• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic polarizabilities of the clock states of Al+

    2022-08-31 09:56:48YuanFeiWei魏遠(yuǎn)飛ZhiMingTang唐志明ChengBinLi李承斌YangYang楊洋YaMingZou鄒亞明KaiFengCui崔凱楓andXueRenHuang黃學(xué)人
    Chinese Physics B 2022年8期
    關(guān)鍵詞:楊洋

    Yuan-Fei Wei(魏遠(yuǎn)飛) Zhi-Ming Tang(唐志明) Cheng-Bin Li(李承斌) Yang Yang(楊洋)Ya-Ming Zou(鄒亞明) Kai-Feng Cui(崔凱楓) and Xue-Ren Huang(黃學(xué)人)

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    2Shanghai EBIT Laboratory,Key Laboratory of Nuclear Physics and Ion-Beam Application(MOE),Institute of Modern Physics,Fudan University,Shanghai 200433,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Key Laboratory of Atom Frequency Standards,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    Keywords: dynamic polarizability,Al+optical clock

    1. Introduction

    Optical frequency standards have important application prospects in local timekeeping,deep space satellite navigation and the test of the fundamental theory of physics.[1–4]In recent years,the optical frequency standards based on neutral atoms or trapped ions have made great development[5–9]and some of them have demonstrated fractional frequency uncertainties of a few parts in 10?18or even 10?19. Among them,the Al+optical clock based on the trapped Al+ion has been well developed in the past decades due to the application of the sympathetic cooling and quantum-logic technologies.[10]In 2010,NIST researchers realized the comparison of two aluminum ion optical clocks and the frequency uncertainty reached 8.6×10?18.[11]They improved their experimental setups in 2019 and achieved the systematic uncertainty of 9.4×10?19.[9]

    The Al+optical clock is working on the highly forbidden 3s21S0–3s3p3Po0transition and the black-body radiation(BBR)shift of this transition is predicted to be very small.[12]Not only the intrinsic characters of Al+,which are insensitive to environmental perturbations,but also the delicate technologies of sympathetic cooling and quantum logic spectroscopy,make the Al+optical clock capable of achieving extreme precisions. To provide the reliable systematic uncertainty budget for the Al+optical clock, all the perturbations to the clock transition should be carefully considered, including the motional effects of the working ions, BBR shift of the clock transitions, frequency shifts due to the external electromagnetic fields,and so on. The BBR shift is generally associated with the differential static polarizabilities of the clock working states.[13]In the Al+clock,Mg+or Ca+is usually adopted for the sympathetic cooling of Al+.[9,11,14]The Doppler cooling laser beam of Mg+or Ca+maintains the Al+–Mg+or Al+–Ca+pair at a constant motional temperature during the clock interrogation pulse. Because it is also shed on the Al+ions,it causes an ac Stark shift to the clock transition,which is associated with the differential dynamic polarizabilities of the clock working states.

    The polarizability of an atomic system describes the distortion in the charge distribution and gives a measure of the energy shift of the atomic system when it is exposed in an electromagnetic field.[12,15]Since precise measurement of polarizabilities is quite challenging,the reliable and accurate theoretical studies of atomic and ionic polarizabilities are of particular interest. In the case of Al+, the previous studies are mainly focused on the static polarizabilities[16–19]to evaluate the BBR contribution to the fractional frequency uncertainty of the clock transtion. Rosenbandet al.used an extrapolation expression to estimate the dynamic polarizabilities of the 3s21S0and 3s3p3Po0states of Al+at the wavelengthλ=1126 nm.[20]Although their results agreed with the later theoretical calculations using the configuration interaction plus core polarization (CICP) method[16]and the configuration interaction plus all-order(CI+all-order)method,[18]the wavelength of the electromagnetic radiation adopted in the extrapolation method is required to be far-detuned from all transitions connecting to either clock states. The study on the dynamic polarizabilities over large range of electromagnetic spectrum of Al+is still scarce. Such study would not only be useful in the potential experiments based on Al+, but also lead to the prediction and identification of the magic wavelengths of Al+clock transition. The magic wavelength for a transition is the wavelength at which the ac Stark shift of the transition energy is zero,[21]and it means that, for the upper and lower energy levels of the transition concerned, the difference of the dynamic polarizabilities is zero. A notable application of the magic wavelengths is the optical lattice clocks operated on the neutral atoms.[1]As for the atomic ions, the magic wavelengths for the 4s1/2–3d5/2transition in Ca+have been observed,and meanwhile the ratio of the matrix elements for the 4s1/2–4p1/2and 4s1/2–4p3/2has been determined.[22]The identification of magic wavelength for ion clock transition pave the milestone for establishing all-optical trapped ion clocks and the precision values of the transition matrix elements extracted from the magic wavelength measurement could be used to improve the precision of the estimation of the BBR shift.

    For these motivations, we made calculations of the dynamic polarizabilities of the 3s21S0and 3s3p3Po0states in Al+based on sum-over-states (SOS) approach. The transition matrix elements were obtained using the method combining configuration interaction and the many-body perturbation theory(CI+MBPT),[23]and the multiconfiguration Dirac–Hartree–Fock (MCDHF) method.[24]A brief introduction of the theoretical methods and computational details is given in Section 2. The computation results of the energy levels,transition matrix elements,polarizabilities and magic wavelengths are given and discussed in Section 3.

