• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain

    2022-08-31 09:55:36XiaoChenNa那小晨NanSi司楠FengGeZhang張鳳閣andWeiJiang姜偉
    Chinese Physics B 2022年8期
    關(guān)鍵詞:姜偉

    Xiao-Chen Na(那小晨) Nan Si(司楠) Feng-Ge Zhang(張鳳閣) and Wei Jiang(姜偉)

    1School of Science,Shenyang University of Technology,Shenyang 110870,China

    2School of Environmental and Chemical Engineering,Shenyang University of Technology,Shenyang 110870,China

    3School of Electric Engineering,Shenyang University of Technology,Shenyang 110870,China

    Keywords: octahedral chain,magnetization plateaus,hysteresis loops,blocking temperature

    1. Introduction

    At low temperatures,the magnetic and electronic behavior of some chains may exhibit dependence on the value of the spin.[1,2]This phenomenon has garnered tremendous attention as differing behaviors were demonstrated when compared to the bulk matter of the same element.[3,4]Specifically,the focus has been on one-dimensional (1D) magnetic spin chains with transition metal ions due to their inherent magnetic anisotropies and potential application for information storage at the molecular scale.[5–11]Galisovaet al.investigated the orthogonal-dimer chain using the classical transfermatrix approach.[12]The results suggested that various ground states lead to six-type magnetization depending on three exchange couplings.

    Additionally, the ferromagnetic phase and frustrated ferrimagnetic phase have both been discovered. Based on the Markov property of the dilute Ising chain, Panov obtained an explicit expression for the probability of any finite sequence.[13]He pointed out that the disordered dilute Ising chain with the regular Markov chain, while the ordering gives rise to the irregular Markov chain. Fabrelliet al.investigated the spin-1 field-induced antiferromagnet using a combination of experimental and theoretical techniques and delimited the quasi-1D region using quantum Monte Carlo calculations.[14]Daset al.synthesized the 1D spin-chain compound Ca3Co2?xFexO6and examined its magnetic properties.Some of the low-spin Co3+ions were converted into Co2+ions or, occasionally, both spin states experienced crossover due to the Fe-doping levelx.[15]By employing the transfermatrix method, the ground state phase diagram of spin-1/2 orthogonal-dimer chains has been investigated.[16]Magnetic properties of the quasi-1D spin-1 diamond chain with singleion anisotropy have also been discussed. The ground state phases exhibited an interesting frustrated state,with the magnetization forming different plateaus.[17]With Monte Carlo simulations, the magnetic properties of the mixed spins-5/2 and 3/2 Ising octahedral chains were investigated.[18]The ground state phase diagrams were determined and the magnetization and magnetic susceptibilities were obtained for this system with several typical anisotropies. If the system is chosen to mixed spins with integer(2)and half-integer(3/2)spins,will the magnetic properties differ from those of only mixed spins with half-integer(5/2,3/2)spins? In this study,we adopt the octahedral chain illustrated in Fig. 1. The blue and purple balls represent the spin-3/2 and 2 magnetic atoms,respectively. The solid and dotted lines depict the nearest neighbor ferromagneticJ(<0) and ferrimagneticJ1(<0) exchange couplings,respectively. The mixed spin-3/2 and 2 Ising model is employed to introduce the octahedral chain, as this is one of the most effective models for solving one-,two-and threedimensional problems.[19–22]

    To examine this model, an effective field theory (EFT)was employed to analyze the magnetism.[23–26]In our previous studies, we have successfully employed an EFT to study magnetic characteristics of nano-systems.[27–35]The purpose of this study is to investigate the magnetic properties of the octahedral chain described by the mixed spin Ising model based on the EFT.This method takes into account the correlation of spin itself and is therefore superior to mean field theory. In Section 2,the Hamiltonian and a phase transition formula are derived for an octahedral chain using the EFT.In Section 3,the magnetization plateaus, hysteresis loops, and phase diagrams are calculated,while the final section presents some concluding remarks.

    2. Calculation method

    An octahedral chain with two types of magnetic atoms is depicted in Fig.1. The initial spins of the blue balls along the magnetic field(h)are anti-parallel to those of the purple balls.The ferromagnetic exchange couplingJis set to unity(J=1).Using the EFT,the Hamiltonian for the octahedral chain is

    Fig.1. Schematic of the mixed spin octahedral chain.

    3. Numerical results and discussion

    In this section,some typical results based on the magnetic properties of the octahedral chain described by the ferrimagnetic mixed Ising model are investigated. Suppose that the spin-3/2 at the blue sites is parallel to the magnetic field (h),while the spin-2 at the purple sites is anti-parallel and the ferromagnetic exchange coupling is set to unity.

