• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FSpot:Fast and Efficient Video Encoding Workloads Over Amazon Spot Instances

    2022-08-23 02:20:56AnatoliyZabrovskiyPrateekAgrawalVladislavKashanskyRolandKerscheChristianTimmererandRaduProdan
    Computers Materials&Continua 2022年6期

    Anatoliy Zabrovskiy,Prateek Agrawal,Vladislav Kashansky,Roland Kersche,Christian Timmerer, and Radu Prodan

    1University of Klagenfurt,Klagenfurt,9020,Austria

    2Lovely Professional University,Phagwara,144411,India

    3Petrozavodsk State University,Petrozavodsk,185035,Russia

    4Bitmovin,Klagenfurt,9020,Austria

    Abstract: HTTP Adaptive Streaming (HAS) of video content is becoming an undivided part of the Internet and accounts for most of today’s network traffic.Video compression technology plays a vital role in efficiently utilizing network channels, but encoding videos into multiple representations with selected encoding parameters is a significant challenge.However,video encoding is a computationally intensive and time-consuming operation that requires high-performance resources provided by on-premise infrastructures or public clouds.In turn,the public clouds,such as Amazon elastic compute cloud(EC2),provide hundreds of computing instances optimized for different purposes and clients’budgets.Thus, there is a need for algorithms and methods for optimized computing instance selection for specific tasks such as video encoding and transcoding operations.Additionally,the encoding speed directly depends on the selected encoding parameters and the complexity characteristics of video content.In this paper, we first benchmarked the video encoding performance of Amazon EC2 spot instances using multiple×264 codec encoding parameters and video sequences of varying complexity.Then, we proposed a novel fast approach to optimize Amazon EC2 spot instances and minimize video encoding costs.Furthermore,we evaluated how the optimized selection of EC2 spot instances can affect the encoding cost.The results show that our approach,on average,can reduce the encoding costs by at least 15.8%and up to 47.8%when compared to a random selection of EC2 spot instances.

    Keywords:EC2 spot instance;encoding time prediction;adaptive streaming;video transcoding; clustering; HTTP adaptive streaming; MPEG-DASH;cloud computing;optimization;Pareto front

    1 Introduction

    Nowadays,most Internet traffic represents multimedia content,such as live or on-demand audio and video streaming[1].The streaming experience over the Internet depends on several factors like user location,network speed,traffic congestion,or end-user device,which significantly vary over time[2].Streaming platforms and services use the HAS technology[3]to adapt to these bandwidth variations that provide video sequences in multiple bitrates.The resolution pairs are divided into short-term video and audio segments (e.g., 2 to 10 s), individually as requested by a client device depending on its technical conditions (e.g., screen size, network performance) in a dynamic, adaptive manner[4].Client devices and video players use segment bitrate selection (or rate adaptation) algorithms to optimize the user experience [5,6].The widely used MPEG-DASH HAS implementation allows streaming providers to choose from a set of codecs for video encoding due to its codec independent[3]characteristic,including Advanced Video Coding(AVC)[7],High-Efficiency Video Coding(HEVC)[8],VP9[9],AOMedia Video 1(AV1)[10]and Versatile Video Coding(VVC)[11].However,encoding video segments for adaptive streaming is a computationally-intensive process that can take seconds or even days depending on many technical aspects,such as video complexity or encoding parameters[12]and typically requires expensive high-performance computers.

    Currently, most streaming services and video encoding platforms opt for less expensive and more scalable cloud resources(e.g.,Amazon Web Services(AWS),Google Cloud,Microsoft Azure)rented on demand[13,14],deployed worldwide on low-latency geo-distributed infrastructures[15,16].Amazon EC2 currently operates in eighteen geographical locations and provides different instances for general purposes(m instances),compute-optimized(c instances),memory-optimized(r instances),or burstable (t instances) [17].EC2 spot instances are unused spare compute capacity in the AWS cloud available at a high discount compared to on-demand prices,with the limitation is that AWS can stop them at any time upon a two-minute warning.While modern encoding platforms and services can significantly leverage spot instances to reduce their encoding costs,the unavailability of intelligent models to estimate the video encoding time and costs makes the correct selection of the cloud instances for thousands of encoding tasks still critical [13,18].Cloud infrastructures, dedicated servers and Internet of Things devices[19]are examples of predicting encoding time,cost and stability significantly impacting the provisioning and scheduling of encoding tasks.Therefore, a highly desirable system that estimates the encoding time and costs and optimizes the encoding task schedule on selected spot instances[20].