    2. Method of calculations

    2.1. Polarizability

    The dynamic electric dipole(E1)polarizability of a quantum stateνin an electromagnetic radiation generally consists of three contributions from scalar, vector and tensor polarizabilities.[25]Both contributions from vector and tensor polarizabilities are related with the magnetic angular momentum quantum numbers of the atomic state. In this work,3s21S0and 3s3p3Po0states in Al+will be considered,and total angular momentum quantum numbersJfor both states are zero. Thus, only the scalar polarizability will be taken into account,and it can be conveniently divided into three parts:

    whereIis the laser intensity, andO(I2) represents the residual high-order Stark shift which is usually small and can be omitted under the weak intensity limit. The frequency shift of a certain transition caused by the electromagnetic field can be written as

    where ?α(ω) is the differential dynamic polarizability of statesκandν. Thus, by ignoring all nonlinear Stark shifts,the magic wavelength can be theoretically given by the condition ?α(ω)=0.[1]

    2.2. CI+MBPT calculations

    In the present work, CI+MBPT calculations are performed to get the energy levels and RMEs for Al+using the program package developed by Kozlovet al.[23]The CI+MBPT method is based on a combination of a conventional configuration interaction (CI) method and many-body perturbation theory (MBPT). The former explicitly contains the interaction between valence electrons, while the latter includes core–core and core–valence correlations. The calculations start from the numerical solution of Hartree–Fock–Dirac(HFD)equations using finite difference method to get singleelectron HFD energies and wavefunctions for the core and valence electrons. Here, 1s–4s, 2p–4p, 3d–4d and 4f orbitals are taken into account in this step. The virtual orbitals are then constructed by an automatic generation subroutine which is embedded in the package. The maximal principal quantum numbernmaxand the maximal orbital quantum numberlmaxare set to be 30 and 4, respectively. The HFD orbitals and the auto-generated virtual orbitals form the basis set (or say,the orbital space)for the later CI and MBPT calculations.The electron configuration of Al+can be treated as a closeshell core [1s22s22p6] and two valence electrons outside the core. The effective Hamiltonian for two valence electrons in the CI+MBPT method can be written as

    where ?h1and ?h2are the single-electron and two-electron interaction terms of the relativistic Hamiltonian, respectively.In the standard CI method, ?h1includes the kinetic energy of the electron, Coulomb interaction with the nucleus and the HFD potential of the close-shell atomic core. The CI space is formed by a set of configuration with all possible single(S)and double(D)excitations of the valence electrons in a given basis set. We first set the basis set of orbitals as{16s, 16p,16d,16f,16g},and then increase it up to{26s,26p,26d,26f,26g}and{29s, 29p, 29d, 29f, 29g}, which leads to the energy change with the expansion of the CI space lower than 0.01% and the matrix elements of the allowed E1 transitions change at most 0.03%. ?h2is the interaction between the valence electrons. In the CI+MBPT procedure,a single-electron operator which represents the correlation interaction of a particular valence electron with the atomic core is added into ?h1.A two-electron operator which represents the screening of the Coulomb interaction between the two valence electrons by the core electrons is added into ?h2. Both additional operators are treated in the second order of MBPT.

    2.3. MCDHF calculations

    To verify the hybrid CI+MBPT calculations,the MCDHF method is used in this work,as it is another form of CI method and based on the variational principle with both expansion coefficients and the orbitals to be variational parameters so that take into account correlations in a different way. The MCDHF calculations in this work are performed using the GRASP2018 package.[24]

    In the MCDHF method, the calculation starts with the many-electron Dirac–Coulomb Hamiltonian

    whereciis expansion(mixing)coefficient,γistands for the remaining quantum numbers of the CSFs. Each CSF is a linear combination of products of one-electron Dirac orbitals.Both mixing coefficients and orbitals are optimized in the selfconsistent field calculation. After a set of orbitals is obtained,the relativistic configuration interaction(RCI)calculations are used to capture more electron correlations. In addition to the Coulomb interactions, our RCI calculations also include the Breit interaction in the low-frequency approximation and the quantum electrodynamic(QED)corrections.

    In the present MCDHF calculations, the CSF space of a specifiedPandJsymmetry is generated following the active set(AS)approach[27,28]by virtual excitations from the orbitals in multireference (MR) configurations to an active set of orbitals. By extending the AS systematically, the CSF space is increased and thereby approaches the complete representation of the ASF with Eq.(7). The ASFs of even and odd states are optimized separately and the MR configuration sets for even and odd parities include

    Initial MCDHF calculations in the RSCF procedure are performed to determine simultaneously all the orbitals of the MR sets without any excitations. Subsequently,the CSFs expansions are obtained through single and double excitations from the orbitals in the MR sets of configurations up to an AS of orbitals withn ≤13,l ≤4. The AS is increased with layer by layer in 8 steps fromn=6 up to 13,i.e.,AS1–AS8,so that the basis set convergence in the calculations can be demonstrated.In each step,only the orbitals in newly added layer are optimized and the other orbitals are kept to be fixed. We treat the orbitals withn ≤2 as the core,and the other orbitals as the valence orbitals. We have allowed single and double excitations from the valence orbitals and single excitations from the core so that both the valence–valence(VV)and core–valence(CV) correlations have been taken into account in the RSCF procedure. In our test calculations,it was found that the contributions from 1s and 2s excitations are not important to the atomic parameters concerned, so these orbitals are kept to be fixed as an inactive core in the final calculational model. The differences between the energy levels obtained with the last two basis set, AS7and AS8, do not exceed 15 cm?1for any level.

