• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New experimental measurement of natSe(n,γ)cross section between 1 eV to 1 keV at the CSNS Back-n facility

    2022-08-31 09:54:46XinRongHu胡新榮LongXiangLiu劉龍祥WeiJiang蔣偉JieRen任杰GongTaoFan范功濤HongWeiWang王宏偉XiGuangCao曹喜光LongLongSong宋龍龍YingDuLiu劉應(yīng)都YueZhang張?jiān)?/span>XinXiangLi李鑫祥ZiRuiHao郝子銳PanKuang匡攀XiaoHeWang王小鶴JiFengHu胡繼峰BingJiang姜炳DeXi
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王宏偉楊宇雅拉

    Xin-Rong Hu(胡新榮) Long-Xiang Liu(劉龍祥) Wei Jiang(蔣偉) Jie Ren(任杰)Gong-Tao Fan(范功濤) Hong-Wei Wang(王宏偉) Xi-Guang Cao(曹喜光)Long-Long Song(宋龍龍) Ying-Du Liu(劉應(yīng)都) Yue Zhang(張?jiān)? Xin-Xiang Li(李鑫祥)Zi-Rui Hao(郝子銳) Pan Kuang(匡攀) Xiao-He Wang(王小鶴) Ji-Feng Hu(胡繼峰)Bing Jiang(姜炳) De-Xin Wang(王德鑫) Suyalatu Zhang(張?zhí)K雅拉吐) Zhen-Dong An(安振東)Yu-Ting Wang(王玉廷)0 Chun-Wang Ma(馬春旺)0 Jian-Jun He(何建軍) Jun Su(蘇俊)Li-Yong Zhang(張立勇) Yu-Xuan Yang(楊宇萱) Sheng Jin(金晟) and Kai-Jie Chen(陳開杰)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Spallation Neutron Source Science Center,Dongguan 523803,China

    6Key Laboratory of Nuclear Data,China Institute of Atomic Energy,Beijing 102413,China

    7Xiangtan University,Xiangtan 411105,China

    8Institute of Nuclear Physics,Inner Mongolia University for the Nationalities,Tongliao 028000,China

    9Sun Yat-sen University,Zhuhai 510275,China

    10Henan Normal University,Xinxiang 453007,China

    11Beijing Normal University,Beijing 100875,China

    12School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    13ShanghaiTech University,Shanghai 200120,China

    Keywords: natSe (n,γ) cross section, CSNS Back-n facility, C6D6 detectors, resolved resonance region, Rmatrix

    1. Introduction

    Most of the elements heavier than iron in the universe are mainly formed by the slow neutron capture process (s-process)[1,2]and the rapid neutron capture process (rprocess).[3]which account for about 50% of the whole stable elements respectively.[4]The rest of elements heavier than iron,about 1%,are produced by the capture of charged particles(p,γ)and the photonuclear reaction(γ,n),which is called p-process, and eventually produces the stable proton rich pnuclei.[5]The study of these nuclides and the accurate measurement of Maxwellian averaged cross section(MACS)of related nuclides for neutron capture reactions are of great significance in nuclear astrophysics.[6]The s-process mainly occurs in asymptotic giant branch(AGB)stars,in which the neutron density is low. The unstable sub-nuclei of the s-process form stable isobars throughβ-decay, and then continue to form new nuclide by means of additional neutron capture processes.Therefore,the slow neutron capture process takes place mainly along theβstable line. The r-process mainly occurs in supernova explosion or neutron star mergers. Due to the extreme neutron densities (~1020cm?3) and short time scales(~10 s),[7]very neutron rich nuclei are formed, which eventually decay through a series of beta decays.

    Se is one of the key elements in nuclear astrophysics research. Isotopes of Se are in the path of slow neutron capture process. The (n,γ) cross sections of Se isotopes, help to determine the abundance of the related elements in the universe.The slow neutron capture process in the Se-region is presented in Fig. 1. The accurate measurements of the neutron capture cross sections of Se isotopes play an essential role in the reaction network of the nuclear astrophysics. According to the different properties of Se isotopes, measurements of neutron capture cross section of Se isotopes follow different methods.79Se, with a half-life of 295 ky, is one of the long-lived fission products (LLFPs) for which neutron capture cross section is important from the viewpoint of nuclear power.[8]Besides,79Se is an important branching point in the s-process path. However,there are no direct measurement neutron capture cross section data because it is difficult to obtain samples of79Se. The79Se (n,γ) cross section was constrained by its reverse reaction of80Se(γ,n)by the laser Compton scattering gamma source(LCS-γ)in 2009.[9]The neutron capture cross section of the other six stable isotopes can be directly measured via(n,γ)reaction. The natural abundances of the stable Se isotopes are 0.89%, 9.37%, 7.63%, 23.77%, 49.61%, and 8.73%for74Se,76Se,77Se,78Se,80Se,and82Se,respectively.In which,74Se is a p-nucleus,synthesized by the p-process,and its abundance is only 0.86%;76,77,78,80Se isotopes are mainly produced by the s-process, while82Se is produced by the rprocess.

