• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters

    2022-08-23 02:17:56ElSayedElkenawyAbdelhameedIbrahimSeyedaliMirjaliliYuDongZhangShaimaElnazerandRokaiaZaki
    Computers Materials&Continua 2022年6期

    El-Sayed M.El-kenawy,Abdelhameed Ibrahim,Seyedali Mirjalili,Yu-Dong Zhang,Shaima Elnazer and Rokaia M.Zaki

    1Department of Communications and Electronics,Delta Higher Institute of Engineering and Technology,Mansoura,35111,Egypt

    2Faculty of Artificial Intelligence,Delta University for Science and Technology,Mansoura,35712,Egypt

    3Computer Engineering and Control Systems Department,Faculty of Engineering,Mansoura University,Mansoura,35516,Egypt

    4Centre for Artificial Intelligence Research and Optimization,Torrens University Australia,Fortitude Valley,QLD 4006,Australia

    5Yonsei Frontier Lab,Yonsei University,Seoul,03722,Korea

    6School of Computing and Mathematical Sciences,University of Leicester,Leicester,LE1 7RH,UK

    7Nile Higher Institute for Engineering and Technology,Mansoura,Egypt

    8Computer and Information Technology College,Taif University,Taif,Saudi Arabia

    9Higher Institute of Engineering and Technology,Kafrelsheikh

    10Department of Electrical Engineering,Shoubra Faculty of Engineering,Benha University,Egypt

    Abstract: Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas.Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna.Support Vector Machines (SVM),Random Forest, K-Neighbors Regressor, and Decision Tree Regressor were utilized as the basic models.The Adaptive Dynamic Polar Rose Guided Whale Optimization method, named AD-PRS-Guided WOA, was used to pick the optimal features from the datasets.The suggested model is compared to models based on five variables and to the average ensemble model.The findings indicate that the presented model using Random Forest results in a Root Mean Squared Error(RMSE)of(0.0102)for bandwidth and RMSE of(0.0891)for gain.This is superior to other models and can accurately predict antenna bandwidth and gain.

    Keywords:Metamaterial antenna;machine learning;ensemble model;feature selection;guided whale optimization;support vector machines

    1 Introduction

    Metamaterials are materials with special physical properties that cannot be reproduced using natural materials, and so metamaterials are popular materials in today’s world and are frequently used in many fields, such as microwave invisibility cloaks, invisible submarines, revolutionary electronics, microwave components, as filters, and antennas that are compact, efficient, and have a negative refractive index.One of its most important uses is the design of antennas made possible by metamaterials[1–3].

    This is due to the fact that metamaterials have unique properties,and as a result,we may construct antennas with innovative features that standard materials cannot provide.One or more layers of metamaterials may be utilized as a substrate or in addition to the antenna design in order to boost the system’s capabilities.Even if a compact antenna with low cost and high efficiency is desired,a slightly larger antenna that costs less money and has better efficiency is the best option.The metamaterial may help increase the bandwidth and gain of tiny antennas.Another advantage is that it reduces their electrical size,but the ability to direct a signal increases.In the case of smaller antennas,metamaterial antennas provide an advantage over traditional antennas since they have more bandwidth[4,5].

    Simulation software is used to estimate the metamaterial effect.The CST Microwave Studio(CST MWS) is an example of a software program that simulates electromagnetic simulations [6].Antenna characteristics like bandwidth,gain,Voltage Standing Wave Ratio(VSWR),and return loss may be calculated after the simulation.In the simulation phase, researchers may make adjustments in Metamaterial Antenna, beginning with trial and error to get the set of antenna characteristics.The amount of time it will take to finish this procedure is completely unpredictable.They are using a machine learning model to estimate antenna characteristics.Numerous studies have examined machine learning applications in antenna design.Machine learning is anticipated to speed the antenna design process while retaining high accuracy, minimizing errors, saving time, and the ability to forecast the antenna behavior, improve computing efficiency, and decrease the number of required simulations[7–9].

    Optimization is the study of finding optimal solutions to problems.Because optimization issues are complex and grow with time,we resort to improved optimization algorithms[10–13].Metaheuristic algorithms are an excellent option for tackling complex issues that are difficult to solve with conventional techniques.Algorithms start with a random population and pass on the best to the next generation.Metaheuristic algorithms are dynamic and widely looking for a solution[14–17].