    Here we also include higher-order correlation effects with a further extended CSF space enlarged by allowing triple (T)excitations from the orbitals in the MR sets to an ASi(i ≤5)of orbitals obtained in the previous RSCF procedure. It is convenient to define the CSF space in each step of SD-excitations as sdASi(i ≤8) and in each step of SDT-excitations as sdAS8+triASi(i ≤5). The differences between the energy levels obtained with sdAS8+triAS4and sdAS8+triAS5do not exceed 10 cm?1for any level. Therefore, the ASFs for every atomic states concerned are finally expanded with the CSF space sdAS8+triAS5by Eq.(7).

    Once the ASFs are obtained,the multipole-radiative transition matrix element from an initial stateΨ(γPJM)to a final stateΨ(γ′P′J′M′),〈Ψ(γPJM)‖?O(k)‖Ψ(γ′P′J′M′)〉can be obtained.

    3. Results and discussion

    3.1. Energy levels and E1 matrix elements

    In the present work, the energy levels and the E1 transition matrix elements of Al+are calculated using CI+MBPT method and MCDHF method. The computational details of each method are described in Section 2. The results of the excitation energies from the ground 3s21S0state to the low-lying states of Al+obtained using CI+MBPT method with the basis set{29s,29p,29d,29f,29g},and using MCDHF method with sdAS8+triAS5are tabulated in Table 1. It includes 16 odd-parity states with 3s3p, 3s4p, 3s4f and 3s5p configurations, and 17 even-parity states with 3p2, 3s4s, 3s3d, 3s5s,and 3s4d configurations. The final results of both CI+MBPT and MCDHF methods show good agreement with the values listed in National Institute of Standards and Technology(NIST)database.[29]It is noted that the discrepancies between the results of CI+MBPT method and NIST data are below 124 cm?1and the relative deviation to NIST data is lower than 0.13%.The energies of CI+MBPT method using pure CI,CI+MBPT without and with Breit interaction procedures are presented. It shows that the combination of CI and MBPT improves the accuracy notably. Although the double excitations from core orbitals are neglected in our MCDHF calculations,the discrepancies between the calculated excitation energies and NIST data are below 400 cm?1and the relative deviation to NIST data is lower than 0.4%. This shows the importance of the VV and CV correlations in the MCDHF calculations on the transition properties of Al+.The contributions of the triple excitation,Breit interaction,self-energy and vacuum polarization to the final MCDHF results are also listed in the table.

    Table 1. The excitation energies(in cm?1)of the low-lying levels of Al+, obtained by using the CI+MBPT and MCDHF methods and compared with the available values listed in NIST database.[29]T,B.,SE and VP denote the triple excitation,Breit interaction,self-energy and vacuum polarization,respectively.?1 ≡ECI+MBPT+B.?ENIST and ?2 ≡EMCDHF ?ENIST.

    Table 2. The reduced matrix elements of E1 transition for the 3s21S0 and 3s3p3Po0 clock states of Al+,obtained by using the CI+MBPT and MCDHF methods.

    The E1 RMEs involving the 3s21S0and 3s3p3Po0clock states of Al+obtained using CI+MBPT and MCDHF methods are presented in Table 2. The results in both length and velocity gauge are listed. The CI+MBPT results in the length gauge agree well with the counterparts obtained using CI+allorder method.[18]The E1 RMEs involving 3s3p3Po0state of CI+MBPT and MCDHF method in the same gauge have good agreement with each other,and the relative differences are below 2%. The agreement of the E1 RMEs involving 3s21S0state of both methods in the same gauge is not as good as the E1 RMEs involving 3s3p3Po0state and the relative differences span from 0.1% to over 50%. However, we would like to emphasize here that large discrepancies only occur for those RMEs involving weak transitions,which contribute fractionally to the polarizabilities discussed in this work. The discrepancy in the length and velocity gauge of E1 RMEs can be noted for the same theoretical method. Although it can be shown that the length and velocity form of the electric multipole transition operators yield the same line strength for an exact solution in the non-relativistic theory, it is not exactly same in the relativistic Dirac theory.[30,31]It is pointed out that the discrepancies in the length and velocity gauge of the calculated line strengths(SOνκ=|〈ν‖?O‖κ〉|2)for E1 transition is an important uncertainty indicator.[31,32]Thus, we also give the recommended values of E1 RMEs in Table 2, and the uncertainties are given following the above suggestion.