    Fig.1.Synthetic network diagram of nuclei near Se isotopes.The black boxes represent stable nuclei, the orange boxes represent unstable nuclei that can undergo β+decay,and the gray boxes represent β?decay nuclei; The red arrows represent β?decay, the blue arrows represent β+ decay, the dark yellow arrows represent s-process, the yellow arrows represent p-process,and the dark blue arrows represent r-process.

    Until now, there has not been enough experimental neutron capture cross sections for the selenium element in the 1 eV–1 keV resolved resonance region, except keV-region’s MACS for76Se[10]and78Se[11]isotopes. Recently,Babiano-Suarezet al.[12]measured the80Se (n,γ) cross section at n TOF in 2020,gave some resonance peak in the energy range from 0.1 keV to 100 keV but withoutR-matrix analysis. This work is the first experimental measurement of neutron capture cross section of natural selenium in the energy region between 1 eV and 1 keV at Back-n facility in CSNS. The experimental methods and data processing are analyzed in detail below.Finally,the neutron capture resonance parameters ofnatSe are also given.

    2. Experimental setup

    2.1. The Back-n facility

    The neutron time-of-flight facility Back-n is one of the neutron beam lines in China Spallation Neutron Source(CSNS), which can provide continuous neutron energy spectrum in the energy range from 0.1 eV to 200 MeV.CSNS is the first spallation neutron source in China.[13]Here,neutrons are produced by a pulse proton beam with an energy of 1.6 GeV and a repetition frequency of 25 Hz, bombarding a tungsten–tantalum (W–Ta) target. The proton pulse of CSNS can be divided into three operation modes: i)the narrow beam bunch with the proton bunch width of 3.7 ns; ii) the single bunch mode,the bunch time structure is parabolic shape with bunch width of 60 ns;iii)the double-bunch mode,which consists of two single-bunch protons with a spacing of 410 ns. The measurement of neutron capture cross section in the resonance energy region is carried out under the double-bunch mode. The Back-n white neutron source is built at the back-scattering direction of the proton beam, which mainly focuses on nuclear data measurements and detector calibration. This beamline has two experiment stations ES1 and ES2 with the distances of 55 m and 76 m from the spallation target to each station,respectively. ES1 mainly studies the (n, light charge particle(lcp)) reaction cross section, and ES2 is mainly for the measurement of(n,γ),(n,tot),and(n,f)reaction cross sections.Our measurement is carried out at ES2. More detailed information on the Back-n facility can be found in Refs.[14–19].

    2.2. The C6D6 detectors

    Four deuterated benzene(C6D6)liquid scintillator detectors were used for theγ-ray detection. The C6D6detectors were placed upstream of the neutron beam sample to reduce the scattering neutron background. The main advantages of these detectors are a fast time response, with pulse width of the order 10 ns, and a very low sensitivity to scattered neutrons,which are widely used for(n,γ)cross section measurements up to now. The shell of the scintillator is made of aluminum due to its low capture rate,with a diameter and length of 130 mm and 76.2 mm,respectively. The distance between the detector center to the sample centre is about 150 mm,and the distance from the neutron beam centre to the centre of the front face of the detector is about 80 mm.[20]Figure 2 shows the Geant4 geometry of the sample and detectors implemented for this experiment.

    Fig.2. A schematic view of the detectors and sample setup used for this experiment by Geant4 simulation.

    In the neutron capture cross section measurements, the amplitudes of the anode signals of the C6D6detectors range from 0.01 V to 3 V. Signals from the C6D6detectors are delivered to flash ADCs, which can digitize the signals into a full waveform with a 1 GS/s sampling rate and 12 bits resolution.[21]The incident neutron energy was determined by the time-of-flight(TOF)technique. The neutron energyEnis given by Eq. (1) and the corresponding neutron resolution is presented by Eq.(2),[24]

    where the neutron flight lengthL=L0+?L(En),L0is the geometric distance from the spallation target to the experimental sample, and ?L(En) is the equivalent change in moderation length associated with the incident neutron energy.Tfis the neutron time of flight, given byTf=tn?tγ+L/c, wheretnandtγare the start time of the neutron capture signal and the start time of the gamma flash recorded by the data acquisition(DAQ)system,respectively;cis the speed of light.

    Besides,the neutron flux was measured by using a silicon monitor;and the silicon monitor consists of a thin6LiF conversion layer and eight silicon detectors outside the neutron beam(Li–Si monitor)to count the number of neutrons by detecting alpha particles and3H through the reaction6Li (n,α)3H.[22]It is worth mentioning that with this detection system we have measured the neutron capture cross section of197Au[28]andnatEr[29]successfully,which validated the performance of the detection system and the processing methodology.