    To decrease the encoding costs and maximize the utilization of Amazon EC2 spot instances,we propose a new method called the Fast approach for better utilization of Amazon EC2 Spot Instances for video encoding (FSpot) based on four phases: 1) instance benchmarking, 2) fast encoding time estimation, 3) instance set selection and 4) priority and numerical calculation.The first phase tests different EC2 instances using various encoding parameters, extracts the critical features from the video encodings and creates a dataset,and proposes a heuristic for selecting EC2 spot instances.The second phase uses a fast estimate of the encoding speed for videos on a master node hosted on an on-demand EC2 instance that splits video into segments,estimates the encoding time and distributes encoding tasks to worker nodes hosted on spot instances.The third phase selects the required number of EC2 spot instances recommended for optimized video encoding in the Amazon cloud.Finally,the last phase calculates the priorities and number for EC2 spot instances, such that those with the lowest predicted video encoding cost have the highest priority.We evaluated FSpot on a set of ten heterogeneous videos of different genres with different duration and frame rates using three AWS availability zones.Experimental results show that, on average, our model can reduce the encoding costs by at least 15.8%and up to 47.8%when compared to a random selection of EC2 spot instances.

    The significant contributions of the FSpot work are:

    1.We benchmarked on eleven commonly used Amazon EC2 spot instances using different encoding parameters and video sequences.

    2.We developed a novel method for fast encoding time estimation of video segments and proposed an algorithm combining Pareto frontier and clustering techniques to find an appropriate set of spot instances.

    3.We also proposed and implemented a fast method to calculate the instance number and priority for different EC2 spot instances to optimize the Amazon EC2 spot instance selection for encoding task allocation.The proposed FSpot approach reduces the encoding costs by at least 15.8%and up to 47.8%compared to a random selection of EC2 spot instances.

    This paper has five sections-Section 2 highlights related work.Section 3 describes the proposed FSpot approach and its implementation, followed by results evaluation in Section 4.Section 5 concludes the paper and highlights future work.

    2 Related Work

    2.1 General Scheduling Techniques

    Gog et al.[21] studied various scheduling architectures and proposed a min-cost max-flow(MCMF)optimization over a graph and continuously reschedules the entire workload.Authors extend Quincy’s [22] original MCMF algorithm that results in task placement latencies of minutes on a large cluster.In [23], the authors propose global rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters.Malawski et al.[24]presented a mathematical model to optimize the cost of scheduling workflows under a deadline constraint.It considers a multi-cloud environment where each provider offers a limited number of heterogeneous virtual machines and a global storage service to share intermediate data files.Ghobaei-Arani et al.[25]presented an autonomous resource provisioning framework to control and manage computational resources using a fuzzy logic auto-scaling algorithm in a cloud environment.

    Similarly,Rodriguez et al.[26]described a plan-based offline auto-scaler that partitions workflows into bags-of-tasks and then applied a MIP-based approach to make the allocation plan.Another work of Malawski et al.[27]considered the problem of task planning on multiple clouds formulated but in the more general framework of the mixed-integer nonlinear programming problem(MINLP).Garcia-Carballeira et al.[28]combined randomized techniques with static local balancing in a round-robin manner for tasks scheduling.Chhabra et al.[29]combined multi-criteria meta-heuristics to schedule HPC tasks on the IaaS cloud.Ebadifard et al.[30]proposed a dynamic load balancing task scheduling algorithm for a cloud environment that minimizes the communication overhead.Wang et al.[31]performed an empirical analysis of amazon EC2 spot instance features affecting cost-effective resource management.

    2.2 Video Transcoding-specific Scheduling Techniques

    Some recent remarkable works contributed to scheduling the video transcoding tasks [32–34].Kirubha et al.[35]implemented a modified controlled channel access scheduling method to improve the quality of service-based video streaming.Similarly,Jokhio et al.[36]presented a distributed video transcoding method to reduce video bitrates.Li et al.[37]presented a QoS-aware scheduling approach for mapping transcoding jobs to heterogeneous virtual machines.Recently,Sameti et al.[38]proposed a container-based transcoding method for interactive video streaming that automatically calculates the number of processing cores that maintain a specific frame rate for any given video segment and transcoding resolution.The authors performed benchmarking to find the optimal parallelism for interactive streaming video.Li et al.[39] proposed a HAS delivery scheme that combines caching,transcoding for energy and resource-efficient scheduling.Ma[40]proposed a scheduling method for transcoding MPEG-DASH video segments using a node that managed all other servers in the system(rather than predicting the transcoding times)and reported a saving time of up to 30%.