    3.2. Polorizabilities

    The static and dynamic E1 polarizabilities are calculated using Eqs.(1)and(2). The transition energies used in Eq.(2)are cited from NIST data. For the choice of the static polarizability of Al3+core,αcore, Mitroyet al.adopted the value of 0.268 a.u. which is the scaled result obtained from a perturbed HF calculations[16]and Safronovaet al.adopted 0.265 a.u.in their evaluation the BBR shift of the clock transition in Al+using CI+all-order method.[18]We apply the coupled-cluster method with single and double excitations (CCSD) which is implemented in Gaussian09 package[33]associated with a large basis set (aug-cc-pv6z basis set) and get 0.260 a.u. for the Al close-shell core. This result should capture sufficient correlation contribution, but the relativistic effect is absent.In the present work,αcore=0.265(5) a.u. is adopted. Corevalence contributions to the polarizability is usually small,and they are cited from Ref.[18]with a“safe”uncertainty of 50%.The dynamic corrections toαcoreandαcvfollow the extrapolation method used by Breweret al.[9]Static E1 polarizabilities for 3s21S0and 3s3p3Po0states are listed in Table 3. The SOS method is adopted for the polarizability calculations in this work. Our calculated values for the static polarizabilities agree with the results from other theoretical work. The uncertainties for the calculated static polarizabilities come from the uncertainties of the E1 RMEs,core and core-valence contributions. The present differential polarizability also agrees with the experimental result,[9]which is derived from the ac Stark shift measurement using an extrapolation method.

    Table 3.The static E1 polarizabilities(in a.u.)of 3s21S0 and 3s3p3Po0 states in Al+,and the differential polarizabilities.

    The dynamic polarizabilitiesα(ω) of the 3s21S0and 3s3p3Po0states in Al+are shown in Fig. 1. The photon energies of the electromagnetic radiation from 0 to 0.43 a.u.are taken into account, which is equivalent to the wavelength varying from ∞down to 106 nm. Five magic wavelengths of the Al+3s21S0–3s3p3Po0clock transition are identified, as 267.01(10) nm, 183.18(2) nm, 173.68(2) nm, 120.50(2) nm,and 113.33(48)nm. All magic wavelengths are located in the ultraviolet region. In the our numerical procedures,the magic wavelength is obtained when the dynamic differential polarizability ?α(ω)of 3s21S0and 3s3p3Po0states is zero. It can be noted that the core polarizability is same for both clock states and it will not affect the position of the magic wavelength.The uncertainty of the magic wavelength is evaluated by taking account of the uncertainties of the E1 RMEs in the magic wavelength identification procedure.

    The contributions of individual transitions to the static and dynamical polarizabilities of the 3s21S0and 3s3p3Po0states at the magic wavelengths for the 3s21S0–3s3p3Po0clock transition in Al+are tabulated in Table 4. It is noted that the contribution of 3s21S0–3s3p1Po1transition solely dominates the static and the five dynamic polarizabilities of 3s21S0state at the magic wavelengths, and it contributes no less than 92%. For the static and dynamic polarizabilities of 3s3p3Po0state at three magic wavelengths (267.01 nm,183.18 nm and 173.68 nm), the contributions of three transitions, 3s3p3Po0–3s4s3S1, 3s3p3Po0–3p23P1, and 3s3p3Po0–3s3d3D1, are over 95%. Tanget al.suggested that the ratio of two oscillator strengths could be determined via the precision measurement of magic wavelength for Ca+,[34]and it was practiced successfully.[22]By taking similar procedure in Ref. [22] and taking into account the RME of the strongest E1 transition 3s21S0–3s3p1Po1, the measurement on the magic wavelengths of Al+clock transition at 267.01 nm, 183.18 nm, and 173.68 nm would be helpful to obtain three ratios of the E1 RMEs for the four transitions mentioned above, RME(3s21S0–3s3p1Po1):RME(3s3p3Po0–3s4s3S1), RME(3s21S0–3s3p1Po1):RME(3s3p3Po0–3p23P1),and RME(3s21S0–3s3p1Po1):RME(3s3p3Po0–3s3d3D1). It can act as a calibration with the experimental input to the calculated RMEs,and then improve the reliability and the precision of the estimate of the BBR shift for the clock transition.

    Fig.1. The dynamic polarizabilities α(ω)of the 3s21S0 and 3s3p3Po0 states in Al+,in a photon energy of the electromagnetic radiation from 0.0 to 0.43 a.u.,which is equivalent to the wavelength from ∞down to 106 nm. The magic wavelengths are identified by arrows in(b)–(d).

    Table 4. The breakdown of the contributions of individual transitions to the static and dynamical polarizabilities of the 3s21S0 and 3s3p3Po0 states at the magic wavelengths for the 3s21S0–3s3p3Po0 clock transition in Al+. The numbers in parentheses are uncertainties in the digits calculated by adopting the recommended uncertainties of E1 RMEs in the present work.

    Table 5. The differential dynamic polarizabilities(in a.u.) of the clock states in Al+.