    2.3. Samples

    ThenatSe sample consisted of selenium monomers in powder form with a purity of 99.99%. In addition,the natural carbon sample and empty holder were used for the neutron scattering background and surroundingsγ-ray background subtraction, thenatPb sample for in-beamγ-ray background.Data were also recorded with a197Au sample for normalizing the cross section using 4.9 eV resonance for the saturated resonance method.[23]Table 1 shows the properties of the samples used in the experiment. ThenatSe sample was measured for 80 hours with a proton power between 22.8 kW and 23.4 kW.Then the gold sample and carbon sample were measured for 12 hours respectively, and finally the empty target was measured for 10 hours with a proton power 31.2–33.4 kW.

    Table 1. Properties of the samples used in the measurement.

    3. Data analysis

    3.1. Pluse height weighting technique

    The C6D6detection system is one of the total energy detection system that is widely used for neutron capture cross section measurements. In 1963,Moxon and Rae[25]first proposed the principle of the pulse height weighting technology(PHWT),then Macklin and Gibbons[26]for the first time used this method to measure the neutron capture cross section in 1967. PHWT has been developed for decades and has become a mature neutron capture cross section measurement method. According to this technique,two conditions must be met. First,the detection efficiency to gamma-rays has to be so low that at most only one gamma ray is detected in a capture event. Second,the detection efficiency is directly proportional to the energy of the gamma,εγ=k·Eγ. Owing toεγ ?1 andEc=En+Sn,the capture efficiencyεccan be written as[27]

    Fig.3. (a)The response function of the C6D6 detectors of natSe simulated by Geant4 with energy broadening. (b)The original efficiency of the C6D6 detectors in the top tile,the weighted efficiency of the detectors shown in the middle tile,and the ratio between weighted efficiency and the corresponding γ energy in the bottom tile, which is very close to one.

    3.2. Determination of the capture yield

    The experimental capture yieldYW[30,31]has been extracted dividing the weighted countsCW, after subtraction of the total backgroundBW,by the incident neutron fluenceφn:

    3.3. Background estimation

    A number of background contributions to the observed counts were identified and are shown in Fig.4 along with the measured spectrum of thenatSe sample. Their contributions were the ambient background subtracted by the empty holder,neutron scattering background from sample subtracted by the carbon sample,and in-beamγ-ray background deduced by the lead sample. The whole samples have been normalized by the Li–Si monitor shown in Fig.4. Because thenatPb sample has high gamma scattering cross section and low neutron scattering cross section,it was used for in-beam gamma calibration.It can be seen that the in-beam gamma mainly contributes to the energy region above 100 eV.The background contribution in the low energy band from thenatPb sample was less than the empty sample background contributions as shown in Fig. 4.The total backgroundB(En) was expressed as following formula:

    whereB0is the time-independent background that mainly comes from the natural environment,Bem(En) is the sampleindependent background originating from the neutron beam flux with anything other than thenatSe sample,Bns(En)is the background caused by the neutron scattered from the sample,Bγs(En)is the background attributed to in-beamγ-rays scattering from the thenatSe sample;andηis the ratio of the product of the neutron elastic scattering cross section and the number of nuclei per unit area of thenatSe sample to that of the carbon sample.

    3.4. Uncertainty analysis

    The experimental uncertainty of this work comes from the recent experiment conditions and data analysis. According to the Back-n collaboration’s work,[32]the uncertainty of the neutron energy spectrum varies between 2.3%and 4.5%above 0.15 MeV and less than 8%below 0.15 MeV.The uncertainty from the proton beam power was recorded during the measurement,contributing an error of 2.0%. Uncertainty in data analysis mainly concluded the PHWT method,normalization and background subtraction. The system uncertainty of PHWT was 2.0%–3.0% according to Tainet al.[33]The systematic uncertainties from different sources contributing to the resulting yield normalization are summarized in Table 2. Owing to the diameter of samples(50 mm)larger than the neutron flux diameter (30 mm), the uncertainty caused by the relative position Se/Au is negligible. The uncertainty of the normalized factor of the gold sample at the saturated resonance energy of 4.9 eV is about 1%. According to J.Renet al.,[34]there is an obvious in-beam gamma background at time-of-flight between 20μs and 400μs,namely,the keV energy region. The whole uncertainties are presented in Table 2.

    Table 2. The statistic uncertainty and systematic uncertainties of this experiment.

    Fig. 4. The measured natSe spectrum together with the various measured scaled background components has been normalized by a Li–Si monitor;and the count rates are expressed in a width-independent logarithmic equidistant binning.