    In this paper,an Antenna-derived metamaterial ensemble model is presented as a way to estimate the bandwidth and gain of the Antenna.Of the basic models, we utilise Support Vector Machines(SVM) [18,19], Random Forest [20], K-Neighbors Regressor [21,22], and Decision Tree Regressor[23]to be compared with the presented method.Ensemble model is optimized using an optimization method to identify the optimum features based on the adaptive dynamic polar rose guided whale optimization(AD-PRS-Guided WOA)[24]algorithm.A regression analysis using the suggested model indicated that it was superior to the other models,predicting antenna bandwidth and gain efficiencies.

    The structure of this work is organized as follows:Section 2 presents a literature review.Section 3 describes data preparation and the suggested ensemble model in detail.Section 4 displays results and discussion.The last section of the given study(Section 5)examines the conclusion.

    2 Literature Review

    In general, the following steps can be taken to incorporate machine learning into the antenna design problem.The electromagnetic properties of an antenna are first determined via a series of simulations.These attributes are then saved in a database and used to train a machine learning system.Finally,the algorithm determines the Antenna that produces the closest results based on the designer’s requirements.

    2.1 Machine Learning Models

    Machine learning is a technique that relies on algorithms which can learn from data without the need of pre-programming.It can be classified into three types,named supervised,unsupervised and reinforcement learning.To attain high performance in Artificial Neural Networks(ANN),extensive interconnections of“neurons,”which are basic processing cells,are used.When complicated functions with many characteristics are discovered, neural networks provide an alternative method for doing machine learning.Multiple layers comprise neural networks: an input layer, an output layer, and hidden layers between the input and output layers[25].The SVM method is another kind of algorithm for guided learning.It is mainly used in classification and employs kernel techniques to scope with a challenging situation of non-linearly separable patterns.K-Nearest Neighbors (KNN) is considered to be one of the simplest machine learning methods available.After remembering the training set,the algorithm predicts the outcome of each new input using the outputs of its nearest neighbors in the training set.

    Machine learning algorithms have been applied in smart grid networks,where machine learning can be used to anticipate malicious events,communication technology,including antenna selection in wireless communications,wireless networks,where machine learning can be used to forecast wireless users’mobility patterns and content requests,and speech recognition.A technique for using machine learning in antenna design is to train a learning algorithm on data from prior simulations in order to improve the antenna parameters.

    Metaheuristic algorithms solve unexpected issues since they are intelligent and have prior knowledge of random search.These algorithms are either flexible, simple, or able to avoid local perfection.Exploration and exploitation are two elements of population-based heuristic algorithms.The metaheuristic algorithm here selects between Exploration and exploitation.While exploring, the technique examines the search space thoroughly.The area’s local search is currently at the exploitation stage.Several global optimization methods inspired by nature have been developed in recent decades.Population-based metaheuristics, often known as general-purpose algorithms, may be utilized in a variety of situations.Metaheuristics are split into two types:metaphor-based and non-metaphor based.In contrast, metaphors employ algorithms to represent natural phenomena or human behavior in contemporary life[26].

    2.2 Feature Selection

    All machine learning processes rely on feature engineering, which entails the extraction and selection of features, which are critical components of contemporary machine learning pipelines.Despite the fact that feature extraction and feature selection procedures overlap in certain ways,these words are often used interchangeably.Feature extraction is the process of extracting additional variables from raw data in order to make machine learning algorithms function.The feature selection method is focused on identifying the characteristics that are the most consistent,meaningful,and nonredundant.The feature selection issue is unique in that the search space is constrained to two binary values: 0 and 1.As a result, the continuous version of an optimizer should be used and updated to function correctly to address this issue.This method is considered in order to transform the suggested continuous values of AD-PRS-Guided WOA algorithm to binary values,allowing it to be utilised to solve the issue of feature selection.To transform, the Sigmoid form converts continuous values to binary values.

    3 The Proposed Ensemble Model

    Ensemble techniques are getting preferred in addressing various artificial intelligence issues.The average ensemble is among the most basic ensemble strategies that integrate base regressors’outputs and compute the mean.This method aggregates the outcome of various regressors as well as determines the mean value.In this paper,the average ensemble is employed as a reference set version to review the efficiency of the suggested ensemble model.As shown in Fig.1,the presented ensemble model is based on the stages of preprocessing, feature selection and optimized ensemble algorithm for both bandwidth and gain prediction.Ensemble model instead of selecting one ideal version from the candidates combines all the designs by assigning weight to every model.The Ensemble technique is verified as one of the significant methods in enhancing the prescient capability of conventional versions.The ensemble model typically has two stages wherein the first stage,the outcome variable of the best ensemble member,is picked to obtain the final forecast.The second stage blends the ensemble members’output variables using the mixed formula[27].