    The calculated dynamic polarizabilities can be used to evaluate the ac Stark shifts due to the clock interrogation,cooling,and repumping laser beams of the Al+optical clock.Based on the knowledge of the dynamic prolarizabilities obtained in this work, the calculated differential polarizabilities of the Al+clock transition at several specific wavelengths are given in Table 5. Rosenbandet al.measured the ac Stack shift of the Al+clock transition using an infrared light at 1126 nm[20]and obtained ?α(ω)=1.08(34)a.u.CI+all-order method gives this value as 0.549(55) a.u. and CICP method gives as 0.54(41)a.u. Our result agrees with theirs. Breweret al.obtained ?α(976 nm)=0.499(57)a.u.in their experiment and our result also agree with it. The wavelength of the clock interrogation beam is 267.4 nm. The cooling (397 nm) and repumping beams (866 nm) are kept on in same experiments to maintain a stable cooling.[35]According to the data in Table 5 and assuming all the laser beams to be Gaussian beams,the contributions of ac Stark shift to the fractional frequencey shift (?νac-Stark/νclock) of Al+clock transition at 267.4, 397 and 866 nm are (1.54±1.21)×10?20?I, (5.74±8.61)×10?20?I,and(2.98±7.28)×10?21?I,respectively,where the effective intensity ?I=P/r2,Pis the power of the laser in units of W andris the radius of beam waist in units of m.

    4. Conclusions

    In summary, the dynamic polarizabilities of 3s21S0and 3s3p3Po0states in Al+are calculated using CI+MBPT and MCDHF methods in this work. The magic wavelengths for the Al+clock transition 3s21S0–3s3p3Po0are identified. All the magic wavelengths predicted in this work are in the ultraviolet region. The potential precision measurement on these magic wavelengths of Al+near 267 nm,183 nm and 173 nm would be useful to extract the ratios of several certain transition matrix elements with high accuracy,and then to improve the precision of the estimate of the BBR shift for the Al+clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated using the knowledge of the calculated dynamic polarizabilities, which are useful to assess the ac Stark shift of the Al+clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.

    Acknowledgements

    The authors would like to thank Professor M. G. Kozlov and Dr. Y. M. Yu for the helpful assistance on the use of CI-MBPT package. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, and U1732140), the National Key Research and Development Program of China(Grant Nos. 2017YFA0304401 and 2017YFA0304402), and Technical Innovation Program of Hubei Province, China(Grant No.2018AAA045).