    4. Result and discussion

    It is worth mentioning that the neutron capture cross sections of natural Se can be calculated by weighting the cross sections of Se isotopes according to their abundances.Figure 5 shows the neutron capture cross sections ofnatSe and the contributions of Se isotopes in the energy region of 1 eV–100 keV respectively. The Se isotopes capture cross sections are taken from the ENDF/B-VIII.0 evaluation database.[35]We also plot the existing experimental data ofnatSe neutron capture cross section in Fig.5. In Fig.5 one can see that the current experimental cross sections for neutron capture in Se isotopes are seriously deficient,and there are only few experimental results in the energy range below 100 keV.

    Fig.5. The neutron caption cross section of natSe is calculated by weighting the different isotopes cross sections with their abundances, where the red solid line represents the natSe(n,γ)cross section and the dashed lines are the contributions of each isotope capture cross section. The magenta and blue solid dots represent the existing experimental data.

    Fig.6. The neutron capture cross section of natSe in the energy region from 1 eV to 100 keV.

    Fig. 7. The neutron capture cross section of natSe in the unresolved resonance region from 10 keV to 100 keV.

    This work measured the neutron capture cross section ofnatSe in the 1 eV to 100 keV energy region, as shown in Fig. 6, where the red dots are the current experimental data and can roughly match the evaluated data ENDF/B-VIII.0[35](green solid line). Figure 7 shows the neutron capture cross section ofnatSe in the unresolved resonance region(URR)of 10–100 keV,where the evaluation data JEFF-3.3.[37]shows a large number of resonance peaks in this energy region,which differs significantly from our experimental data. Compared with the ENDF/B-VIII.0 data, our results are in better agreement with the evaluated data JENDL-4.0,[36]which also verify the reasonableness of the experimental data. And in this region,there are only three previous experimental data points from R. L. Mackinet al.[39]and T. S. Belanova.[40]Considering there being a large in-beam gamma background,[34]it is difficult to subtract completely the whole background limited to the current experiment conditions. On the other hand,the white neutron source(WNS)used the double-bunch mode of proton pulse, which limits the neutron energy resolution in the energy region of above 1 keV. For the above reasons,there are large errors in the experimental data in the resolved resonance region (RRR) above 1 keV, and unfortunately the resonance analysis cannot be performed in this region. This work focuses on the analysis of the resonance parameters ofnatSe in the 1 eV–1 keV energy region. Among them, the experimental results in the 100 eV to 1 keV energy region are compared with the ENDF/B-VIII.0 evaluation data as shown in Fig. 8, and overall, the experimental data can match the evaluation data well. The individual peak positions that are not matched, e.g.,at 130 eV,are brought about by the neutron energy spectrum[28]structure.

    Fig.8. The neutron capture cross section of natSe in resonance regions of 0.1–1 keV.

    Fig.9. The resolved resonance range of 1 eV to 1050 eV analyzed in this work. The pink points are the experimental data,and the black line is the R-matrix fit performed with SAMMY.

    Neutron resonances up to about 1.05 keV neutron energy were identified and analyzed using the multilevelR-matrix code SAMMY.[38]The fitting procedure applied in the Reich–Moore approximation to find the“best fit”values of resonance parameters and the associated parameter covariance matrix was based Bayes’s theorem. In the above 1050 eV, due to the limited energy resolution of the detection system, theRmatrix analysis was not performed. The fit included multiple scattering and self-shielding corrections, and Doppler broadening with an effective temperature of 300 K using the free gas model(FGM).Owing to many energy broadenings, the measured resonance widths were larger than the natural widths;and only the capture kernel could be determined. It is related to the resonance area via[41]

    whereλdenotes the de Broglie wavelength at the resonance energy, andΓn,Γγrepresent the neutron and gamma partial widths, respectively. The statistical spin factorgs=(2J+1)/(2S+1)(2I+1) is determined by the resonance spinJ, the neutron spinS=1/2, and the spinIof the target nucleus. And the resonance spinJ=I+S+lrelates to the neutron orbital angular momentuml,i.e.,l=0 corresponding to s-wave neutron,l=1 to p-wave neutron. The resonance fits up to 1050 eV are shown in Fig. 9, which match the experimental data well. At last,we extracted the corresponding resonance parameters,i.e.,the neutron width(Γn)and gamma partial width (Γγ) seen in Table 3. We get three resonances for74Se contribution at 27.1 eV, 270.8 eV, and 1018 eV; and most of the resonances are of77Se nuclei’s contribution.Since some of the nuclei77Se weighed resonance cross sections are relatively low, introducing increased background errors, the authors recommend measuring the neutron capture cross section of77Se isotope separately and extracting the corresponding resonance parameters.

    Table 3. The resonance parameters above 27 eV obtained by this work. Quantum number I,l and Jπ are taken from ENDF/B-VIII.0,and ER represents the ENDF/B-VIII.0 evaluated resonance energy.