    2.3 State-of-the-art Analysis

    Previously listed general and transcoding-specific scheduling techniques are capable of processing a large amount of different computational workloads.Such systems use various scheduling algorithms ranging from general mixed-integer programming (MIP) techniques, flow-based formulations and workload-agnostic techniques to video-specific heuristics[41,42]that maximize the use of processing units and minimize the associated costs.Companies currently prefer on-demand and spot instances by utilizing state-of-the-art video codecs to enable cost-effective video encoding.As the cost of such computing units depends on the time of use (ph or ps), the customers strive to keep the highest possible utilization for all computing resources.They typically deploy the encoding tasks using opportunistic load balancing (OLB) algorithms to utilize the resources at all times.It is relatively easy to achieve maximum resource utilization if all the encoding tasks have similar complexity,require similar execution times on the underlying computing units and all computing units have the same price.However, a problem arises when a simple scheduling algorithm randomly assigns specific encoding tasks to expensive spot instances with a low availability probability or is not optimized for selected encoding parameters.This can lead to load imbalance,increased encoding time and costs and degraded video quality on the viewer side.The motivation for our work is to maximize the Amazon EC2 spot instances utilization for video encoding and provide the encoding infrastructure with advanced information on the various video encoding tasks to ensure their fast completion with reduced cost.The relatively straightforward case for the methods mentioned earlier is when all the encoding tasks have similar complexity, require similar execution times on the underlying computing units and all computing units have the same price.However,a problem arises when the scheduling algorithm misses specific knowledge about encoding workload and underlying computational resources behavior.Some methods are simply incapable of solving the problem directly in the case of the even bigger video workloads and smaller segment sizes of 2–4 s.Natural extension led to the flow-based formulations and workload-agnostic techniques that can work on significantly larger scales.However,it can quickly happen that those methods will assign segment encoding tasks to spot instances with a low availability probability or not optimized for selected encoding parameters.It will result in additional expenses and sub-optimal performance.This can also lead to load imbalance,increase encoding time and costs and degrade video quality on the viewer side.Further,some approaches consider only a single objective to optimize.Our multi-objective approach maximizes the Amazon EC2 spot instances utilization,reduces the related costs and increases the execution reliability for large-scale video encoding workloads by reinforcing decisions with advanced information on the various video encoding tasks obtained via the fast benchmark algorithm.

    3 Proposed FSpot Approach

    3.1 EC2 Instance Benchmarking

    3.1.1 Dataset Selection

    First, we selected ten video sequences of different visual complexity from the publicly available dataset[12].Fig.1 shows the SI and TI metrics of the selected videos.The average TI and SI metrics confirm the varying video content complexity.We used video sequences that represent a wide range of possible visual scenes and use cases.Tab.1 presents video categories (or genres) and critical file characteristics of original videos.Using the FFmpeg[42]software v4.1.3,we uncompressed all video sequences into raw Y4M format and divided them into 80 video segments of 4 s duration each.Typically, each segment is a switching point to other video representations.Therefore the segment length becomes an important parameter inHTTP Adaptive Streaming.The 4 s segments are widely used in real video streaming deployments because they show a good trade-off between encoding efficiency and video streaming performance[43].

    Figure 1:Average spatial information(SI)and temporal information(TI)for video sequences

    Table 1: Original video file characteristics

    3.1.2 EC2 Instance Performance Analysis

    We encoded each Y4M segment using the FFmpeg ×264 video codec implementation with the veryslow encoding preset to get the highest possible quality compared to the original videos.The×264 video codec contains nine encodings presets:ultrafast,superfast,veryfast,faster,fast,medium(default preset),slow,slower,veryslow,placebo[44].Encoding bitrate with a slower×264 encoding preset for the same video usually has a slower encoding speed but better visual quality[45].We considered these generated video segments as source files and used them to encode different Amazon EC2 instances.We developed a framework using Python programming language to encode video sequences in the Amazon cloud automatically.Tab.3 shows all encoded video segments on eleven different Amazon 2×large instances(presented in Tab.2)using various encoding parameters,i.e.,bitrates and resolutions.All EC2 spot instances have eight vCPUs and RAM size ranges from 15 GiB for the c5a.2 ×large instance to 64 GiB for the r5.2×large and r5a.2×large instances.We used multiple Amazon 2×large instances commonly used for video transcoding[43].We then extracted several features from the video encodings and created the Amazon EC2 instance encoding dataset.The raw dataset contains 16720 encoding tasks(80 segments*19 bitrates*11 EC2 instances)for the 4 s length video segments on medium encoding preset.Each record in our dataset contains EC2 instance name, EC2 instance availability,EC2 instance price,video segment name,encoding bitrate,file size,segment width,segment height,encoding time.

    Table 2: Amazon instances

    Table 3: Bitrate ladder(bitrate/resolution pairs).Bitrate values are in kbps

    Table 3:Continued

    3.1.3 EC2 Spot Instance Selection Heuristic

    Let us assume we have over one hundred different spot instances to encode segments of a single video.Further,we only want to select the top N spot instances that will minimize the cost.Our work proposes a method that selects a set of computing units,for example,5,for optimized video encoding.The main goal of this method is to reduce the number of computing units for further analysis quickly.We calculate the price ratioβiand the speed factorrifor each EC2 instance with respect to c5.2×large base EC2 instance(see Tab.5),as shown in Eqs.(1)and(2),respectively.

    We then calculate the instance availability speed ratioHias shown in Eq.(3).