    Figure 1: The presented ensemble model based on the stages of preprocessing, feature selection and optimized ensemble algorithm for both bandwidth and gain prediction

    3.1 Data Preprocessing

    The dataset utilised in this study includes eleven Metamaterial Antenna characteristics.The dataset was obtained through Kaggle [28].There are 572 records in this collection.Each record contains the following information about the metamaterial antenna:the width and height of the split ring resonator,the distance between rings,the width of the rings,the gap between the rings,the distance between the antenna patch and the array, the number of split ring resonator cells in the array, the gain of the Antenna,the distance between split ring resonator cells in the array,the bandwidth of the Antenna,and the return.Tab.1 summarises the dataset’s characteristics.These characteristics will be utilised to estimate the Antenna’s bandwidth using a machine learning algorithm, and Fig.2 shows the distribution of bandwidth and gain feature.

    Table 1: Description of features of the dataset[28]

    Figure 2:Distribution of bandwidth and gain feature

    The first step is to format the nulls,the second step is to filter out null values,and the third step is to deal with nulls using a formula.Min-max normalisation is one of the most frequently used methods of data normalising.For each feature,the lowest value is converted to a 0,the highest value is converted to a 1,and all other values are converted to a decimal between 0 and 1.The dataset’s correlation matrix,as shown in Fig.3,Wmandtmare strongly correlated with the bandwidth.

    Figure 3:Correlation of metamaterial antenna

    3.2 The AD-PRS-Guided WOA Algorithm

    The AD-PRS-Guided WOA algorithm was first proposed in [24].A binary version of the ADPRS-Guided WOA algorithm is used to select the ideal attributes from the datasets to offer an optimal ensemble design for predicting the bandwidth and gain of the Metamaterial Antenna.The algorithm can check out the search space successfully to improve exploration efficiency.The algorithm also uses three arbitrary solutions as it makes use of significant change to transform between exploration and exploitation processes.According to the most effective remedy,it also calculates a listing of generated walks in a diffusion process as a polar increased feature.The AD-PRS-Guided WOA algorithm is shown in Algorithm 1.

    The updating positions mechanism of the algorithm of AD-PRS-Guided WOA is modified to follow three random solutions ofXo1,Xo2andXo3.These solutions are updated every iteration to enhance the algorithm performance and get the optimal solution.

    whereX(t+1)is the updated solution in iterationt+1 andX(t)is the current solution at iterationt.Qis the optimal solution.w1,w2andw3are random values in[0,0.5],[0,1],and[0,1],respectively.zis updated asz=fortiteration andtmas maximum iterations.

    The algorithm gets the best solution related to the calculated best fitness value.Then, the individuals are split into exploration groups and exploitation groups.Individuals in the exploitation group are moving to the leaders, and individuals in the exploration group are searching for leaders.Individuals in the sub-groups are changed dynamically.For balancing purposes,the algorithm divides the population into(50/50)for the two groups.

    In the algorithm,the polar rose function is used to search the leaders’purpose to find other good solutions.Based on different values of the main parameters of this function namedaandb, Fig.4 shows the output of the polar rose function.The polar rose function is calculated as follows to search around the best solution.

    whereX(t+1)is the updated solution in iterationt+1.Theaandbparameters are within[-10,10]and 0 ≤θ≤12π.kis calculated as

    Figure 4:Changing the values of a and b to generate different polar rose function outputs

    um iterations itersmax.5:Set Q=best agent position 6:while t ≤itersmax do 7: for(i=1:i ≤n)do 8: Select three random solutions Xo1,Xo2,and Xo3 9: Set z=1-images/BZ_804_607_2563_638_2609.png t itersmaximages/BZ_804_779_2563_810_2609.png2(Continued)

    Algorithm 1:Continued 10: Update position of current search agent as X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1-z)*w3*(Q-X(t))11: end for 12: Update Solutions in exploration group(n1)and exploitation group(n2)13: if(Best Fn is same for three iterations)then 14: Increase solutions of exploration group(n1)15: Decrease solutions of exploitation group(n2)16: end if 17: for(i=1:i ≤n1)do(exploration group update)18: update three random solutions Xo1,Xo2,Xo3,and Q(The best solutions were elitism)19: if(Q <Any of the best solutions)then 20: Mutate the solution by X(t+1)=k+images/BZ_805_803_1106_834_1152.png∑Xo1+Xo2+Xo3 ezkimages/BZ_805_1192_1106_1223_1152.png, k=2- 2×t2(itersmax)2 21: else 22: Update agent position by X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1–z)*w3*(Q-X(t))23: end if 24: end for 25: for(i=1:i ≤n2)do(exploitation group update)26: update three random solutions Xo1,Xo2,Xo3,and Q(The best solutions were elitism)27: if(Q <Any of the best solutions)then 28: Move towards the best solution by X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1-z)*w3*-(Q-X(t))29: else 30: Search around the best solution X(t+1)=k sinimages/BZ_805_913_1905_938_1951.pngaimages/BZ_805_996_1905_1021_1951.pngbθ 31: end if 32: end for 33: Amend solutions 34: Update fitness 35: end while 36: Return best agent Q