    5. Conclusion

    For the first time, thenatSe neutron capture cross section in the 1 eV–100 keV energy region has been measured at the Back-n facility of CSNS by using the four C6D6liquid scintillator detectors. A detailed description of data analysis with PHWT and system uncertainty evaluation are given. The cross sections in the 10–100 keV energy are a good agreement with the JENDL-4.0 and ENDF/B-VIII.0 evaluated data,which verify the correctness of the experimental method and data processing. Data in the 1 keV–10 keV energy range exist larger errors due to the large in-beam gamma background and the limitation of neutron energy discrimination at current experimental conditions. The data of the 1 eV–1050 eV were analyzed in detail and theRmatrix program was used to provide the isotope contribution of the natural selenium resonance shape and the corresponding resonance parameters. The result shows that74Se and77Se isotopes have greater contributions on the resonance peaks of natural selenium in the 1–1050 eV energy region.

    Data availability

    The data that support the findings of this study are openly available in Science Data Bank at http://doi.org/10.11922/sciencedb.j00113.00019.

    Acknowledgements

    The authors sincerely appreciate the efforts of the staff of the CSNS and Back-n collaboration as well as Prof. Gui-Lin Zhang for his useful suggestion on data analysis. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875311, 11905274, 11705156,11605097, and U2032146) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB34030000).