    Eq.(3) reflects the adequate speed information of the EC2 spot instanceiby analyzing its actual speed against the availability probabilitypi.αis an adjusted weighting coefficient.We use the availability and pricing information of EC2 spot instances in our proposed FSpot model from the Amazon website [46,47].Instead of the availability metric, Amazon uses the termfrequency of interruption.For example, if the frequency of interruption is<5%, it means that the spot instance interruption of Amazon services based on historical information of the last three months before being terminated intentionally by a client is less than 5%.TheGiparameter in Eq.(3) is a relative time to encode a single video on EC2 spot instanceiand is calculated by Eq.(4).The availability probabilitypiof EC2 spot instanceiis Amazon frequency of interruption between 0 to 1.Tab.4 shows the availability probability calculation from the amazon frequency of interruption converted to percentage.Further,in our proposed work,we useHiandβito select a set of computing units for optimized video encoding

    3.2 Fast Encoding Time Estimation

    We use a sample video file segment to calculate the encoding speed for the different Amazon EC2 instances.First,the system encodes a middle segment of a video sequence at the base node-the master node or the fastest available EC2 instance for a few seconds with selected encoding parameters.It then uses obtained encoding time datafor the middle segment and instance availability speed ratio(Hi)to estimate the encoding speed(in segments/sec)for different EC2 spot instances and video segments as shown in Eq.(5).

    Table 4: The amazon frequency of interruption converted to percentage

    We assume that the encoding time of all segments of the same video sequence has similar values.Recent research[20]shows that the encoding times of segments of the same video file with the same encoding parameters have similar values and do not exceed one second for the×264 video codec.Our approach uses a quick estimate of the encoding speed for each new video and a new set of encoding parameters.

    From our dataset,we extracted×264 codec encoding times for the base EC2 instance(c5.2×large)for middle segments and all unique combinations of encoding parameters for each video sequence.We then used the instance availability speed ratio(Hi)to estimate the encoding speed for video segments on different EC2 spot instances.We only used the information about the encoding time of the middle segment on the base c5.2 × large EC2 instance.We can use our approach to make predictions for different video codecs,for example,for×265.To do this,we need to automatically benchmark EC2 instances for the ×265 video codec and then use the results for the calculations.The output of this implementation phase is an array of estimated encoding speedsfor different video segmentsjand EC2 spot instancesi.

    3.3 EC2 Instance Selection Using Pareto Fronts and Clustering

    We used our dataset to calculateHifor all eleven EC2 spot instances and then calculated theirβiusing the pricing information retrieved from Amazon[46,47].Tab.5 presents an example of different calculated parameters for all selected EC2 spot instances for the AmazonEurope(Frankfurt)region andeu-central-1bavailability zone.Then,we applied Pareto fronts and a clustering approach to finding five EC2 spot instances for optimized video encoding in the cloud.The selected EC2 spot instances used to minimize the encoding costs are t3a.2×large,t3.2×large,c4.2×large,c5a.2×large,c5.2×large.Please note that pricing information on the Amazon website changes in real-time,so in the entire encoding system,our proposed model will ask for new EC2 Spot prices every minute and recalculate the selected EC2 spot instance set.

    For each EC2 spot instance,we calculate the(i)instance availability speed ratioHiand(ii)price ratioβiand use them as input parameters for our Pareto-fronts and clustering model.We calculate different Pareto fronts betweenHiandβifor all selected EC2 spot instances and rank each front in ascending order(see Fig.2).

    Table 5: Example of calculated parameters for different amazon EC2 spot instances

    We then apply K-means clustering on Pareto fronts points to form K clusters (see Fig.2) such that the centroid of each cluster.

    wherexis the number of Pareto fronts andnis the total number of EC2 spot instances.For example,if the number of EC2 spot instances is ten,clusters will be four.Our algorithm first selects EC2 spot instances belonging to the first Pareto front to find a set of optimized EC2 spot instances.Depending on the optimization problem (minimizing encoding time or cost of encoding), the algorithm selects points from the bottom or the top of the first Pareto front.If all EC2 spot instances of the same type in one Pareto front are already in use,the proposed algorithm selects other EC2 instances belonging to the same cluster and same front.If no EC2 spot instance from the same front and the same cluster is available,the proposed algorithm searches different EC2 instances within the same cluster but from another front.If all EC2 spot instances of one cluster are already in use,it requests the remaining EC2 spot instances from the first front,which belong to different cluster(s).If all EC2 spot instances of the first Pareto front are already in use,the algorithm will move to the second Pareto front and so on.We proposed Algorithm 1 to find a set of appropriate EC2 spot instances.This phase results in a set of preselected EC2 spot instances for optimized video encoding in the cloud.

    Figure 2:EC2 spot instance selection by using Pareto fronts and clusters

    3.5 Calculating Priorities and Numbers for EC2 Spot Instances

    This phase only uses EC2 spot instances that belong to the set selected by Algorithm 1.First of all, we represent the constraints.We consider the disk speeddcopyand the network speedkcopyfrom the master node to a cluster of EC2 spot instances as two main parameters influencing segments’distribution time.In actual encoding infrastructure,the open-source tool IPerf can be used to measure the network speedkcopy.The transmission speed of video segmentswcopyis the minimum value betweendcopyandkcopy,as shown in Eq.(7).