    猜你喜歡
    楊洋
    “不及格”
    做人與處世(2022年6期)2022-05-26 10:26:35
    詩與遠(yuǎn)方
    新唱黃楊扁擔(dān)
    Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis*
    陪父親跑步
    小小說月刊(2018年2期)2018-02-07 15:39:27
    Why Should We Teach Languages
    楊洋:安靜持久的發(fā)光體
    愛吃零食的小白兔
    深爱激情五月婷婷| 九九爱精品视频在线观看| 国产日韩欧美在线精品| 国产黄片美女视频| av免费观看日本| 噜噜噜噜噜久久久久久91| 久久久色成人| 欧美一级a爱片免费观看看| 亚洲经典国产精华液单| 国产一区二区三区av在线| 免费不卡的大黄色大毛片视频在线观看| 久久6这里有精品| 国产 精品1| 成人美女网站在线观看视频| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 狂野欧美激情性bbbbbb| 国产精品国产av在线观看| 午夜福利网站1000一区二区三区| 欧美精品国产亚洲| 18禁裸乳无遮挡免费网站照片| 国产深夜福利视频在线观看| 欧美最新免费一区二区三区| 国产成人免费观看mmmm| 免费观看的影片在线观看| 九九爱精品视频在线观看| 九草在线视频观看| 日韩精品有码人妻一区| 一区二区三区免费毛片| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱| 男女边摸边吃奶| 2018国产大陆天天弄谢| 在现免费观看毛片| 国产av一区二区精品久久 | 观看美女的网站| 久久久久性生活片| 国产成人freesex在线| 在线观看免费日韩欧美大片 | 丰满人妻一区二区三区视频av| 六月丁香七月| 一个人免费看片子| 亚洲电影在线观看av| 亚洲美女视频黄频| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 日本-黄色视频高清免费观看| 成人亚洲精品一区在线观看 | 22中文网久久字幕| 国产精品av视频在线免费观看| 亚洲第一区二区三区不卡| 亚洲天堂av无毛| 日本猛色少妇xxxxx猛交久久| 精品少妇久久久久久888优播| 丰满少妇做爰视频| 三级国产精品片| 老师上课跳d突然被开到最大视频| 久久久欧美国产精品| 人妻制服诱惑在线中文字幕| 精品熟女少妇av免费看| 内地一区二区视频在线| 国产一级毛片在线| 国产69精品久久久久777片| 97在线人人人人妻| 蜜桃在线观看..| 日韩,欧美,国产一区二区三区| 男女免费视频国产| av免费观看日本| 啦啦啦在线观看免费高清www| 少妇裸体淫交视频免费看高清| 99久久精品国产国产毛片| 天堂俺去俺来也www色官网| 极品少妇高潮喷水抽搐| 国产av一区二区精品久久 | 国产午夜精品久久久久久一区二区三区| 久久99热这里只有精品18| 2018国产大陆天天弄谢| 国精品久久久久久国模美| 精品久久久久久久末码| 成年人午夜在线观看视频| 中文字幕亚洲精品专区| 在线观看免费视频网站a站| 看免费成人av毛片| 日本黄大片高清| 黄片无遮挡物在线观看| 七月丁香在线播放| 在线观看国产h片| 大片免费播放器 马上看| 国产淫片久久久久久久久| 国产精品国产三级国产专区5o| 在线亚洲精品国产二区图片欧美 | 一级a做视频免费观看| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 亚洲国产成人一精品久久久| 成人美女网站在线观看视频| 久久av网站| 免费观看av网站的网址| 天堂中文最新版在线下载| 亚洲av中文av极速乱| 日韩伦理黄色片| 七月丁香在线播放| 18禁在线播放成人免费| 国产在视频线精品| 毛片女人毛片| 精品一区二区三区视频在线| 超碰97精品在线观看| 欧美日韩亚洲高清精品| 中文在线观看免费www的网站| 国产精品麻豆人妻色哟哟久久| 在线播放无遮挡| .国产精品久久| 亚洲精品自拍成人| 亚洲av成人精品一二三区| 夫妻午夜视频| 一区二区三区四区激情视频| 夜夜骑夜夜射夜夜干| 国产一级毛片在线| 人妻 亚洲 视频| 女性生殖器流出的白浆| 亚洲第一区二区三区不卡| 国产午夜精品久久久久久一区二区三区| 99久久精品热视频| 国产精品欧美亚洲77777| 国产成人免费无遮挡视频| 国内精品宾馆在线| 热re99久久精品国产66热6| 新久久久久国产一级毛片| 91精品一卡2卡3卡4卡| 插逼视频在线观看| 亚洲美女黄色视频免费看| 亚洲自偷自拍三级| 亚洲精品国产成人久久av| 精品久久久久久久末码| 久久精品国产亚洲网站| 一级爰片在线观看| 国产精品.久久久| av网站免费在线观看视频| 国内揄拍国产精品人妻在线| 各种免费的搞黄视频| 我要看日韩黄色一级片| 精品一区二区三区视频在线| 日韩电影二区| 午夜福利在线观看免费完整高清在| 亚洲av欧美aⅴ国产| 汤姆久久久久久久影院中文字幕| 久久99精品国语久久久| 哪个播放器可以免费观看大片| 2022亚洲国产成人精品| 国产精品成人在线| 国产一区二区三区av在线| 久久99热这里只有精品18| 九色成人免费人妻av| 精品国产乱码久久久久久小说| 男女边摸边吃奶| 黄色一级大片看看| 午夜福利在线观看免费完整高清在| 天天躁夜夜躁狠狠久久av| 肉色欧美久久久久久久蜜桃| 男女边摸边吃奶| 欧美亚洲 丝袜 人妻 在线| 婷婷色麻豆天堂久久| 久久精品人妻少妇| 一区在线观看完整版| 成人黄色视频免费在线看| av国产免费在线观看| www.色视频.com| av国产免费在线观看| 1000部很黄的大片| 久久久午夜欧美精品| 亚洲天堂av无毛| 国产精品av视频在线免费观看| 国产精品欧美亚洲77777| 一级毛片电影观看| 国产精品欧美亚洲77777| 18禁在线播放成人免费| 亚洲精品国产av成人精品| 在现免费观看毛片| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 精品亚洲成国产av| 赤兔流量卡办理| 九草在线视频观看| 寂寞人妻少妇视频99o| 亚洲精品乱码久久久久久按摩| 国产一区二区三区av在线| 亚洲精品乱久久久久久| 伦理电影免费视频| 国产成人免费无遮挡视频| 能在线免费看毛片的网站| 最近的中文字幕免费完整| 97精品久久久久久久久久精品| 国产美女午夜福利| 老司机影院成人| 三级国产精品片| 久久久久久人妻| 中文字幕人妻熟人妻熟丝袜美| 80岁老熟妇乱子伦牲交| 欧美激情国产日韩精品一区| 亚洲av二区三区四区| 国产精品久久久久久久电影| 这个男人来自地球电影免费观看 | 国内少妇人妻偷人精品xxx网站| 最黄视频免费看| 久久ye,这里只有精品| 日本爱情动作片www.