    3.1. Magnetization plateaus and hysteresis loops of the octahedral chain

    The step effects exhibited at low temperatures by the magnetization of the system with an increasing magnetic field are known as magnetization plateaus. Generally, the number of plateaus depends on the values of spin and other parameters. The effects of the exchange couplingJ1and anisotropiesD1andD2on the octahedral chain are examined in Figs.2–4 at a fixed temperature ofT=0.06. The solid,dashed,and dotdashed lines denote the total average(M),A(Ma)and B(Mb)sublattice magnetizations,respectively.

    The magnetization versus the magnetic field for the octahedral chain withD1=?0.5,D2=?3.5 and various values ofJ1are depicted in Figs.2(a)and 2(b). In these figures,magnetization plateaus are observed at the curves. The critical magnetic fieldhcis defined as the smallest magnetic field required for the magnetization to transition from one plateau to another,while that of the last plateau is known as the saturated magnetic fieldhs. In Fig. 2(a), three magnetization plateaus are observed atM=6/5, 7/5, and 8/5 withJ1=?0.2, corresponding tohc1=6.26 andhs=13.36, respectively. The sublatticeMaremains constant for the spin 3/2 state,whileMbmoves from a 0 to a +2 spin state ashincreases. The magnetization plateaus are sensitive to sublattice plateaus, such asM=[4×(3/2)+0]/5=6/5. In Fig. 2(b), four magnetization plateaus are observed atM= 1, 6/5, 7/5, and 8/5 withJ1=?0.7, corresponding tohc1= 5.26,hc2= 12.26,andhs= 19.36, respectively. The spin ofMbmoves from a?1 to a +2 state ashincreases, which differs from the previous example. An additional plateau was observed due toM=[4×(3/2)+(?1)]/5=1. Comparing Fig. 2(a) and Fig.2(b),the values ofhcandhsfor the same plateau increase with the increasing|J1|.

    Fig.2. Magnetization plateaus of the octahedral chain with various J1:(a)?0.2 and(b)?0.7.

    The magnetization against magnetic field for the octahedral chain withJ1=?0.7 andD2=?3.5 for variousD1are presented in Figs. 3(a) and 3(b). In Fig. 3(a), four magnetization plateaus are observed atM=1, 6/5, 7/5, and 8/5 withD1=?1.5, corresponding tohc1=5.26,hc2=12.26,andhs=19.36, respectively. In Fig. 3(b), six magnetization plateaus are observed atM=?2/5, 2/5, 3/5, 6/5, 7/5, and 8/5 withD1=?4.5, corresponding tohc1=0.54,hc2=6.8,hc3=9.1,hc4=12.26,andhs=19.26,respectively. Interestingly,Mbis inverted from 1 to 0,whileMamoves from spin 1/2 to spin 3/2 athc3. This phenomenon arises due to the opposite directions of the initial spins of the two types of sublattices(MaandMb) owing to the ferrimagnetic exchange coupling(J1<0). To retain this ferrimagnetic exchange coupling,they must change simultaneously. That is,MaandMbsimultaneously move up and down, respectively. Comparing the two cases,the critical magnetic fields increase with the increasing|D1|for the same plateau under lower magnetic fields. However, the saturated magnetic fieldhsretains the same value.The corresponding plateaus are similar for both the cases,for example,M=(4×3/2?0)/5=6/5 for bothD1=?1.5 and?4.5.

    Fig.3. Magnetization plateaus of the octahedral chain for various D1:(a)?1.5 and(b)?4.5.

    The magnetization versus magnetic field for the octahedral chain withJ1=?0.7 andD1=?0.5 for various values ofD2is illustrated in Figs.4(a)and 4(b). In Fig.4(a),five magnetization plateaus are observed from five spin states,?2,?1,

    Fig.4. Magnetization plateaus of the octahedral chain for various D2:(a)?1.5,(b)?3.5.

    0,1,and 2 forMb.They are observed atM=4/5,5/5,6/5,7/5,and 8/5 forD2=?1.5,corresponding tohc1=4.4,hc2=7.26,hc3=10.26, andhs=13.26, respectively. In Fig. 4(b), four magnetization plateaus are observed atM=5/5,6/5,7/5,and 8/5 forD2=?3.5,corresponding tohc1=5.26,hc2=12.26,andhs=19.26,respectively. Comparing the two figures,one of the lowered plateaus is due to the absence of the?2 spin state inMb. The multi-spin states of the system are sensitive to various parameters, stronger anisotropy makes the system in a low spin state, whereas weaker one makes it in a high spin state. This results in a different number of magnetization plateaus.