    Algorithm 1:Algorithm for selecting EC2 spot instances using Pareto front and clustering techniques.Input:array of EC2 spot instances(ec2[])Input:number of Pareto fronts(n_fronts)Input:number of EC2 to select(n)Output:array of selected instances(s_ec2)//Indexing of array ec2[]starts from one.ec2[]array is sorted by price ratio in ascending order.1.ec2[]←{‘val1’,‘val2’,‘val3’, ... ‘valP’}2.n_fronts[]←val 3.n ←val 4.5.Function select_ec2_set(ec2,n_fronts,n):6.output[]←null 7.for i=1 to n_fronts do 8.current_cluster ←null 9.for ec2 in ec2[]do(Continued)

    Algorithm 1:Continued 10.if ec2 ∈(i front)then 11.output ←ec2 remove ec2 from ec2[]array current cluster=cluster of ec2 if len(output)==n then 12.Break 13.End 14.for all ec2i in(i+1)front do 15.if ec2i ∈current cluster then 16.output ←ec2i remove ec2i from ec2[]array if len(output)==n then 17.Break 18.End 19.End 20.End 21.End 22.End 23.return output 24.End Function 25.s_ec2 ←select_ec2_set(ec2,n_fronts,n)

    Eq.(8)calculates the minimum time to copy all segments of one videoto multiple EC2 spot instances,wherelis the number of segments for encoding andsis the average segment size.In turn,Eq.(9)calculates the minimum time to encode all segments of a video onziEC2 spot instances,whereis the estimated encoding speed(in segments/sec)of EC2 Spot instance typei.

    For continuous encoding of video segments on EC2 spot instances of typei, the following constraint must be met:

    Then the numberziof EC2 spot instances to use can be represented as inequality 11.Also,zimust be less than or equal to the number oflsegments to encode and the maximum numberzmaxof EC2 spot instances that the system can request simultaneously(See 11).The value ofzmaxcan be defined by the encoding infrastructure administrator or be a maximum number of EC2 instances of the specific type available in the cloud.

    By satisfying defined constraints forzi, we calculate the maximum possible value ofzifor each EC2 spot insblencei.The next step is to prioritize EC2 spot instances.To do this, we calculate the predicted encoding timeTpred ias shown in Eq.(12)for all segmentslof a video file for different EC2 spot instancesi.Next,the model uses the predicted encoding time to compute the predicted encoding costof a video for each typeiof EC2 instance,as shown in Eq.(13).

    We sort the predicted encoding cost for all EC2 Spot instances in ascending order.The EC2 spot instance type with the lowest predicted video encoding cost has the highest priority and vise versa.

    We calculated the priorities and optimized the number of EC2 spot instances of each type (i)required for encoding different video sequences(see Tab.1).First,using defined constraints,the model finds the maximum possible number of EC2 spot instanceszito use.Then the model uses the calculated number of EC2 spot instanceszi,EC2 spot instance priceciand the predicted encoding timeto calculate the predicted encoding costof a video for different EC2 spot instances.We sorted the predicted encoding cost for all EC2 spot instances in ascending order in a manner that the EC2 spot instanceiwith the lowest predicted video encoding cost has the highest priority and vise versa.Tab.6 shows the predicted video encoding cost for TOS video and different Amazon EC2 spot instances.We used 285 encoding tasks(15 video segments*19 bitrates)and assumed that a video segment should be delivered to an EC2 spot instance again for each encoding operation.As we can see from Tab.6,the proposed model recommends using eightc5a.2×largeEC2 spot instances to minimize the encoding cost of the TOS video sequence,which results in a cost of$0.04.

    Table 6: Predicted video encoding costs for TOS video sequence Eu-central-1b availability zone

    4 Results and Analysis

    This Section presents the proposedFSpotapproach results to analyze the performance and examine its advantages for utilizing Amazon EC2 spot instances better.We compare the predicted encoding time and cost with the actual encoding time available in the dataset.We calculate the actual encoding timeof a video for each EC2 spot instance using the same number of EC2 spot instanceszipredicted by the model.We calculate the actual encoding cost using Eq.(14)and compare it with the predicted encoding costVpred i.

    Finally, we check how the predicted encoding times and costs are correlated with actual values.The predicted priorities for the EC2 spot instance have to be correct for the actual and predicted values.

    Tab.7 shows various parameters and their defined test values to evaluate our proposed FSpot model performance.We used the encoding times and prices for Amazon EC2 spot instances from our dataset.Tab.8 shows the selected EC2 spot instances marked as‘+’and their count calculated by the proposed FSpot model for Sintel video sequences and three availability zoneseu-central-(1a|1b|1c)of AWSFrankfurtregion.We see that the1aand1bzones have eleven, while the1czone has only nine different Amazon EC2 spot instances.It occurs due to the dynamic availability of EC2 spot instances and dependency on the selected zone.The last column of Tab.8 shows that the calculated numbers for the same EC2 spot instance and different availability zones have the same values.This is because the calculated numbers for EC2 spot instances primarily depend on the encoding speed and availability probability of EC2 spot instances, which remain unchanged for the same EC2 spot instance and Amazon region.