    猜你喜歡
    王宏偉楊宇雅拉
    楊宇作品
    淺談“塑性力學(xué)”教學(xué)中的Lode應(yīng)力參數(shù)拓展
    書法
    Chinese animation film Ne Zha became a hit
    A Class of Rumor Spreading Models with Population Dynamics?
    楊宇
    論納·賽西雅拉圖教授的史詩(shī)研究
    Effect of the Interference Instant of Zeolite HY Catalyst on the Pyrolysis of Pubescens*
    新方向“雅拉”復(fù)合肥效果出眾
    211378 Research of radiosurgery for brain metastases
    精品欧美一区二区三区在线| 亚洲国产欧洲综合997久久, | 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 这个男人来自地球电影免费观看| 中文在线观看免费www的网站 | 久久亚洲精品不卡| 女人爽到高潮嗷嗷叫在线视频| avwww免费| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 国内久久婷婷六月综合欲色啪| 长腿黑丝高跟| 天堂√8在线中文| 亚洲精品av麻豆狂野| 欧美黑人欧美精品刺激| 成年版毛片免费区| 国产区一区二久久| 极品教师在线免费播放| 午夜福利在线在线| 亚洲专区字幕在线| 男人操女人黄网站| 夜夜看夜夜爽夜夜摸| 日韩视频一区二区在线观看| 日韩免费av在线播放| 757午夜福利合集在线观看| 国产精品 国内视频| 精品久久久久久,| 亚洲国产欧美网| 国产成人影院久久av| 亚洲精品中文字幕一二三四区| 美女免费视频网站| xxx96com| 久久九九热精品免费| 91麻豆精品激情在线观看国产| 成人欧美大片| 久9热在线精品视频| 中文字幕人妻丝袜一区二区| 国产精品98久久久久久宅男小说| 国产视频内射| 免费观看人在逋| 日韩免费av在线播放| 俺也久久电影网| 变态另类丝袜制服| 动漫黄色视频在线观看| 国产区一区二久久| 成在线人永久免费视频| 人人妻人人看人人澡| 最近在线观看免费完整版| 国产野战对白在线观看| 99国产精品一区二区三区| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 亚洲色图 男人天堂 中文字幕| 12—13女人毛片做爰片一| 黑人操中国人逼视频| 欧美大码av| 久久亚洲真实| 成人av一区二区三区在线看| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| 欧美亚洲日本最大视频资源| 亚洲在线自拍视频| 日本一区二区免费在线视频| 欧美zozozo另类| 嫩草影院精品99| 色综合亚洲欧美另类图片| 黑人巨大精品欧美一区二区mp4| 91麻豆av在线| 久久精品成人免费网站| 成人三级黄色视频| 韩国av一区二区三区四区| 麻豆成人午夜福利视频| 哪里可以看免费的av片| 欧美乱码精品一区二区三区| 一本一本综合久久| 天天添夜夜摸| 国产精品精品国产色婷婷| 一个人免费在线观看的高清视频| 国产精品av久久久久免费| 丝袜美腿诱惑在线| 91国产中文字幕| 桃色一区二区三区在线观看| 听说在线观看完整版免费高清| videosex国产| 欧美性猛交╳xxx乱大交人| 国产精品亚洲一级av第二区| 观看免费一级毛片| 国产极品粉嫩免费观看在线| www.999成人在线观看| 国产精品一区二区精品视频观看| 观看免费一级毛片| 午夜精品久久久久久毛片777| 69av精品久久久久久| 国产黄a三级三级三级人| 老熟妇仑乱视频hdxx| 国产精品野战在线观看| 亚洲男人的天堂狠狠| 午夜免费鲁丝| 久久午夜综合久久蜜桃| 1024视频免费在线观看| 男人舔女人下体高潮全视频| 欧美又色又爽又黄视频| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲欧美激情综合另类| 久久久久精品国产欧美久久久| 黄色毛片三级朝国网站| 高潮久久久久久久久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕人妻熟女乱码| 18禁裸乳无遮挡免费网站照片 | 久久香蕉激情| 男人操女人黄网站| 久久精品影院6| 亚洲精品一区av在线观看| 午夜激情av网站| 国产精品亚洲美女久久久| 成人国语在线视频| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91| 美女免费视频网站| 久久精品人妻少妇| 国产一区在线观看成人免费| 久热这里只有精品99| 草草在线视频免费看| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利在线观看吧| 亚洲狠狠婷婷综合久久图片| 国产一卡二卡三卡精品| 久久中文字幕人妻熟女| 1024手机看黄色片| 国产片内射在线| 俺也久久电影网| 午夜福利在线观看吧| 男人的好看免费观看在线视频 | 久久精品人妻少妇| 9191精品国产免费久久| 日本免费a在线| 在线观看免费午夜福利视频| www.精华液| 日韩精品中文字幕看吧| 巨乳人妻的诱惑在线观看| 国产精品精品国产色婷婷| 无人区码免费观看不卡| 日日爽夜夜爽网站| 男男h啪啪无遮挡| 91九色精品人成在线观看| 91国产中文字幕| 国产一区二区在线av高清观看| 欧美一级a爱片免费观看看 | 欧美又色又爽又黄视频| 成人18禁高潮啪啪吃奶动态图| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久久精品电影 | 国产精品九九99| 精华霜和精华液先用哪个| 精品福利观看| 国产精品一区二区三区四区久久 | 少妇 在线观看| 级片在线观看| 日日干狠狠操夜夜爽| 日本五十路高清| 欧美不卡视频在线免费观看 | 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| 黄色a级毛片大全视频| 三级毛片av免费| 亚洲片人在线观看| 日本成人三级电影网站| 少妇的丰满在线观看| 国产成人精品久久二区二区91| 在线观看一区二区三区| 国产视频一区二区在线看| 国产又黄又爽又无遮挡在线| 欧美日韩一级在线毛片| 亚洲无线在线观看| 国产不卡一卡二| 久久精品国产清高在天天线| 国产午夜福利久久久久久| 最新美女视频免费是黄的| 久久这里只有精品19| 国产精品久久久久久人妻精品电影| avwww免费| 欧美亚洲日本最大视频资源| 国产伦在线观看视频一区| 伦理电影免费视频| 成人手机av| 亚洲全国av大片| 亚洲人成网站高清观看| 成年免费大片在线观看| 18美女黄网站色大片免费观看| 精品人妻1区二区| 亚洲国产高清在线一区二区三 | 精品卡一卡二卡四卡免费| 成人亚洲精品av一区二区| 亚洲精品中文字幕一二三四区| 久热这里只有精品99| 午夜免费成人在线视频| 超碰成人久久| 怎么达到女性高潮| 可以免费在线观看a视频的电影网站| 变态另类丝袜制服| 成人三级黄色视频| www.