    Figures 5(a)–5(d)demonstrate the effect of the ferrimagnetic exchange couplingJ1on the magnetic hysteresis loops and the coercivity of the octahedral chain withD1=?0.5 andD2=?3.5 at a fixed temperatureT=0.06.With increasingh,the curve saturates atMs=8/5 in Fig.5(a),whereJ1=?0.2.The coercivity and the remanence areHc=2.16 andMr=6/5,respectively. To explain the origin of the overall hysteresis loops,the magnetic hysteresis loops of the sublattices are plotted in Fig. 5(b) with the same parameters.MaandMbexhibit different dependencies for various values ofh,which determines the shape of the overall hysteresis loop. They also account for the source ofMs= (4×3/2+2)/5 = 8/5. In Fig.5(c),whereJ1=?0.7,the coercivity and the remanence areHc=2.26 andMr=5/5, respectively. In comparison of the two cases,Hcis observed to increase when the absolute value ofJ1increased from 0.2 to 0.7. Additionally, the coercivityHcversusJ1in Fig. 5(d) further confirms the above result.

    Fig. 5. Hysteresis loops of the octahedral chain for (a) J1 =?0.2, (b)J1 =?0.2 for the sublattices, (c)J1 =?0.7, and(d)the coercivity Hc versus J1.

    Fig. 6. Hysteresis loops for (a) D2 =?3.5, D1 =?1.5 and ?4.5, (b) D1 =?0.5, D2 =?1.5 and ?3.5, and the coercivity Hc, and (c) the three-dimensional space(Hc,D2,D1)of the octahedral chain.

    The graphs in Figs. 6(a)–6(c) explain the effects of the anisotropies on the magnetic hysteresis loops and the coercivity of the octahedral chain forJ1=?0.7 andT= 0.06.In Fig. 6(a), the coercivity and the remanence areHc=1.2 and 0.58,andMr=5/5 and 2/5 forD1=?1.5 and?4.5,respectively, for a fixed anisotropy ofD2=?3.5. Moreover,three loops are found on the curve whereD1=?4.5, which is due to all possible spin states appearing with the increasing magnetic field. In Fig. 6(b), the coercivity and the remanence areHc=2.26 and 4.56, andMr=5/5 and 4/5 forD2=?3.5 and?1.5, respectively, for a fixed anisotropy ofD1=?0.5.The steps are observed on the hysteresis loops due to all possible spin states appearing with the increasing magnetic field. The effects of the anisotropies on the coercivity in the three-dimensional space(Hc,D2,D1)of the octahedral chain are given in Fig. 6(c). The hysteresis loop and magnetization plateaus are mainly caused by the multi-spin states of 1D ferrimagnetic system due to the anisotropy,which may have potential applications in magnetic memory devices.

    3.2. Magnetization and blocking temperature of the octahedral chain

    The curves in Figs.7(a)–7(c)depict the effects of the ferrimagnetic exchangeJ1on the magnetizations and the susceptibility of the octahedral chain forD1=?0.5 andD2=?3.5.In Fig.7(a),the temperature dependence of the magnetization is plotted for some typical values ofJ1. The depressed saturation magnetization is observed on the curves labeledJ1=?0.4,as the thermal agitation releases the saturation magnetization from the frustration. In Fig.7(b),three saturation magnetizations(Ms)at zero temperature are detected atMs=6/5,5/5, and 4/5, which arise fromMs=(4×3/2?0)/5=6/5,(4×3/2?1)/5=5/5, and(4×3/2?2)/5=4/5. The saturation sublattice magnetization labeledJ1=?0.9,?0.7 at zero temperature showed smaller than the absolute value of the maximumMbdue to its released from the frustration through thermal agitation. In Fig. 7(c), the temperature dependence of the susceptibility of the octahedral chain is analyzed using the same parameters as shown in Fig. 7(a). The temperature at maximum susceptibility is defined as the blocking temperature (TB), and we observe that with increasing|J1|,TBalso increases. For example,Tc=2.35, 2.7, 3.7, 4.5, and 6.1 forJ1=?0.2,?0.4,?0.7,?0.9, and?1.2, respectively. The blocking temperature (TB) as a function of the ferrimagnetic exchange couplingJ1is presented in Fig.7(d)forD1=?0.5 andD2=2.5. It is observed thatTBdecreases with decreasing|J1|,which agrees with the previous analysis.