    Table 7: Test input parameters for Sintel video sequence

    Table 8: Predicted numbers for EC2 spot instances.Sintel video sequence

    Fig.3 depicts the estimated numbers of different EC2 spot instances located inthe eu-central-1bavailability zone.It clearly shows that the number of EC2 spot instances for the Sintel video sequence varies from nine to fourteen.The proposed FSpot model calculates a minimum of nine EC2 spot instances for c5a.2 × large type and a maximum of fourteen EC2 spot instances for t3a.2 × large,m4.2 × large and r4.2 × large instance types.Fig.4 shows the predicted and actual encoding time for Sintel video on different EC2 spot instances ofthe eu-central-1bavailability zone.The predicted encoding time for all EC2 spot instances is slightly higher than the actual encoding time extracted from the dataset.There is a slight difference of less than 4%between the predicted and actual encoding times.It occurred because we used only one middle segment encoding information of the video sequence and replicated it to the rest of the segments to estimate the encoding time.

    Figure 3:The calculated number of EC2 spot instances for the sintel video sequence

    Figure 4: Predicted and actual encoding time for different EC2 spot instances for the sintel video sequence

    Tab.9 presents the predicted and actual encoding time results for three video sequences (BBB,Sintel, TOS) on five different EC2 spot instances.We can see that for Sintel and TOS videos, the difference between the average predicted and actual values for all five EC2 spot instances is relatively small,3 and 4 s,respectively.However,for the BBB video sequence,the difference reaches 24 s.This is because the actual encoding time of the middle segment of the BBB video sequence has a significant difference from the average encoding time of all video segments.Tab.10 shows the average actual encoding times for all segments of three video sequences compared to the average encoding times of middle segments of the videos.Tab.10 presents the results for thec5.2×largeEC2 spot instance andeu-central-1bAWS availability zone.We see that the BBB video sequence has the highest difference of 0.64 s(3.94–3.30)between the average actual encoding time for all segments and the middle segment.The difference for Sintel and TOS videos is only 0.09 and 0.17 s,respectively.

    Table 9:Predicted and actual encoding time(in sec)for different video sequences and eu-central-1b availability zone

    Table 10: Average encoding times for segments of three video sequences

    Fig.5 shows the predicted and actual encoding costs for the Sintel video sequence on theeucentral-1bavailability zone.We see that the predicted encoding times for all EC2 spot instances are slightly higher than the actual encoding times.This is because the predicted encoding times for the EC2 spot instances are slightly higher than the actual encoding times(see Fig.4).Our proposed FSpot model selects different EC2 spot instances by prioritizing the low cost.Tab.11 shows that thec5a.2×largespot instance has the highest priority.Both the predicted and actual encoding costs forc5a.2×largeare the lowest compared to other EC2 spot instances.This means that the proposed FSpot model can select the appropriate EC2 spot instance type and the number of EC2 spot instances with minimum video encoding costs.

    Figure 5: Predicted and actual encoding cost (in $) for different EC2 spot instances for sintel video sequence and eu-central-1b availability zone

    Table 11:Predicted and actual encoding cost for the Sintel video sequence and eu-central-1b availability zone

    Additionally,Tab.11 shows all predicted priorities for all EC2 spot instances in ascending order in the last column table.Interestingly,all predicted and actual costs are mapped as per their priority and arranged in ascending order.This shows that the model assigned the correct priorities to all EC2 spot instances.Additionally,the first five EC2 spot instances(fromc5atoc4)belong to a set selected by our FSpot approach.Thus,our FSpot approach outperforms in quickly reduce the number of EC2 spot instances for further and in-depth analysis.

    We compared our proposed FSpot approach to a random method where the system randomly selects2×largeEC2 spot instances to encode video segments.With the proposed FSpot approach,thepercentage decrease of cost(PDC) for Sintel video sequence ranges from 16% fort3a.2×largespot instances to 48% forr4.2×largeandr5a.2×largespot instances.Fig.6 presents the PDC values for ten EC2 spot instances compared toc5a.2×largespot instances.We also compared our FSpot approach with another approach where the lowest price EC2 spot instance has the highest priority.According to Tab.5, the EC2 spot instancet3a.2×largehas the lowest price of 0.1037$.The proposed FSpot model selects c5a.2 × large spot instance type and achieves PDC to 16%with the highest priority compared to the lowest price EC2 spot instance(t3a.2×large).This means that the model can choose the appropriate EC2 spot instance, even with a higher price.The higher price EC2 spot instances typically have higher video encoding speed and vice versa.Tab.12 shows PDC for all ten video sequences compared to the random approach.We can see that theReadySetGovideo sequence has the lowest PDC of 11.8%,whilethe Beautyvideo sequence has the highest PDC of 20.8%.The results show that, on average, our approach can reduce the encoding cost by at least 15.8% and the maximum by 47.8% (see the last row in Tab.12).Ideally, the PDC value will be zero if the random approach selects the best EC2 spot instance and the correct number of EC2 instances.However,the chances of choosing both values correctly are meager.Our proposed FSpot model can select the best EC2 spot instances between different AWS availability zones.