    3.3 The Binary AD-PRS-Guided WOA Algorithm

    The output solution is updated to a binary solution using (0 or 1) in case of a feature selection problem.The sigmoid function is used in this paper to update the continuous solutions of the optimizer’s output into binary solutions,as shown in Algorithm 2.

    Algorithm 2:Binary AD-PRS-Guided WOA Algorithm 1: Set AD-PRS-Guided WOA population,parameters,configuration.2: Convert solutions to binary[0,1]3: Calculate objective function and select best solutions 4: Train k-NN and calculate error 5: while t ≤itersmax do 6: Apply AD-PRS-Guided WOA algorithm 7: Convert updated solution to binary 8: Calculate fitness 9: Update parameters 10: end while 11: Return best solution

    4 Results and Discussion

    The results in this section are explained as follows.The results, based on the Decision Tree,Multilayer Perceptron(MLP),KNN,Support Vector Regression(SVR),Random Forest,regressors in addition to the Average Ensemble and the proposed Ensemble model based on Random Forest regressor, before applying the feature selection technique are discussed.Then the results are shown after using feature selection to deliver the performance of the proposed model.Tab.2 shows the configuaration of the AD-PRS-Guided WOA algorithm.

    Table 2: Configuration of the AD-PRS-Guided WOA algorithm

    4.1 Performance Metrics

    The performance metrics used in this work are Root Mean Squared Error (RMSE), Mean Absolute Error(MAE),Mean Absolute Error(MBE),and the correlation coefficient(r)[22].Tab.3 shows the different performance metrics whereHp,iindicates a predicted value,Hirepresents the observed value,andnis the total number of observations.andindicate the average predicted and observed values,respectively.

    Table 3: Performance metrics for classification[22]

    4.2 Results Before Applying Feature Selection

    The results based on the bandwidth features of the tested dataset before applying the feature selection technique are shown in Tab.4.Tab.4 shows that the proposed Ensemble model using Random Forest results based on the bandwidth features of RMSE of (0.0320), MAE of (0.0231),MBE of (-0.0069), and r of (0.9752) are better than other compared models.The results using the gain features of the dataset before applying the feature selection are shown in Tab.5.

    Table 4: Results based on the bandwidth features of the dataset before applying feature selection

    Table 5: Results based on the gain features of the dataset before applying feature selection

    Tab.5 shows that the proposed Ensemble model using Random Forest results based on the gain features of RMSE of(0.0982),MAE of(0.0231),MBE of(-0.0152),and r of(0.9165)are better than other compared models.Fig.5 shows the actual and the predicted values for the bandwidth prediction from the tested dataset based on the AD-PRS-Guided WOA algorithm before applying the feature selection process.While Fig.6 shows the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain prediction before applying the method of feature selection.

    Figure 5:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth before applying the feature selection

    Figure 6:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the gain before applying the feature selection

    4.3 Results After Applying Feature Selection

    After applying the feature selection technique,the results of the bandwidth features from the tested dataset are shown in Tab.6.Tab.6 shows that the proposed Ensemble model using Random Forest results of RMSE of(0.0102),MAE of(0.0344),MBE of(-0.0032),and r of(0.9932)are much better than other compared models.The results of the gain features from the dataset after applying the feature selection are shown in Tab.7.

    Table 6: Results based on the bandwidth features of the dataset after applying feature selection

    Tab.7 shows that the proposed Ensemble model using Random Forest results of the gain features as RMSE of(0.0891),MAE of(0.0234),MBE of(-0.0161),and r of(0.9443)which are much better than other compared models.Fig.7 shows the actual values and predicted values by the AD-PRSGuided WOA algorithm for the bandwidth after applying the feature selection.While Fig.8 shows the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain after applying the feature selection.