    The curves in Figs. 8(a)–8(c) depict the effects of the anisotropyD1on the magnetization and the susceptibility of the octahedral chain forJ1=?0.7 andD2=?3.5. In Fig. 8(a), the temperature dependence of the magnetization of the system is given for some typical values ofD1. Two values ofMsare found on the total average magnetization atMs=5/5 and 2/5.The different types of magnetization curves are due to the different temperature dependences ofMaandMbin Fig.8(b). The saturation magnetizations areMs=3/2 and 1/2, and 0 and?1 forMaandMb, respectively. This originates from the different magnetic states induced by anisotropy changes. In Fig.8(c),the temperature dependence of the susceptibility of the octahedral chain is analyzed with the same parameters as shown in Fig. 8(a). The singular behavior is observed atTBon the curve, at which point the temperature increases with decreasing|D1|. For example,TB=3.4, 2.9,2.3,1.5,and 0.8 forD1=?0.8,?1.2,?1.5,?2.3,and?4.5,respectively.

    Fig.7. Temperature dependence of the(a)magnetization,(b)sublattice magnetization, (c) susceptibility, and (d) the blocking temperature TB vs. J1 of the octahedral chain for D1=?0.5,D2=?3.5.

    The curves in Figs. 9(a)–9(c) describe the effects of the anisotropyD2on the magnetization and the susceptibility of the octahedral chain withJ1=?0.7 andD1=?0.5. In Fig.9(a),the temperature dependence of the magnetization of the system is plotted for some typical values ofD2.Two values ofMsare observed atMs=5/5 and 4/5. The different types of magnetization curves are due to the dependence of the various sublattice magnetizations on temperature,as illustrated in Fig.9(b).The saturation magnetizations areMs=3/2,and?2 and?1 forMaandMb,respectively. In Fig.9(c),the temperature dependence of the susceptibility of the octahedral chain is analyzed with the same parameters as shown in Fig. 9(a).The singular point on the curve atTBincreases with decreasing|D2|. For example,TB=3.7, 3.9, 4.1, 4.6, and 5.2 forD2=?3.5,?3.0,?2.5,?1.5, and?0.2, respectively. The susceptibility curve also contains an additional peak at low temperature due to the depressed saturation magnetization.The effects of the anisotropies on the blocking temperature are plotted in Figs.9(d)and 9(e)forJ1=?0.7. In Fig.9(d),the blocking temperature dependence of the anisotropyD1of the system is plotted for some typical values ofD2. For the same parameters,TBagrees with that obtained in Fig.9(c). To clearly show the variation of the blocking temperature with anisotropy,a three-dimensional space(TB,D1,D2)is provided for the octahedral chain.

    Fig. 8. Temperature dependence of (a) magnetization, (b) sublattice magnetization, and (c) susceptibility for the octahedral chain with J1 =?0.7 and D2=?3.5. The number on the curve is the anisotropy D1.

    Fig.9. Temperature dependence of(a)magnetization,(b)sublattice magnetization,and(c)susceptibility with J1 =?0.7 and D1 =?0.5,and the blocking temperature in(d)two-dimensional(TB,D1)and(e)three-dimensional space(TB,D1,D2)for the octahedral chain.

    4. Conclusions

    An octahedral chain described using a mixed spin Ising model has been investigated within the framework of an EFT with correlations. The calculations demonstrate that the exchange coupling and anisotropy exhibit important impacts on magnetism. For appropriate parameters, depressed saturation magnetization may be obtained in such a system.Furthermore,unusual behaviors, such as multiple hysteresis loops with the step effect and magnetization plateau inversion,have been discovered. These behaviors in 1D materials may be applicable to spin devices in the future.

    Acknowledgements

    Project supported by National Natural Science Foundation of China (Grant No. 51920105011) and the Key R&D Program of Liaoning Province of China (Grant No.2020JH2/10300079).