    Figure 6:PDC for ten EC2 spot instances compared to c5a.2×large spot instance

    We proposed the FSpot method by combining the Pareto front with clustering techniques to optimize the AWS EC2 spot instance selection for encoding tasks allocation to minimize the encoding costs.Our model,on average,can reduce encoding costs by at least 15.8%and up to 47.8%compared to the random approach.FSpot can be customized and applied to the Google Cloud,and Microsoft Azure platforms with their own spare compute capacity instances.Deploying our model in an existing encoding infrastructure requires the development of an application programming interface.The encoding infrastructure will interact via the API with the model to calculate the predictions for upcoming encodings.

    Table 12: Percentage decrease of cost (PDC) for all ten video sequences compared to the random approach.Eu-central-1b Amazon availability zone

    5 Conclusion and Future Work

    In this research,we performed benchmarking on Amazon EC2 instances using different encoding parameters and video sequences.We used video sequences and segments of different genres and visual complexity.We proposed a novel FSpot approach for fast estimation of video segments encoding time at the master node and selecting the appropriate set of EC2 spot instances for video encoding.We developed an algorithm by combining Pareto front and clustering techniques to find a set of appropriate EC2 spot instances for video encoding.Our approach calculates the EC2 spot instance count and priorities for optimized video encoding in the cloud.We implemented and tested our FSpot approach to optimize the Amazon EC2 spot instance selection for encoding tasks allocation.Results show that the FSpot approach optimizes Amazon EC2 spot instances utilization and minimizes the video encoding costs in the cloud.On average, FSpot can reduce the encoding costs ranging from 15.8%to 47.8%compared to a random selection of EC2 spot instances.

    We plan in the future to extend our method for predicting the encoding time using multiple video codecs on different cloud computing instances and infrastructures.We will test our model on ARM and GPU processing instances in the cloud.In addition,we plan to develop an intelligent scheduler and auto-tuner to automate the process of optimized video encoding in the cloud.