自偷自拍.com| 日本黄色视频三级网站网址| 又黄又爽又免费观看的视频| 50天的宝宝边吃奶边哭怎么回事| 成人国语在线视频| 精品久久久久久久久久久久久 | 啦啦啦观看免费观看视频高清| 桃色一区二区三区在线观看| 狠狠狠狠99中文字幕| 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 免费在线观看完整版高清| 午夜福利在线在线| 无遮挡黄片免费观看| 一进一出好大好爽视频| 日韩视频一区二区在线观看| 久久精品成人免费网站| 一本一本综合久久| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 每晚都被弄得嗷嗷叫到高潮| 亚洲av美国av| 麻豆国产av国片精品| 国产精品一区二区免费欧美| 午夜两性在线视频| 一级a爱片免费观看的视频| 99国产综合亚洲精品| 可以在线观看的亚洲视频| 50天的宝宝边吃奶边哭怎么回事| 不卡一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 在线观看日韩欧美| 黄片播放在线免费| 老司机靠b影院| 91成年电影在线观看| 日韩有码中文字幕| 在线观看舔阴道视频| 免费看a级黄色片| 91成年电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 观看免费一级毛片| 变态另类成人亚洲欧美熟女| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 免费看日本二区| 一本大道久久a久久精品| 韩国精品一区二区三区| 免费高清视频大片| 母亲3免费完整高清在线观看| 很黄的视频免费| 欧美一级a爱片免费观看看 | 无限看片的www在线观看| 美女免费视频网站| 一级片免费观看大全| 正在播放国产对白刺激| 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 一级a爱视频在线免费观看| 国产一卡二卡三卡精品| 91国产中文字幕| 精品国内亚洲2022精品成人| 伦理电影免费视频| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 国产高清有码在线观看视频 | 男女视频在线观看网站免费 | 两个人看的免费小视频| 搞女人的毛片| 欧美+亚洲+日韩+国产| 88av欧美| 老鸭窝网址在线观看| 香蕉久久夜色| 中文资源天堂在线| 国产一区二区三区视频了| 午夜免费观看网址| 少妇裸体淫交视频免费看高清 | 久久精品国产清高在天天线| 狠狠狠狠99中文字幕| 国内精品久久久久久久电影| 我的亚洲天堂| 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 亚洲成av片中文字幕在线观看| 两个人视频免费观看高清| 黄色片一级片一级黄色片| 一本久久中文字幕| 国产97色在线日韩免费| 看片在线看免费视频| 亚洲国产高清在线一区二区三 | 精品久久久久久久毛片微露脸| 午夜福利视频1000在线观看| 99久久综合精品五月天人人| 成人精品一区二区免费| 亚洲 欧美 日韩 在线 免费| 国产主播在线观看一区二区| 久久精品国产亚洲av高清一级| 亚洲一区高清亚洲精品| 国产成人精品久久二区二区免费| 动漫黄色视频在线观看| 中文字幕人成人乱码亚洲影| 香蕉丝袜av| 精品一区二区三区四区五区乱码| 窝窝影院91人妻| 亚洲成人免费电影在线观看| 国产免费av片在线观看野外av| 最近最新中文字幕大全免费视频| 亚洲欧美激情综合另类| 真人做人爱边吃奶动态| 亚洲精品国产区一区二| 黄片小视频在线播放| 精品久久久久久久末码| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 国产精品自产拍在线观看55亚洲| 日韩一卡2卡3卡4卡2021年| 搞女人的毛片| 精品国产一区二区三区四区第35| 一个人观看的视频www高清免费观看 | 天堂√8在线中文| 日韩大码丰满熟妇| 麻豆国产av国片精品| 特大巨黑吊av在线直播 | 一二三四在线观看免费中文在| 亚洲片人在线观看| av视频在线观看入口| 一本一本综合久久| 成人18禁在线播放| 亚洲国产精品合色在线| 国产精品久久久av美女十八| 亚洲人成77777在线视频| 在线观看日韩欧美| 国产精品电影一区二区三区| 久久久久久人人人人人| 啦啦啦 在线观看视频| 亚洲五月婷婷丁香| 久久人妻福利社区极品人妻图片| 欧美zozozo另类| 可以免费在线观看a视频的电影网站| 黑人操中国人逼视频| 日韩欧美国产一区二区入口| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 人妻丰满熟妇av一区二区三区| 亚洲电影在线观看av| 宅男免费午夜| 久久精品91无色码中文字幕| 老司机福利观看| 岛国在线观看网站| 一区二区日韩欧美中文字幕| 久久人妻福利社区极品人妻图片| 精品欧美一区二区三区在线| 亚洲天堂国产精品一区在线| 国产免费男女视频| 999久久久国产精品视频| 国产精品久久久人人做人人爽| 黄片大片在线免费观看| 亚洲天堂国产精品一区在线| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| 日本免费a在线| 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人精品巨大| 母亲3免费完整高清在线观看| 伦理电影免费视频| 黄色成人免费大全| 精华霜和精华液先用哪个| 亚洲精品中文字幕一二三四区| 久久草成人影院| 超碰成人久久| 久久亚洲精品不卡| 夜夜爽天天搞| 老司机午夜福利在线观看视频| 日日爽夜夜爽网站| 亚洲国产高清在线一区二区三 | 亚洲激情在线av| 日韩av在线大香蕉| 在线看三级毛片| 欧美丝袜亚洲另类 | 国产亚洲av嫩草精品影院| 熟女少妇亚洲综合色aaa.