    猜你喜歡
    姜偉
    姜偉作品
    明媚的春天
    明媚的春天
    明媚的春天
    大理文化(2020年5期)2020-05-28 09:43:09
    姜偉:向夢(mèng)想的方向奔跑
    東西南北(2018年6期)2018-05-05 03:17:08
    災(zāi)難過后,陽光照進(jìn)重組家庭
    婦女(2018年12期)2018-02-15 12:43:32
    靈活運(yùn)用信息化手段破解追逃難題——對(duì)姜偉追逃一案的剖析與總結(jié)
    本色姜偉:“潛伏”是為了更好地爆發(fā)
    《潛伏》導(dǎo)演姜偉:讓夢(mèng)想潛伏
    做人與處世(2009年9期)2009-08-11 02:42:18
    姜偉:如火戲劇,似水人生
    国产单亲对白刺激| 一级黄片播放器| 91午夜精品亚洲一区二区三区 | 搡女人真爽免费视频火全软件 | av天堂在线播放| 成人国产综合亚洲| 亚洲av成人精品一区久久| 亚洲欧美激情综合另类| 欧美成人性av电影在线观看| 精品乱码久久久久久99久播| 国产精品久久久久久亚洲av鲁大| 欧美日韩国产亚洲二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 蜜桃亚洲精品一区二区三区| 亚洲黑人精品在线| 色吧在线观看| 亚洲乱码一区二区免费版| 国产老妇女一区| 9191精品国产免费久久| 尤物成人国产欧美一区二区三区| 18禁黄网站禁片午夜丰满| 日本 欧美在线| 亚洲av日韩精品久久久久久密| 国产精品av视频在线免费观看| 好男人电影高清在线观看| 国语自产精品视频在线第100页| 国产在线男女| 99久久成人亚洲精品观看| 99久久精品国产亚洲精品| 欧美成人一区二区免费高清观看| 国内毛片毛片毛片毛片毛片| 国产成年人精品一区二区| 一级a爱片免费观看的视频| 色哟哟哟哟哟哟| 成人高潮视频无遮挡免费网站| 欧美最黄视频在线播放免费| 日本在线视频免费播放| 少妇人妻精品综合一区二区 | 久久精品影院6| 日韩中字成人| 91午夜精品亚洲一区二区三区 | 欧美最新免费一区二区三区 | 亚洲乱码一区二区免费版| 国产免费一级a男人的天堂| 久久久久国产精品人妻aⅴ院| netflix在线观看网站| 精品一区二区三区av网在线观看| 国产单亲对白刺激| 美女 人体艺术 gogo| 亚洲av熟女| 日本免费一区二区三区高清不卡| 国产毛片a区久久久久| 免费人成在线观看视频色| 亚洲精品乱码久久久v下载方式| 很黄的视频免费| 男人的好看免费观看在线视频| 女人十人毛片免费观看3o分钟| 90打野战视频偷拍视频| 国产伦精品一区二区三区视频9| 亚洲精品在线观看二区| 欧美三级亚洲精品| 在线播放无遮挡| 十八禁国产超污无遮挡网站| 首页视频小说图片口味搜索| 99在线视频只有这里精品首页| 成人无遮挡网站| 欧美性猛交╳xxx乱大交人| 亚洲自偷自拍三级| 久久亚洲精品不卡| 亚洲成人精品中文字幕电影| 亚洲精品在线美女| 精品福利观看| 搞女人的毛片| 国产亚洲精品av在线| 日日夜夜操网爽| www.熟女人妻精品国产| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区久久| 一级a爱片免费观看的视频| 12—13女人毛片做爰片一| 女同久久另类99精品国产91| 成年免费大片在线观看| 成人av在线播放网站| 国产成人影院久久av| 国产大屁股一区二区在线视频| 中出人妻视频一区二区| 精品人妻熟女av久视频| 亚洲成av人片免费观看| 老鸭窝网址在线观看| 俄罗斯特黄特色一大片| 成年女人永久免费观看视频| 欧美黑人欧美精品刺激| 国内揄拍国产精品人妻在线| 18禁黄网站禁片免费观看直播| 久久国产乱子伦精品免费另类| 人人妻人人澡欧美一区二区| 日本五十路高清| 久久精品人妻少妇| 成人毛片a级毛片在线播放| 悠悠久久av| 亚洲成人久久性| 人妻夜夜爽99麻豆av| 日韩中文字幕欧美一区二区| 成年版毛片免费区| 黄色一级大片看看| 日韩国内少妇激情av| 欧美+日韩+精品| 日本熟妇午夜| 国产乱人伦免费视频| 免费av不卡在线播放| 精品不卡国产一区二区三区| 精品不卡国产一区二区三区| 国产白丝娇喘喷水9色精品| 国产白丝娇喘喷水9色精品| 网址你懂的国产日韩在线| 国语自产精品视频在线第100页| 欧美区成人在线视频| 亚洲精品在线美女| 国产午夜福利久久久久久| 亚洲中文字幕日韩| 久久香蕉精品热| 九九在线视频观看精品| 欧美最新免费一区二区三区 | 久久精品国产自在天天线| 男女下面进入的视频免费午夜| 最新中文字幕久久久久| 热99在线观看视频| 久久久久久久久久黄片| 男女做爰动态图高潮gif福利片| 亚洲美女视频黄频| 国产精品av视频在线免费观看| 精品久久久久久,| 成人国产一区最新在线观看| 亚洲精品在线美女| 日本 