    Table 7: Results based on the gain features of the dataset after applying feature selection

    Figure 7:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth after applying the feature selection

    Figure 8:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth after applying the feature selection

    5 Conclusion

    Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.This paper uses the AD-PRS-Guided WOA method to pick the optimal features from the metamaterial antenna dataset.Metamaterial antennas can overcome the bandwidth and gain constraints associated with tiny antennas.Machine learning is receiving much interest in optimizing solutions in a variety of areas.The optimal ensemble model achieved good results for predicting the bandwidth and gain of the metamaterial antenna.The basic models have investigated SVM,Random Forest,K-Neighbors Regressor,and Decision Tree Regressor.The AD-PRS-Guided WOA algorithm was utilized to pick the optimal features from the datasets.The suggested model was compared to models based on five variables and to the average ensemble model.The findings indicated that the suggested AD-PRS-Guided WOA algorithm-based model is superior to others and can accurately predict antenna bandwidth and gain.The presented algorithm will be compared with CST software in future work.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲天堂国产精品一区在线| 99热这里只有是精品50| 国产成人a区在线观看| 国产精品久久电影中文字幕| 97人妻精品一区二区三区麻豆| 国产精品久久久久久亚洲av鲁大| 国产 一区精品| 日韩精品有码人妻一区| www.色视频.com| 久久精品国产亚洲av香蕉五月| 精品人妻1区二区| 一区福利在线观看| 在线观看午夜福利视频| 国产 一区 欧美 日韩| 成人国产综合亚洲| 久久久成人免费电影| 欧美激情在线99| 一级av片app| 亚洲午夜理论影院| 日本免费一区二区三区高清不卡| 久久精品影院6| 午夜福利视频1000在线观看| 高清在线国产一区| 网址你懂的国产日韩在线| 成人三级黄色视频| 男女之事视频高清在线观看| 人妻久久中文字幕网| 一个人看视频在线观看www免费| 免费在线观看影片大全网站| 亚洲精品国产成人久久av| 一级a爱片免费观看的视频| www日本黄色视频网| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 国产精品电影一区二区三区| 嫩草影视91久久| 亚洲国产欧美人成| 别揉我奶头~嗯~啊~动态视频| 日本一本二区三区精品| 日韩欧美 国产精品| 88av欧美| 人妻少妇偷人精品九色| 亚洲中文日韩欧美视频| 国产av在哪里看| 丰满乱子伦码专区| 国产精品久久久久久av不卡| 色精品久久人妻99蜜桃| 舔av片在线| 国产精品女同一区二区软件 | 99精品在免费线老司机午夜| 波野结衣二区三区在线| 日本五十路高清| 一进一出好大好爽视频| 国产黄色小视频在线观看| 精品一区二区三区视频在线| 级片在线观看| 亚洲av二区三区四区| 无遮挡黄片免费观看| 丰满人妻一区二区三区视频av| 亚洲精品粉嫩美女一区| 国产精品精品国产色婷婷| 久久久国产成人免费| 黄色欧美视频在线观看| 欧美+亚洲+日韩+国产| 欧美日韩中文字幕国产精品一区二区三区| 成人性生交大片免费视频hd| 91在线观看av| avwww免费| 欧美在线一区亚洲| 99久久成人亚洲精品观看| 国产老妇女一区| 国产私拍福利视频在线观看| 成人av在线播放网站| 99热精品在线国产| av在线观看视频网站免费| 黄色视频,在线免费观看| 99热6这里只有精品| 中国美白少妇内射xxxbb| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 国内久久婷婷六月综合欲色啪| 黄色日韩在线| 久久精品影院6| 国产美女午夜福利| 一个人看视频在线观看www免费| 亚洲精品成人久久久久久| 日本爱情动作片www.