在线观看| 能在线免费看毛片的网站| 国产中年淑女户外野战色| 婷婷色av中文字幕| av在线老鸭窝| 亚洲国产日韩一区二区| av在线蜜桃| 在线观看免费日韩欧美大片 | 蜜桃久久精品国产亚洲av| 国产午夜精品一二区理论片| 亚洲色图av天堂| 伊人久久精品亚洲午夜| 国产爱豆传媒在线观看| 一本色道久久久久久精品综合| 啦啦啦中文免费视频观看日本| 少妇 在线观看| 欧美97在线视频| 亚洲欧美精品自产自拍| 日韩三级伦理在线观看| 亚洲高清免费不卡视频| 国产精品伦人一区二区| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 大码成人一级视频| 亚洲综合精品二区| 新久久久久国产一级毛片| 人体艺术视频欧美日本| 91aial.com中文字幕在线观看| 九色成人免费人妻av| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡动漫免费视频| 亚洲va在线va天堂va国产| 国产爽快片一区二区三区| 插逼视频在线观看| 亚洲精品国产成人久久av| 亚洲精品日本国产第一区| 亚洲国产精品国产精品| 人妻一区二区av| 免费观看av网站的网址| 中文欧美无线码| 亚洲自偷自拍三级| 欧美zozozo另类| 亚洲精品第二区| videos熟女内射| 久久久欧美国产精品| 国产有黄有色有爽视频| 亚洲天堂av无毛| 国国产精品蜜臀av免费| 午夜福利影视在线免费观看| 亚洲精品456在线播放app| 99热这里只有是精品50| h日本视频在线播放| 中文字幕av成人在线电影| 我的女老师完整版在线观看| 一区二区三区四区激情视频| 久久精品国产亚洲网站| 国产乱人偷精品视频| 国产在线男女| 日本免费在线观看一区| 看非洲黑人一级黄片| 偷拍熟女少妇极品色| 日韩亚洲欧美综合| 亚洲成人一二三区av| 成人综合一区亚洲| 黄色一级大片看看| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 啦啦啦视频在线资源免费观看| 麻豆精品久久久久久蜜桃| av在线老鸭窝| 网址你懂的国产日韩在线| 日本av免费视频播放| 亚洲欧美一区二区三区国产| 亚洲不卡免费看| 一个人免费看片子| 久久人妻熟女aⅴ| 搡女人真爽免费视频火全软件| 激情 狠狠 欧美| 水蜜桃什么品种好| 中文字幕久久专区| 熟女电影av网| 日本与韩国留学比较| 国产亚洲91精品色在线| 女人十人毛片免费观看3o分钟| 国产精品国产三级国产专区5o| 国产免费又黄又爽又色| 岛国毛片在线播放| 欧美精品一区二区免费开放| 2018国产大陆天天弄谢| 亚洲综合精品二区| 狠狠精品人妻久久久久久综合| 日韩成人伦理影院| 国产爱豆传媒在线观看| 亚州av有码| 王馨瑶露胸无遮挡在线观看| 美女视频免费永久观看网站| 欧美日本视频| 亚洲精品视频女| 亚洲欧洲日产国产| 一本久久精品| 99久久人妻综合| 国产成人freesex在线| 男的添女的下面高潮视频| av免费在线看不卡| 欧美成人a在线观看| 久热久热在线精品观看| 日韩在线高清观看一区二区三区| av在线蜜桃| 爱豆传媒免费全集在线观看| 久久国产亚洲av麻豆专区| 美女高潮的动态| kizo精华| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 精品久久久精品久久久| 午夜精品国产一区二区电影| 看免费成人av毛片| 日韩制服骚丝袜av| 精品久久久精品久久久| 中文字幕制服av| 亚洲国产精品999| 国产黄频视频在线观看| 亚洲av电影在线观看一区二区三区| 中文字幕精品免费在线观看视频 | 亚洲精品成人av观看孕妇| 日韩电影二区| 日韩欧美 国产精品| 国产一区亚洲一区在线观看| 久久午夜福利片| 新久久久久国产一级毛片| 大陆偷拍与自拍| 又大又黄又爽视频免费| 毛片一级片免费看久久久久| 99热这里只有精品一区| 岛国毛片在线播放| 久久久久精品久久久久真实原创| 亚洲精品久久午夜乱码| 亚洲av综合色区一区| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| 夫妻午夜视频| 麻豆乱淫一区二区| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 成人特级av手机在线观看| 日韩免费高清中文字幕av| 日本欧美视频一区| 中文天堂在线官网| 免费久久久久久久精品成人欧美视频 | 国产精品蜜桃在线观看| 国产伦在线观看视频一区| 只有这里有精品99| 天美传媒精品一区二区| 中文字幕制服av| 成人免费观看视频高清| 亚洲av.av天堂| 欧美xxxx黑人xx丫x性爽| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 最黄视频免费看| 男男h啪啪无遮挡| 美女高潮的动态| 欧美激情极品国产一区二区三区 | 久久国产乱子免费精品| 国产免费视频播放在线视频| 99久久人妻综合| 大话2 男鬼变身卡| 亚洲欧洲日产国产| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 26uuu在线亚洲综合色| 18禁在线无遮挡免费观看视频| 久久久久久久亚洲中文字幕| 久久久久久九九精品二区国产| 久久ye,这里只有精品| 免费看日本二区| h日本视频在线播放| 我的女老师完整版在线观看| 男人爽女人下面视频在线观看| 99久久精品一区二区三区| 一区二区三区精品91| 国精品久久久久久国模美| 日日啪夜夜爽| 在线看a的网站| 久久影院123| 欧美3d第一页| 波野结衣二区三区在线| 日韩大片免费观看网站| 老司机影院成人| 久久久精品免费免费高清| 国产精品无大码| 久久韩国三级中文字幕| 乱码一卡2卡4卡精品| 午夜福利网站1000一区二区三区| av一本久久久久| 免费少妇av软件| 午夜福利网站1000一区二区三区| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 插逼视频在线观看| 国国产精品蜜臀av免费| 亚洲精品中文字幕在线视频 | 