av在线| 天堂√8在线中文| 色哟哟·www| 舔av片在线| 一个人免费在线观看电影| 色播亚洲综合网| 99久久无色码亚洲精品果冻| 性色avwww在线观看| 真人一进一出gif抽搐免费| 精品熟女少妇八av免费久了| 一进一出抽搐动态| 免费在线观看亚洲国产| 亚洲精品456在线播放app | 热99re8久久精品国产| 美女 人体艺术 gogo| 美女 人体艺术 gogo| 免费在线观看成人毛片| 97超级碰碰碰精品色视频在线观看| 99热6这里只有精品| 在线看三级毛片| 日本黄色片子视频| 精品日产1卡2卡| 直男gayav资源| 成人亚洲精品av一区二区| 成人鲁丝片一二三区免费| 亚洲成人久久爱视频| 午夜免费激情av| 99久久无色码亚洲精品果冻| 久久午夜亚洲精品久久| 成熟少妇高潮喷水视频| 色尼玛亚洲综合影院| 黄色丝袜av网址大全| 精品人妻一区二区三区麻豆 | 亚洲精品在线美女| 欧美三级亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 熟女电影av网| 国产精品亚洲一级av第二区| 在线观看66精品国产| 国产精品国产高清国产av| 亚洲国产精品合色在线| 欧美日韩瑟瑟在线播放| 中文字幕av成人在线电影| 中文字幕人成人乱码亚洲影| 此物有八面人人有两片| 欧美+亚洲+日韩+国产| 久久精品人妻少妇| 国产精品影院久久| 国产三级黄色录像| 有码 亚洲区| 久久久精品欧美日韩精品| 淫秽高清视频在线观看| 国产亚洲欧美在线一区二区| 欧美精品国产亚洲| 一二三四社区在线视频社区8| 长腿黑丝高跟| 变态另类丝袜制服| 国产精品三级大全| 色综合站精品国产| 露出奶头的视频| 亚洲狠狠婷婷综合久久图片| 最近视频中文字幕2019在线8| 亚洲最大成人av| 免费观看人在逋| 日韩av在线大香蕉| 日韩欧美精品免费久久 | 黄色日韩在线| 动漫黄色视频在线观看| 我的老师免费观看完整版| av在线观看视频网站免费| 国产一区二区激情短视频| 一本久久中文字幕| 国内毛片毛片毛片毛片毛片| 乱人视频在线观看| 88av欧美| 香蕉av资源在线| 久久久久久大精品| 久久午夜福利片| 夜夜夜夜夜久久久久| 天堂影院成人在线观看| 直男gayav资源| 观看免费一级毛片| 怎么达到女性高潮| 尤物成人国产欧美一区二区三区| 蜜桃久久精品国产亚洲av| 乱码一卡2卡4卡精品| 亚洲国产日韩欧美精品在线观看| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品久久久久久一区二区三区 | 午夜两性在线视频| 色在线成人网| 欧美在线一区亚洲| 免费看日本二区| 18+在线观看网站| 99久久久亚洲精品蜜臀av| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲av一区麻豆| 18+在线观看网站| 亚洲精品亚洲一区二区| 久久久久久久午夜电影| 老司机午夜十八禁免费视频| 成人欧美大片| 变态另类成人亚洲欧美熟女| 热99在线观看视频| www.www免费av| 淫妇啪啪啪对白视频| 国产免费一级a男人的天堂| 哪里可以看免费的av片| 精品熟女少妇八av免费久了| 国产精品电影一区二区三区| 欧美三级亚洲精品| www.999成人在线观看| 国产成人av教育| 韩国av一区二区三区四区| 宅男免费午夜| 国产v大片淫在线免费观看| 日韩免费av在线播放| 欧美xxxx黑人xx丫x性爽| 韩国av一区二区三区四区| 十八禁网站免费在线| 老司机福利观看| 国产精品影院久久| 国产精品美女特级片免费视频播放器| 亚洲电影在线观看av| 久久6这里有精品| 久久久久久久久中文| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 久99久视频精品免费| 在线天堂最新版资源| 日日干狠狠操夜夜爽| 看黄色毛片网站| 99热只有精品国产| 色尼玛亚洲综合影院| 国产真实伦视频高清在线观看 | 日本三级黄在线观看| av中文乱码字幕在线| 久久久国产成人免费| 精品不卡国产一区二区三区| 亚洲五月天丁香| 国产午夜精品论理片| 国产黄a三级三级三级人| 直男gayav资源| 亚洲精品日韩av片在线观看| 欧美丝袜亚洲另类 | 色哟哟·www| 国产又黄又爽又无遮挡在线| 久久精品国产清高在天天线| 亚洲不卡免费看| 深夜a级毛片| 在线免费观看不下载黄p国产 | 精品午夜福利在线看| 99热这里只有精品一区| 男人舔女人下体高潮全视频| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 亚洲最大成人手机在线| 精品国产亚洲在线| 久久午夜福利片| 又黄又爽又免费观看的视频| 最近中文字幕高清免费大全6 | 亚洲经典国产精华液单 | 亚洲色图av天堂| 久久久久久久久久黄片| 九九热线精品视视频播放| 嫩草影院新地址| 亚洲av免费高清在线观看| 久久久国产成人精品二区| 中文在线观看免费www的网站| 琪琪午夜伦伦电影理论片6080| 最近最新免费中文字幕在线| 国产真实乱freesex| www.