在线观看 | 特级一级黄色大片| 美女免费视频网站| 国产成人影院久久av| 一本精品99久久精品77| 成人国产一区最新在线观看| 岛国在线免费视频观看| 久久国产精品人妻蜜桃| 久久欧美精品欧美久久欧美| 俄罗斯特黄特色一大片| 直男gayav资源| 欧美日韩综合久久久久久 | 中文字幕免费在线视频6| 国产精品国产高清国产av| 黄色女人牲交| 乱系列少妇在线播放| 波多野结衣巨乳人妻| 中文字幕av成人在线电影| 乱人视频在线观看| 欧美高清性xxxxhd video| 国产精品亚洲一级av第二区| 色综合站精品国产| 欧美成人免费av一区二区三区| 国产毛片a区久久久久| 99热网站在线观看| 中文字幕精品亚洲无线码一区| 亚洲精华国产精华液的使用体验 | 国产精品综合久久久久久久免费| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 一级黄色大片毛片| 成年女人永久免费观看视频| 亚洲男人的天堂狠狠| 国产精品亚洲一级av第二区| 我要看日韩黄色一级片| 午夜久久久久精精品| 不卡一级毛片| 欧美性猛交╳xxx乱大交人| 精品午夜福利视频在线观看一区| 国产精品久久久久久久电影| 欧美一区二区亚洲| 又爽又黄a免费视频| 我的老师免费观看完整版| a级毛片a级免费在线| 久久草成人影院| h日本视频在线播放| 91麻豆精品激情在线观看国产| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| 在线观看一区二区三区| 久久久久国内视频| 搡老熟女国产l中国老女人| 精华霜和精华液先用哪个| 中亚洲国语对白在线视频| 精品一区二区三区av网在线观看| 精品人妻视频免费看| 色播亚洲综合网| 午夜久久久久精精品| 老熟妇仑乱视频hdxx| 欧美性猛交╳xxx乱大交人| 亚洲avbb在线观看| 国产免费一级a男人的天堂| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| 全区人妻精品视频| 亚洲av第一区精品v没综合| 色av中文字幕| 大型黄色视频在线免费观看| videossex国产| 日韩大尺度精品在线看网址| 国产精品福利在线免费观看| 男插女下体视频免费在线播放| 看片在线看免费视频| 色在线成人网| 国内精品宾馆在线| 亚洲午夜理论影院| 亚州av有码| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 日韩,欧美,国产一区二区三区 | 99热精品在线国产| 日韩精品有码人妻一区| 在线免费观看不下载黄p国产 | 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 精品一区二区免费观看| 久久精品国产亚洲网站| 麻豆成人av在线观看| 女生性感内裤真人,穿戴方法视频| 干丝袜人妻中文字幕| 国产乱人伦免费视频| 国产男人的电影天堂91| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 一夜夜www| 又黄又爽又刺激的免费视频.| 日韩一本色道免费dvd| 69av精品久久久久久| 午夜精品一区二区三区免费看| 婷婷精品国产亚洲av在线| 91久久精品国产一区二区成人| 成人综合一区亚洲| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清专用| 精品福利观看| or卡值多少钱| 亚洲av成人精品一区久久| 国产三级在线视频| 国产淫片久久久久久久久| 日本熟妇午夜| 色综合站精品国产| 久久久色成人| 国产成人一区二区在线| 美女高潮喷水抽搐中文字幕| 成年女人毛片免费观看观看9| 成年女人看的毛片在线观看| 狠狠狠狠99中文字幕| 国产色爽女视频免费观看| 自拍偷自拍亚洲精品老妇| 久久久久国内视频| 日韩国内少妇激情av| 精品午夜福利在线看| 国产单亲对白刺激| 欧美绝顶高潮抽搐喷水| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 此物有八面人人有两片| 美女cb高潮喷水在线观看| 久久久久免费精品人妻一区二区| 亚洲av美国av| 亚洲av电影不卡..在线观看| 久久久午夜欧美精品| 日本 欧美在线| 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 日韩人妻高清精品专区| 男人的好看免费观看在线视频| 中国美白少妇内射xxxbb| 色吧在线观看| 啦啦啦啦在线视频资源| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av| 欧美日本视频| 99在线人妻在线中文字幕| 亚洲久久久久久中文字幕| 国产三级中文精品| 国产亚洲精品久久久com| 成人永久免费在线观看视频| 国产精品三级大全| 亚洲在线自拍视频| 国产高清激情床上av| 久久久久性生活片| 永久网站在线| 99riav亚洲国产免费| 久久久久免费精品人妻一区二区| 久久人人爽人人爽人人片va| 日韩欧美国产在线观看| 在线观看一区二区三区| 免费看av在线观看网站| 亚洲成人久久性| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| 国国产精品蜜臀av免费| 淫妇啪啪啪对白视频| 黄片wwwwww| 可以在线观看的亚洲视频| 国产黄片美女视频| 国产精品精品国产色婷婷| 精品久久久噜噜| 国产一区二区在线观看日韩| 桃色一区二区三区在线观看| 嫩草影视91久久| 美女cb高潮喷水在线观看| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 