| 成人永久免费在线观看视频| 免费看a级黄色片| 久久中文字幕一级| 国产视频内射| av电影中文网址| 亚洲成人精品中文字幕电影| 久久中文字幕一级| www国产在线视频色| 色婷婷久久久亚洲欧美| 18禁黄网站禁片免费观看直播| 淫秽高清视频在线观看| 夜夜夜夜夜久久久久| 国产黄片美女视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲中文字幕日韩| 久久中文看片网| 免费搜索国产男女视频| 成人三级做爰电影| 免费无遮挡裸体视频| 久久亚洲精品不卡| 夜夜爽天天搞| 久久久精品国产亚洲av高清涩受| 黄色毛片三级朝国网站| 久久久久久九九精品二区国产 | 亚洲精品一区av在线观看| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 欧美在线黄色| av视频在线观看入口| 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 巨乳人妻的诱惑在线观看| 制服丝袜大香蕉在线| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 露出奶头的视频| x7x7x7水蜜桃| 国产精品亚洲美女久久久| 国产野战对白在线观看| 日韩欧美免费精品| 99久久综合精品五月天人人| 黄色 视频免费看| 亚洲精品国产精品久久久不卡| 欧美一级毛片孕妇| 在线观看66精品国产| 两个人免费观看高清视频| 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 国产av一区二区精品久久| 免费搜索国产男女视频| 一本精品99久久精品77| 动漫黄色视频在线观看| 欧美激情极品国产一区二区三区| 欧美色欧美亚洲另类二区| 不卡av一区二区三区| 国产蜜桃级精品一区二区三区| 青草久久国产| 久久国产亚洲av麻豆专区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 老熟妇乱子伦视频在线观看| 1024香蕉在线观看| 午夜福利在线观看吧| 午夜免费鲁丝| 神马国产精品三级电影在线观看 | 亚洲激情在线av| 久久香蕉激情| 巨乳人妻的诱惑在线观看| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 男女下面进入的视频免费午夜 | 欧美丝袜亚洲另类 | 色av中文字幕| 午夜激情av网站| 99热只有精品国产| 给我免费播放毛片高清在线观看| 少妇的丰满在线观看| 777久久人妻少妇嫩草av网站| 天堂√8在线中文| e午夜精品久久久久久久| 久热爱精品视频在线9| 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 黄色成人免费大全| 国产三级黄色录像| 精品日产1卡2卡| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 欧美久久黑人一区二区| 人人妻,人人澡人人爽秒播| 色播亚洲综合网| netflix在线观看网站| 99在线人妻在线中文字幕| 99久久精品国产亚洲精品| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 亚洲成人久久爱视频| 国产成人欧美| 黄色视频,在线免费观看| 正在播放国产对白刺激| 国产精品影院久久| 亚洲精品久久国产高清桃花| 黄色毛片三级朝国网站| 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 亚洲国产高清在线一区二区三 | tocl精华| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 欧美一级a爱片免费观看看 | 午夜福利高清视频| 在线观看午夜福利视频| 久久精品亚洲精品国产色婷小说| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 日本黄色视频三级网站网址| 91av网站免费观看| 亚洲人成网站高清观看| 97人妻精品一区二区三区麻豆 | 国产亚洲欧美精品永久| 身体一侧抽搐| 欧美在线一区亚洲| 在线国产一区二区在线| 久久中文看片网| av片东京热男人的天堂| 不卡一级毛片| 亚洲国产欧美一区二区综合| 国产激情欧美一区二区| 一区福利在线观看| 18禁黄网站禁片午夜丰满| 日本成人三级电影网站| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久免费视频了| 搡老岳熟女国产| 国产成人av教育| 又紧又爽又黄一区二区| 欧美日韩乱码在线| 精品高清国产在线一区| 岛国视频午夜一区免费看| 一卡2卡三卡四卡精品乱码亚洲| av中文乱码字幕在线| 国产av又大| 欧美日韩精品网址| 黄色视频,在线免费观看| 免费在线观看日本一区| 精品国产美女av久久久久小说| 国产精品亚洲av一区麻豆| 999久久久国产精品视频| 成人手机av| 国产乱人伦免费视频| 免费女性裸体啪啪无遮挡网站| 国产免费男女视频| 国产成年人精品一区二区| 亚洲在线自拍视频| 波多野结衣高清作品| 久久伊人香网站| 两个人免费观看高清视频| 亚洲一区高清亚洲精品| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 国产午夜福利久久久久久| a级毛片在线看网站| 国产伦在线观看视频一区| 国产精品九九99| 久久人妻av系列| 黄色女人牲交| 久久久久国产一级毛片高清牌| 日韩精品青青久久久久久| 欧美色视频一区免费| 欧美三级亚洲精品| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看 | 亚洲国产看品久久| 在线av久久热| www.自偷自拍.com| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区| 一个人观看的视频www高清免费观看 | 夜夜夜夜夜久久久久| 久久精品人妻少妇| 亚洲人成电影免费在线| 少妇粗大呻吟视频| 黄片大片在线免费观看| 国产精品98久久久久久宅男小说| 两个人视频免费观看高清| 国产成+人综合+亚洲专区| 色综合站精品国产| 亚洲中文日韩欧美视频| 国产黄a三级三级三级人| 看免费av毛片| 亚洲精品美女久久久久99蜜臀| 黄片播放在线免费| 宅男免费午夜| 国产高清videossex| av欧美777| 欧美中文综合在线视频| 国产一区在线观看成人免费| 最新在线观看一区二区三区| 男人舔奶头视频| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 宅男免费午夜| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 亚洲美女黄片视频| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 动漫黄色视频在线观看| 1024手机看黄色片| 悠悠久久av| 麻豆成人午夜福利视频| 日本免费一区二区三区高清不卡| 久久午夜亚洲精品久久| 亚洲中文字幕一区二区三区有码在线看 |