熟女人妻精品国产| 色5月婷婷丁香| 少妇被粗大猛烈的视频| 一级作爱视频免费观看| 亚洲最大成人中文| 国产av不卡久久| 国产中年淑女户外野战色| 99国产精品一区二区三区| 精品一区二区免费观看| 国产中年淑女户外野战色| 一个人看视频在线观看www免费| 搡女人真爽免费视频火全软件 | 757午夜福利合集在线观看| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 国产精品99久久久久久久久| 88av欧美| 如何舔出高潮| 一个人看的www免费观看视频| 国产午夜精品久久久久久一区二区三区 | 亚洲真实伦在线观看| 我要看日韩黄色一级片| 欧美黄色淫秽网站| 小说图片视频综合网站| 噜噜噜噜噜久久久久久91| 一级黄片播放器| 看黄色毛片网站| 久久热精品热| 国产欧美日韩精品亚洲av| 午夜老司机福利剧场| 99久久成人亚洲精品观看| 午夜两性在线视频| 我的女老师完整版在线观看| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 午夜两性在线视频| 精品久久国产蜜桃| 51国产日韩欧美| 人妻制服诱惑在线中文字幕| 亚洲激情在线av| 成人av在线播放网站| 日韩国内少妇激情av| avwww免费| 日韩av在线大香蕉| 国产在视频线在精品| 欧美日韩综合久久久久久 | 亚洲国产日韩欧美精品在线观看| 一区二区三区高清视频在线| 天堂动漫精品| 1024手机看黄色片| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 久久久久久大精品| 欧美色欧美亚洲另类二区| 中文资源天堂在线| 国产av在哪里看| 欧美一区二区亚洲| 又爽又黄无遮挡网站| 搞女人的毛片| 亚洲国产精品999在线| 日本免费a在线| 性欧美人与动物交配| 亚洲无线观看免费| 国产真实伦视频高清在线观看 | 亚州av有码| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 日韩中文字幕欧美一区二区| 美女黄网站色视频| 一本久久中文字幕| 怎么达到女性高潮| av中文乱码字幕在线| 久久精品国产自在天天线| 制服丝袜大香蕉在线| 午夜福利成人在线免费观看| 国产毛片a区久久久久| 日本 av在线| 99riav亚洲国产免费| 日韩欧美国产在线观看| 国产一区二区三区视频了| 波多野结衣高清作品| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 亚洲片人在线观看| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 少妇裸体淫交视频免费看高清| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 国产精品一区二区三区四区久久| 能在线免费观看的黄片| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人av在线观看| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 国产午夜福利久久久久久| 有码 亚洲区| 桃色一区二区三区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 五月伊人婷婷丁香| 久久午夜福利片| 十八禁国产超污无遮挡网站| 一区二区三区高清视频在线| 午夜福利免费观看在线| 亚洲精品456在线播放app | 久久九九热精品免费| 99热这里只有是精品50| 亚洲 国产 在线| 欧美成人性av电影在线观看| 日韩大尺度精品在线看网址| 一区二区三区高清视频在线| 欧美性猛交黑人性爽| xxxwww97欧美| 激情在线观看视频在线高清| 我的女老师完整版在线观看| 最近在线观看免费完整版| 亚洲成a人片在线一区二区| 成人亚洲精品av一区二区| 欧美区成人在线视频| 哪里可以看免费的av片| 欧美丝袜亚洲另类 | av专区在线播放| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 99精品在免费线老司机午夜| 无遮挡黄片免费观看| 免费搜索国产男女视频| 精品一区二区三区av网在线观看| 久久久久亚洲av毛片大全| 久久亚洲真实| 国产激情偷乱视频一区二区| 婷婷色综合大香蕉| 桃红色精品国产亚洲av| 亚洲中文日韩欧美视频| 国产不卡一卡二| 麻豆国产av国片精品| 特级一级黄色大片| 99热只有精品国产| xxxwww97欧美| 波野结衣二区三区在线| 久久久久久久久久黄片| 少妇人妻精品综合一区二区 | 国产美女午夜福利| 免费看光身美女| 男女床上黄色一级片免费看| 