一级a爱片免费观看的视频| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 看十八女毛片水多多多| 久久久久久久精品吃奶| 日韩,欧美,国产一区二区三区 | 黄色一级大片看看| 制服丝袜大香蕉在线| 国产精品野战在线观看| 亚洲熟妇熟女久久| 日本一本二区三区精品| 丰满人妻一区二区三区视频av| 人妻久久中文字幕网| 午夜免费成人在线视频| x7x7x7水蜜桃| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 综合色av麻豆| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 久久精品国产亚洲av天美| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 午夜福利高清视频| 亚洲欧美清纯卡通| 少妇高潮的动态图| а√天堂www在线а√下载| 成人综合一区亚洲| 国产精品一区二区三区四区久久| 九色国产91popny在线| avwww免费| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类 | 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 熟女人妻精品中文字幕| 午夜福利高清视频| 一进一出抽搐动态| ponron亚洲| 午夜免费激情av| 婷婷精品国产亚洲av| 狠狠狠狠99中文字幕| 中国美白少妇内射xxxbb| 亚洲国产欧美人成| 午夜视频国产福利| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 草草在线视频免费看| 亚洲av不卡在线观看| 亚洲真实伦在线观看| 三级毛片av免费| 悠悠久久av| 亚洲av免费高清在线观看| 少妇裸体淫交视频免费看高清| 天堂网av新在线| 国产精品一及| 国产 一区 欧美 日韩| 久久99热这里只有精品18| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 99热这里只有是精品在线观看| 22中文网久久字幕| 在线免费观看不下载黄p国产 | 久久草成人影院| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| av天堂在线播放| 熟女人妻精品中文字幕| 嫩草影视91久久| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 男人舔奶头视频| 成人av在线播放网站| 人妻夜夜爽99麻豆av| 亚洲四区av| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩高清专用| ponron亚洲| 简卡轻食公司| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| 中文字幕av成人在线电影| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 热99re8久久精品国产| 中文字幕av成人在线电影| 可以在线观看的亚洲视频| 久久热精品热| 麻豆精品久久久久久蜜桃| 亚洲精品在线观看二区| 干丝袜人妻中文字幕| 无遮挡黄片免费观看| 久久久国产成人精品二区| 日本与韩国留学比较| 97超级碰碰碰精品色视频在线观看| 亚洲av中文av极速乱 | 草草在线视频免费看| 国产久久久一区二区三区| 色噜噜av男人的天堂激情| 亚洲avbb在线观看| 精品一区二区免费观看| 九色国产91popny在线| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 嫩草影院精品99| 久久久久免费精品人妻一区二区| а√天堂www在线а√下载| 又黄又爽又免费观看的视频| 亚洲精品影视一区二区三区av| av福利片在线观看| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 成人性生交大片免费视频hd| 午夜福利在线在线| 中出人妻视频一区二区| 精品久久久久久久久亚洲 | 国产精品人妻久久久影院| 国产高清三级在线| 久久久久久久久久黄片| 国产探花在线观看一区二区| 亚洲av日韩精品久久久久久密| 看黄色毛片网站| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| 91久久精品国产一区二区成人| 国产白丝娇喘喷水9色精品| 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 久久九九热精品免费| 国产女主播在线喷水免费视频网站 | 男女之事视频高清在线观看| 国产乱人伦免费视频| 成人无遮挡网站| 精品一区二区三区视频在线观看免费| 人妻少妇偷人精品九色| 午夜影院日韩av| 欧美成人免费av一区二区三区| 草草在线视频免费看| 乱码一卡2卡4卡精品| 国产男人的电影天堂91| 免费av观看视频| 日韩欧美免费精品| 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 亚洲一区二区三区色噜噜| 国产精品一区www在线观看 | 九九爱精品视频在线观看| 香蕉av资源在线| 99热这里只有是精品50| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 精品免费久久久久久久清纯| 国产老妇女一区| 亚洲欧美日韩高清专用| 午夜免费成人在线视频| 精品久久久久久成人av| 高清日韩中文字幕在线| 可以在线观看毛片的网站| 最近视频中文字幕2019在线8| 国产伦在线观看视频一区| 