天堂俺去俺来也www色官网| 黄色一级大片看看| 99热网站在线观看| 中文乱码字字幕精品一区二区三区| 亚洲,欧美,日韩| 久久99热这里只有精品18| 国产淫片久久久久久久久| 内射极品少妇av片p| 在线观看一区二区三区| 丰满少妇做爰视频| 免费看不卡的av| 一区二区av电影网| 国产精品久久久久久精品电影小说 | 亚洲成人av在线免费| 一级a做视频免费观看| 嘟嘟电影网在线观看| 波野结衣二区三区在线| 一级片'在线观看视频| 亚洲精品中文字幕在线视频 | 国产深夜福利视频在线观看| 1000部很黄的大片| 天堂8中文在线网| 老师上课跳d突然被开到最大视频| 国产爱豆传媒在线观看| 国精品久久久久久国模美| 国产色婷婷99| 国产精品无大码| 一级毛片我不卡| 欧美日本视频| 亚洲综合色惰| 久久99热6这里只有精品| av福利片在线观看| 麻豆国产97在线/欧美| 中文字幕制服av| 久久热精品热| 少妇猛男粗大的猛烈进出视频| 成人午夜精彩视频在线观看| 在线观看免费日韩欧美大片 | 国产精品.久久久| 国产亚洲午夜精品一区二区久久| 亚洲精品456在线播放app| 久久久午夜欧美精品| 亚洲va在线va天堂va国产| 国产淫语在线视频| 欧美精品一区二区免费开放| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡 | 国产精品人妻久久久影院| 免费黄色在线免费观看| 少妇人妻 视频| 春色校园在线视频观看| 久久亚洲国产成人精品v| 成人国产av品久久久| 久久久久精品久久久久真实原创| 亚洲精品日本国产第一区| 国产成人精品福利久久| 国产精品欧美亚洲77777| 欧美高清性xxxxhd video| 国产爱豆传媒在线观看| 91精品国产国语对白视频| 亚洲人成网站在线观看播放| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 色网站视频免费| 丰满迷人的少妇在线观看| 在线观看一区二区三区激情| 久久国产乱子免费精品| 亚洲国产精品成人久久小说| 黄色日韩在线| 一级毛片久久久久久久久女| 国产色婷婷99| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 18禁在线播放成人免费| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说 | 国产精品国产三级专区第一集| videossex国产| 日韩在线高清观看一区二区三区| 亚洲精品乱久久久久久| 极品教师在线视频| 亚洲av中文av极速乱| 日本一二三区视频观看| 国产伦在线观看视频一区| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 午夜日本视频在线| 婷婷色综合www| 国产精品.久久久| 国产亚洲午夜精品一区二区久久| 又爽又黄a免费视频| 亚洲天堂av无毛| 国产精品一区www在线观看| 成人免费观看视频高清| 超碰av人人做人人爽久久| 国产成人精品一,二区| 亚洲怡红院男人天堂| 日韩一区二区三区影片| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 高清av免费在线| 国产日韩欧美亚洲二区| 久久精品国产自在天天线| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 丰满少妇做爰视频| 免费看光身美女| 国产精品一区二区在线不卡| 成人综合一区亚洲| 色吧在线观看| av在线app专区| 看非洲黑人一级黄片| 久久99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 夜夜骑夜夜射夜夜干| 亚洲经典国产精华液单| 久久97久久精品| 久久精品国产亚洲av涩爱| 成人无遮挡网站| 亚洲国产日韩一区二区| 日韩强制内射视频| 成人午夜精彩视频在线观看| 亚州av有码| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 中文天堂在线官网| 中文乱码字字幕精品一区二区三区| 天堂中文最新版在线下载| 久久午夜福利片| 欧美激情极品国产一区二区三区 | 在线观看美女被高潮喷水网站| 日韩欧美一区视频在线观看 | 日本猛色少妇xxxxx猛交久久| tube8黄色片| 成人国产av品久久久| 一级毛片电影观看| 久久精品熟女亚洲av麻豆精品| 高清av免费在线| 中文字幕久久专区| 各种免费的搞黄视频| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 中文字幕免费在线视频6| 99热国产这里只有精品6| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 91精品国产九色| 日本色播在线视频| 婷婷色av中文字幕| 久久99蜜桃精品久久| 午夜激情福利司机影院| 国产黄色免费在线视频| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| a级毛色黄片| 午夜福利在线在线| 妹子高潮喷水视频| 深夜a级毛片| 午夜精品国产一区二区电影| 国内揄拍国产精品人妻在线| 中文字幕免费在线视频6| www.色视频.com| 老女人水多毛片| 亚州av有码| 精品一区二区三卡| 久久久国产一区二区| 青春草视频在线免费观看| 精品久久国产蜜桃| 小蜜桃在线观看免费完整版高清| 激情五月婷婷亚洲| 国产精品不卡视频一区二区| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 少妇猛男粗大的猛烈进出视频| 人体艺术视频欧美日本| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 丝袜脚勾引网站| 亚洲精品乱码久久久久久按摩| 秋霞在线观看毛片| 国产精品偷伦视频观看了| 免费看日本二区| 在线观看一区二区三区| 直男gayav资源| 美女国产视频在线观看| 97在线人人人人妻| 97超视频在线观看视频| 美女中出高潮动态图| 免费av中文字幕在线| 伦精品一区二区三区| 女人十人毛片免费观看3o分钟| 国产成人精品福利久久| 国产精品久久久久久av不卡| 波野结衣二区三区在线| 久久午夜福利片| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 国产精品不卡视频一区二区| 国产精品欧美亚洲77777|