99热这里只有是精品在线观看 | 欧美色视频一区免费| 又紧又爽又黄一区二区| 69人妻影院| 夜夜躁狠狠躁天天躁| 久久婷婷人人爽人人干人人爱| 老司机午夜十八禁免费视频| 99视频精品全部免费 在线| 欧美激情在线99| 看黄色毛片网站| 亚洲精品一区av在线观看| 丝袜美腿在线中文| 脱女人内裤的视频| 国产三级中文精品| 90打野战视频偷拍视频| 国产精品永久免费网站| 男人舔奶头视频| 能在线免费观看的黄片| 黄色日韩在线| 亚洲无线在线观看| 亚洲av成人精品一区久久| 亚洲国产精品999在线| 成人性生交大片免费视频hd| 亚洲国产精品合色在线| 综合色av麻豆| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 久久久国产成人精品二区| av在线蜜桃| 一区二区三区免费毛片| 久久精品国产亚洲av涩爱 | 少妇人妻一区二区三区视频| 日本一二三区视频观看| 黄色配什么色好看| 黄色视频,在线免费观看| 精品久久久久久久久久免费视频| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 夜夜看夜夜爽夜夜摸| 欧美成人性av电影在线观看| 在线国产一区二区在线| 一进一出好大好爽视频| 亚洲欧美精品综合久久99| 嫩草影视91久久| 欧美乱妇无乱码| 少妇高潮的动态图| 90打野战视频偷拍视频| 十八禁国产超污无遮挡网站| 欧美bdsm另类| 很黄的视频免费| 永久网站在线| 两个人视频免费观看高清| 99久久99久久久精品蜜桃| 久久精品影院6| 日本在线视频免费播放| 村上凉子中文字幕在线| 欧美xxxx性猛交bbbb| 国产高潮美女av| 亚洲五月天丁香| 亚洲无线观看免费| 变态另类丝袜制服| 黄色丝袜av网址大全| 精品久久久久久,| 熟女人妻精品中文字幕| 女同久久另类99精品国产91| 亚洲av一区综合| 国产激情偷乱视频一区二区| 久久99热这里只有精品18| 麻豆av噜噜一区二区三区| 不卡一级毛片| 亚洲五月天丁香| 国内精品一区二区在线观看| 亚洲av日韩精品久久久久久密| 亚洲三级黄色毛片| 99热只有精品国产| 99热这里只有精品一区| 久久人人精品亚洲av| 欧美xxxx性猛交bbbb| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 国产视频一区二区在线看| 国产精品久久视频播放| 国产免费男女视频| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 日本精品一区二区三区蜜桃| 乱码一卡2卡4卡精品| 他把我摸到了高潮在线观看| 国产精品亚洲av一区麻豆| 国内少妇人妻偷人精品xxx网站| 午夜福利视频1000在线观看| 国产精品98久久久久久宅男小说| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 国产探花在线观看一区二区| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 真实男女啪啪啪动态图| 亚洲美女视频黄频| 成熟少妇高潮喷水视频| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 一进一出好大好爽视频| 九色国产91popny在线| 欧美黄色片欧美黄色片| 国产在视频线在精品| 黄色女人牲交| 亚洲第一电影网av| 日韩欧美三级三区| 日本三级黄在线观看| 亚洲精品成人久久久久久| 精品免费久久久久久久清纯| 人妻制服诱惑在线中文字幕| 一个人观看的视频www高清免费观看| 网址你懂的国产日韩在线| 久久久久国内视频| av福利片在线观看| 毛片一级片免费看久久久久 | 最后的刺客免费高清国语| 白带黄色成豆腐渣| 亚洲欧美日韩卡通动漫| 亚洲av五月六月丁香网| 亚洲国产精品成人综合色| 女同久久另类99精品国产91| 午夜老司机福利剧场| 精品一区二区三区视频在线观看免费| 欧美日韩福利视频一区二区| 此物有八面人人有两片| 久久精品国产99精品国产亚洲性色| 一区福利在线观看| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 可以在线观看毛片的网站| 欧美性猛交╳xxx乱大交人| 在线播放无遮挡| av视频在线观看入口| 欧美区成人在线视频| 午夜精品在线福利| 日韩精品青青久久久久久| 美女高潮的动态| 久久99热这里只有精品18| 国产 一区 欧美 日韩| 日日夜夜操网爽| 亚洲,欧美精品.| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 亚洲,欧美,日韩| 国模一区二区三区四区视频| 身体一侧抽搐| 可以在线观看的亚洲视频| 免费看a级黄色片| 国产单亲对白刺激| av欧美777| 亚洲avbb在线观看| 久久精品久久久久久噜噜老黄 |