岛国在线免费视频观看| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区精品| 免费看a级黄色片| 人妻久久中文字幕网| 一进一出好大好爽视频| 日日摸夜夜添夜夜添小说| 美女xxoo啪啪120秒动态图| 日本熟妇午夜| 一本久久中文字幕| 嫩草影视91久久| 男人狂女人下面高潮的视频| 草草在线视频免费看| 亚洲在线观看片| 九九热线精品视视频播放| 久久精品国产亚洲av涩爱 | а√天堂www在线а√下载| 欧美最新免费一区二区三区| 成人av在线播放网站| 亚洲中文日韩欧美视频| 久久久久久大精品| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 色综合亚洲欧美另类图片| 人妻丰满熟妇av一区二区三区| 免费在线观看成人毛片| av天堂在线播放| 午夜福利成人在线免费观看| 国产精品人妻久久久影院| 午夜日韩欧美国产| 99久久无色码亚洲精品果冻| 两个人的视频大全免费| 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜| av在线老鸭窝| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区免费观看 | 日本一二三区视频观看| 日韩欧美国产一区二区入口| 女的被弄到高潮叫床怎么办 | 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩卡通动漫| 国内精品美女久久久久久| 精品无人区乱码1区二区| 欧美bdsm另类| 中文字幕久久专区| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 能在线免费观看的黄片| 精品久久久久久久久亚洲 | 国内毛片毛片毛片毛片毛片| 国产老妇女一区| bbb黄色大片| 美女免费视频网站| 精品一区二区三区av网在线观看| 国内毛片毛片毛片毛片毛片| 国产熟女欧美一区二区| xxxwww97欧美| 亚洲av.av天堂| 小蜜桃在线观看免费完整版高清| 99久久无色码亚洲精品果冻| 欧美一区二区精品小视频在线| 久久草成人影院| 99热只有精品国产| 亚洲成av人片在线播放无| 久久6这里有精品| 国产一级毛片七仙女欲春2| 精品无人区乱码1区二区| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看日本一区| 亚洲不卡免费看| 香蕉av资源在线| 一区二区三区四区激情视频 | 欧美日韩瑟瑟在线播放| 亚洲欧美日韩高清专用| 18禁黄网站禁片免费观看直播| 久久人妻av系列| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 狂野欧美白嫩少妇大欣赏| 男女下面进入的视频免费午夜| 啦啦啦观看免费观看视频高清| 校园人妻丝袜中文字幕| 精品一区二区三区人妻视频| 蜜桃亚洲精品一区二区三区| 欧美精品国产亚洲| 欧美精品啪啪一区二区三区| av女优亚洲男人天堂| 精品久久久久久久久亚洲 | 精品免费久久久久久久清纯| 不卡一级毛片| 婷婷丁香在线五月| 99在线人妻在线中文字幕| 成人高潮视频无遮挡免费网站| 99riav亚洲国产免费| 国产男靠女视频免费网站| 又爽又黄a免费视频| 嫩草影院精品99| 精品不卡国产一区二区三区| 99热这里只有是精品在线观看| 色吧在线观看| 久久久久久久久久成人| 在现免费观看毛片| eeuss影院久久| 窝窝影院91人妻| 啪啪无遮挡十八禁网站| 97碰自拍视频| 亚洲天堂国产精品一区在线| 国内毛片毛片毛片毛片毛片| 999久久久精品免费观看国产| 久久精品国产99精品国产亚洲性色| 五月玫瑰六月丁香| 久久久久国产精品人妻aⅴ院| 久久久国产成人免费| 一a级毛片在线观看| 啦啦啦韩国在线观看视频| 免费人成视频x8x8入口观看| 又粗又爽又猛毛片免费看| 亚洲第一电影网av| av在线天堂中文字幕| 久久精品91蜜桃| 干丝袜人妻中文字幕| 亚洲国产欧洲综合997久久,| 成人高潮视频无遮挡免费网站| 成人av在线播放网站| 男女做爰动态图高潮gif福利片| 免费av观看视频| 亚洲欧美清纯卡通| 97人妻精品一区二区三区麻豆| 联通29元200g的流量卡| 毛片一级片免费看久久久久 | 欧美色视频一区免费| 最新中文字幕久久久久| 色综合婷婷激情| 男插女下体视频免费在线播放| 亚洲精品日韩av片在线观看| 欧美潮喷喷水| 中国美女看黄片| av在线观看视频网站免费| 精品久久久久久久久久免费视频| 女人十人毛片免费观看3o分钟| 久久精品人妻少妇| 国产大屁股一区二区在线视频| 国产伦人伦偷精品视频| av在线蜜桃| 日本三级黄在线观看| 国产精品精品国产色婷婷| 不卡一级毛片| 精品久久久久久成人av| 嫩草影院精品99| 999久久久精品免费观看国产| 欧美极品一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区| 在线观看免费视频日本深夜| 老司机午夜福利在线观看视频| 有码 亚洲区| 欧美区成人在线视频| 中出人妻视频一区二区| 色综合站精品国产| 日本黄色视频三级网站网址| 亚洲欧美精品综合久久99| 国产欧美日韩精品亚洲av| 一个人看的www免费观看视频| 成年免费大片在线观看| 国产男人的电影天堂91| 黄色日韩在线| 性欧美人与动物交配| 精品久久久久久久久av| 国产老妇女一区| 精品午夜福利视频在线观看一区| 亚洲精品国产成人久久av| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区蜜桃av| 波多野结衣高清无吗| 十八禁国产超污无遮挡网站| 狠狠狠狠99中文字幕| 午夜福利在线在线|