜精品一区二区三区| av福利片在线观看| 22中文网久久字幕| 汤姆久久久久久久影院中文字幕 | 成人鲁丝片一二三区免费| 超碰97精品在线观看| 亚洲图色成人| 免费观看精品视频网站| 久久久欧美国产精品| 免费无遮挡裸体视频| 亚洲电影在线观看av| 午夜日本视频在线| 日韩av在线免费看完整版不卡| 自拍偷自拍亚洲精品老妇| 日韩制服骚丝袜av| 国产私拍福利视频在线观看| 九色成人免费人妻av| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 少妇裸体淫交视频免费看高清| 男女视频在线观看网站免费| 能在线免费观看的黄片| 99久国产av精品| 精品人妻一区二区三区麻豆| 欧美人与善性xxx| 在线天堂最新版资源| 国产极品天堂在线| www.色视频.com| 99热网站在线观看| 亚洲av成人av| 欧美性猛交黑人性爽| av视频在线观看入口| 久久久色成人| 免费黄色在线免费观看| 中文字幕免费在线视频6| 内地一区二区视频在线| 99久久精品一区二区三区| 亚洲欧美成人精品一区二区| 熟女电影av网| av在线观看视频网站免费| 长腿黑丝高跟| 一夜夜www| 国产真实乱freesex| 如何舔出高潮| 啦啦啦观看免费观看视频高清| 内射极品少妇av片p| 国产老妇女一区| 亚洲av中文av极速乱| 五月伊人婷婷丁香| 在线天堂最新版资源| 国产熟女欧美一区二区| 日本黄大片高清| 国产不卡一卡二| 舔av片在线| 免费观看人在逋| 亚洲婷婷狠狠爱综合网| 国产老妇伦熟女老妇高清| 国产精品伦人一区二区| 啦啦啦韩国在线观看视频| 国内精品一区二区在线观看| 亚洲精品aⅴ在线观看| av国产免费在线观看| 亚洲av成人av| 国产av不卡久久| 超碰av人人做人人爽久久| 久久久久网色| 精品久久久久久成人av| 色尼玛亚洲综合影院| 国产色婷婷99| 亚洲人成网站在线观看播放| 久久久久免费精品人妻一区二区| 夫妻性生交免费视频一级片| 日产精品乱码卡一卡2卡三| www日本黄色视频网| 国产男人的电影天堂91| 我要看日韩黄色一级片| 男女视频在线观看网站免费| 久久久国产成人免费| 中文字幕亚洲精品专区| 国产av一区在线观看免费| 国产亚洲精品av在线| 亚洲第一区二区三区不卡| 国产精品一区二区性色av| 精华霜和精华液先用哪个| 综合色av麻豆| 日韩高清综合在线| 亚洲久久久久久中文字幕| 小蜜桃在线观看免费完整版高清| 大话2 男鬼变身卡| 亚洲怡红院男人天堂| 亚洲内射少妇av| 亚洲精品影视一区二区三区av| 久久人人爽人人片av| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区四那| 不卡视频在线观看欧美| 中文天堂在线官网| 美女国产视频在线观看| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 老师上课跳d突然被开到最大视频| 亚洲在久久综合| 午夜福利在线在线| 99久久中文字幕三级久久日本| 女人十人毛片免费观看3o分钟| 国产精品一区www在线观看| 中文字幕制服av| 联通29元200g的流量卡| 国产伦理片在线播放av一区| 中文亚洲av片在线观看爽| av免费观看日本| 久久精品综合一区二区三区| 性色avwww在线观看| 日韩一区二区三区影片| 午夜久久久久精精品| 在线播放无遮挡| 国产精品一区二区三区四区免费观看| 欧美一区二区精品小视频在线| 天天躁夜夜躁狠狠久久av| 亚洲精品乱久久久久久| 国产黄色小视频在线观看| 99热6这里只有精品| 国产精品电影一区二区三区| 国产精品一区二区三区四区免费观看| 少妇丰满av| 日日摸夜夜添夜夜爱| 成人二区视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品乱码久久久久久按摩| 亚洲内射少妇av| 亚洲四区av| 午夜久久久久精精品| 一级黄色大片毛片| 久久久久久久久大av| 午夜老司机福利剧场| 国产在线一区二区三区精 | 国产伦理片在线播放av一区| 亚洲av中文av极速乱| 在线免费观看的www视频| av免费在线看不卡| 亚洲国产最新在线播放| 欧美高清性xxxxhd video| 欧美不卡视频在线免费观看| 汤姆久久久久久久影院中文字幕 | 亚洲最大成人中文| av播播在线观看一区| 国产亚洲最大av| 亚洲欧美日韩高清专用| 一级爰片在线观看| 九九在线视频观看精品| www.色视频.com| 性色avwww在线观看| 精品人妻一区二区三区麻豆| 九九在线视频观看精品| 国产一区二区在线av高清观看| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 伦理电影大哥的女人| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 免费黄色在线免费观看| 国产精品国产高清国产av| 久久精品国产自在天天线| 国产在视频线精品| 日韩视频在线欧美| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 国产大屁股一区二区在线视频| 亚洲精品日韩在线中文字幕| 亚洲五月天丁香| 波多野结衣巨乳人妻| 亚洲欧洲国产日韩| 热99re8久久精品国产| 国产精品1区2区在线观看.| 国产成人福利小说| 精品久久久久久成人av| 国产爱豆传媒在线观看| 欧美zozozo另类| 欧美潮喷喷水| 国产成人免费观看mmmm| 少妇人妻精品综合一区二区| 波野结衣二区三区在线| 九九热线精品视视频播放| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 能在线免费看毛片的网站| 97超碰精品成人国产| 日日撸夜夜添| 日本黄色片子视频| av.在线天堂| 校园人妻丝袜中文字幕| 久久久精品大字幕| 99久久精品热视频| 又爽又黄无遮挡网站| 亚洲激情五月婷婷啪啪| 免费观看的影片在线观看| 国产免费男女视频| 国产成人福利小说| 久久精品国产鲁丝片午夜精品| 日韩精品青青久久久久久| 国产精华一区二区三区| 久久鲁丝午夜福利片| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 国产乱人视频| 国产在视频线精品| 91精品一卡2卡3卡4卡| 亚洲av免费在线观看| 欧美3d第一页| 久久久久久九九精品二区国产| 午夜老司机福利剧场| 免费看光身美女| 美女黄网站色视频| 中文字幕精品亚洲无线码一区| 亚洲最大成人中文| av免费在线看不卡| 水蜜桃什么品种好| 搞女人的毛片| 日韩大片免费观看网站 | 99热全是精品| 国产黄片美女视频| 少妇的逼好多水| 国产一级毛片在线| 纵有疾风起免费观看全集完整版 | 久久久午夜欧美精品| 99久久无色码亚洲精品果冻| 亚洲在线观看片| 日本色播在线视频| 国内精品宾馆在线| 伦精品一区二区三区| 免费av不卡在线播放| 日本午夜av视频| 在现免费观看毛片| 欧美日本视频| 日韩制服骚丝袜av| 水蜜桃什么品种好| www.av在线官网国产| 床上黄色一级片| 亚洲国产精品久久男人天堂| 国产女主播在线喷水免费视频网站 | 日本色播在线视频| 亚洲四区av| 欧美最新免费一区二区三区| 午夜亚洲福利在线播放| 国产伦理片在线播放av一区| 国产成人福利小说| 国产亚洲av片在线观看秒播厂 | 国产精品一区二区三区四区免费观看| 国产亚洲91精品色在线| 色尼玛亚洲综合影院| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久com| 久久久欧美国产精品| www.色视频.com| 欧美丝袜亚洲另类| 天堂中文最新版在线下载 | 一级av片app| 日韩一本色道免费dvd| 亚洲精品影视一区二区三区av| 久久久欧美国产精品| 免费av毛片视频| 美女高潮的动态| 美女脱内裤让男人舔精品视频| av在线播放精品| a级一级毛片免费在线观看| 99久久精品热视频| 建设人人有责人人尽责人人享有的 | 国产真实乱freesex| 女人久久www免费人成看片 | 老师上课跳d突然被开到最大视频| 91aial.com中文字幕在线观看| 亚洲最大成人手机在线| 久久久久久久久久久免费av| 深爱激情五月婷婷| 可以在线观看毛片的网站| 丰满人妻一区二区三区视频av| 国产69精品久久久久777片| 最近中文字幕2019免费版| 99久久无色码亚洲精品果冻| 尾随美女入室| 床上黄色一级片| 国产 一区 欧美 日韩| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式| 成人国产麻豆网| 嘟嘟电影网在线观看| 久久99蜜桃精品久久| 99热6这里只有精品| 国产精品综合久久久久久久免费| 最近手机中文字幕大全| 黄色日韩在线| 综合色丁香网| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 在线播放国产精品三级| 日韩精品有码人妻一区| 国产一级毛片在线| 91aial.com中文字幕在线观看| 国产精品国产三级国产专区5o | 欧美xxxx黑人xx丫x性爽| 欧美不卡视频在线免费观看| 免费观看性生交大片5| 欧美+日韩+精品| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区 | 内地一区二区视频在线| av国产免费在线观看| 欧美丝袜亚洲另类| 国产三级中文精品| 三级毛片av免费| 亚洲精品自拍成人| 99热6这里只有精品| 午夜福利在线观看免费完整高清在| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 久久国内精品自在自线图片| .国产精品久久| av卡一久久| 国产毛片a区久久久久| 欧美一区二区亚洲| 国产成人午夜福利电影在线观看| 长腿黑丝高跟| 国产 一区 欧美 日韩| 九九久久精品国产亚洲av麻豆| 99久国产av精品| 91aial.com中文字幕在线观看| 精品无人区乱码1区二区| 在线观看av片永久免费下载| 1024手机看黄色片| 高清午夜精品一区二区三区| 亚洲高清免费不卡视频| 国内精品一区二区在线观看| 成人漫画全彩无遮挡| 国产在线男女| 99在线人妻在线中文字幕| 麻豆精品久久久久久蜜桃| 日本黄色视频三级网站网址| 男人和女人高潮做爰伦理| 久久久久久久久久久免费av| 久久久久久大精品| 国产探花在线观看一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产av一区在线观看免费| 日韩精品有码人妻一区| 晚上一个人看的免费电影| 亚洲欧美精品专区久久| 欧美3d第一页| 国产三级在线视频| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 午夜激情欧美在线| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区 | 国产精品久久久久久精品电影小说 | 婷婷色av中文字幕| 人人妻人人澡欧美一区二区| 免费在线观看成人毛片| 国产亚洲5aaaaa淫片| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 久久久久网色| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 日本黄色视频三级网站网址| 成人无遮挡网站| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| 两性午夜刺激爽爽歪歪视频在线观看| 我要看日韩黄色一级片| 国产亚洲精品av在线| 深爱激情五月婷婷| 波多野结衣巨乳人妻| 淫秽高清视频在线观看| 亚洲人成网站在线观看播放| 国国产精品蜜臀av免费| av专区在线播放| 国产av不卡久久| av专区在线播放| 国产高清国产精品国产三级 |