    Funding Statement:This work has been supported in part by the Austrian Research Promotion Agency(FFG)under the APOLLO and Karnten Fog project.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    757午夜福利合集在线观看| 国产精品亚洲美女久久久| 国产单亲对白刺激| 久久久久九九精品影院| a级毛片在线看网站| 欧美日韩黄片免| 最近在线观看免费完整版| 亚洲国产高清在线一区二区三| 亚洲av片天天在线观看| 精品国产乱子伦一区二区三区| 精品欧美一区二区三区在线| 狂野欧美激情性xxxx| 亚洲国产中文字幕在线视频| 日本在线视频免费播放| 亚洲在线自拍视频| 又黄又爽又免费观看的视频| 曰老女人黄片| 一本大道久久a久久精品| 欧美精品啪啪一区二区三区| 一二三四在线观看免费中文在| 一二三四在线观看免费中文在| 此物有八面人人有两片| 国产又色又爽无遮挡免费看| 天天躁夜夜躁狠狠躁躁| 亚洲真实伦在线观看| 久久久久亚洲av毛片大全| 三级国产精品欧美在线观看 | 亚洲欧美激情综合另类| 日本一区二区免费在线视频| 狂野欧美白嫩少妇大欣赏| 欧美成人免费av一区二区三区| 91麻豆av在线| 怎么达到女性高潮| 亚洲av片天天在线观看| 亚洲最大成人中文| 国产精品久久久久久久电影 | 无人区码免费观看不卡| 真人一进一出gif抽搐免费| 亚洲一区高清亚洲精品| 国产精品永久免费网站| 女同久久另类99精品国产91| 精品国产美女av久久久久小说| 亚洲国产精品成人综合色| 久久精品国产99精品国产亚洲性色| 9191精品国产免费久久| 少妇人妻一区二区三区视频| 叶爱在线成人免费视频播放| 欧美丝袜亚洲另类 | 成人国产一区最新在线观看| 国产精品爽爽va在线观看网站| 在线观看免费午夜福利视频| 欧美乱码精品一区二区三区| 大型黄色视频在线免费观看| 淫秽高清视频在线观看| 国产成人欧美在线观看| 香蕉久久夜色| 色噜噜av男人的天堂激情| 男女之事视频高清在线观看| 国产精品 欧美亚洲| 亚洲一区二区三区不卡视频| 搡老岳熟女国产| 精品免费久久久久久久清纯| 久久久久国产一级毛片高清牌| 一本大道久久a久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 日日干狠狠操夜夜爽| 亚洲第一欧美日韩一区二区三区| 又黄又粗又硬又大视频| 他把我摸到了高潮在线观看| 国产av又大| 亚洲欧美日韩高清在线视频| 身体一侧抽搐| 嫩草影院精品99| 国产日本99.免费观看| 久久精品国产综合久久久| 国产精品久久久久久亚洲av鲁大| 亚洲av熟女| 人妻久久中文字幕网| 成人国产综合亚洲| 亚洲男人天堂网一区| 禁无遮挡网站| 国产成人精品久久二区二区免费| 色在线成人网| 精品久久久久久久末码| 免费在线观看日本一区| 国产男靠女视频免费网站| 成在线人永久免费视频| 一卡2卡三卡四卡精品乱码亚洲| 色老头精品视频在线观看| av国产免费在线观看| 精品国产乱码久久久久久男人| 性欧美人与动物交配| 熟妇人妻久久中文字幕3abv| 美女大奶头视频| 国产高清有码在线观看视频 | 男女午夜视频在线观看| 男女视频在线观看网站免费 | 久久久国产精品麻豆| 亚洲人与动物交配视频| 亚洲av成人一区二区三| 欧美黑人精品巨大| 免费看十八禁软件| 中文字幕高清在线视频| av欧美777| 久久精品91无色码中文字幕| 91老司机精品| 国产高清视频在线播放一区| 久久婷婷人人爽人人干人人爱| 国产激情偷乱视频一区二区| 最近最新中文字幕大全电影3| 国产av一区在线观看免费| 久久伊人香网站| 日本三级黄在线观看| 成人亚洲精品av一区二区| 欧美国产日韩亚洲一区| 精品国内亚洲2022精品成人| 99国产精品99久久久久| 老司机深夜福利视频在线观看| 白带黄色成豆腐渣| 人妻夜夜爽99麻豆av| 男人舔奶头视频| 成人三级黄色视频| 亚洲熟妇中文字幕五十中出| 极品教师在线免费播放| 欧美在线一区亚洲| 三级毛片av免费| 成人精品一区二区免费| 少妇人妻一区二区三区视频| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 久久国产精品人妻蜜桃| 亚洲一区二区三区色噜噜| 亚洲成人精品中文字幕电影| 又大又爽又粗| 久久久久精品国产欧美久久久| 久久久久免费精品人妻一区二区| 亚洲激情在线av| 午夜精品在线福利| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 精品久久久久久久末码| 欧美日本视频| 久久精品国产清高在天天线| 桃色一区二区三区在线观看| 亚洲 欧美 日韩 在线 免费| 国产精品av久久久久免费| 亚洲精品国产一区二区精华液| 在线观看免费视频日本深夜| 国产精品精品国产色婷婷| 两人在一起打扑克的视频| 无限看片的www在线观看| 久久亚洲精品不卡| 青草久久国产| 欧美 亚洲 国产 日韩一| av国产免费在线观看| 一本久久中文字幕| 无限看片的www在线观看| 精品国产美女av久久久久小说| 久久精品91无色码中文字幕| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 亚洲国产日韩欧美精品在线观看 | 久久国产精品影院| 国产一区二区在线av高清观看| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 婷婷丁香在线五月| 久久久久久人人人人人| 1024视频免费在线观看| 香蕉久久夜色| 男女床上黄色一级片免费看| 欧美极品一区二区三区四区| 两个人的视频大全免费| av视频在线观看入口| 久久国产精品人妻蜜桃| 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看 | 久久久久久大精品| 欧美大码av| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 波多野结衣巨乳人妻| 国产一区二区在线观看日韩 | 国产av不卡久久| 欧美中文日本在线观看视频| 悠悠久久av| а√天堂www在线а√下载| 成人18禁高潮啪啪吃奶动态图| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 久久热在线av| av国产免费在线观看| 欧美乱妇无乱码| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 成人18禁在线播放| 国产在线观看jvid| 久久九九热精品免费| 色综合婷婷激情| 少妇被粗大的猛进出69影院| 两人在一起打扑克的视频| 午夜两性在线视频| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 91麻豆精品激情在线观看国产| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 亚洲第一电影网av| 成人三级黄色视频| 国产真实乱freesex| 搞女人的毛片| 麻豆国产97在线/欧美 | 又粗又爽又猛毛片免费看| 亚洲国产欧美一区二区综合| 亚洲专区字幕在线| 欧美一区二区国产精品久久精品 | 成人三级黄色视频| 热99re8久久精品国产| 国产黄片美女视频| 极品教师在线免费播放| 999久久久精品免费观看国产| 亚洲狠狠婷婷综合久久图片| 国产高清videossex| 成人av一区二区三区在线看| 在线观看午夜福利视频| 婷婷亚洲欧美| 黄色视频不卡| 精品第一国产精品| 国产精品香港三级国产av潘金莲| av片东京热男人的天堂| 999久久久精品免费观看国产| 制服丝袜大香蕉在线| 怎么达到女性高潮| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码| 午夜视频精品福利| 十八禁人妻一区二区| 亚洲av成人一区二区三| 免费高清视频大片| 天堂影院成人在线观看| 午夜福利18| 香蕉国产在线看| 久久久久久久久中文| 亚洲激情在线av| 亚洲免费av在线视频| 亚洲 欧美 日韩 在线 免费| 一个人观看的视频www高清免费观看 | 精品一区二区三区av网在线观看| 国产精品久久久人人做人人爽| 亚洲欧美激情综合另类| 好男人电影高清在线观看| 这个男人来自地球电影免费观看| 婷婷亚洲欧美| 亚洲欧美一区二区三区黑人| 国产伦在线观看视频一区| 亚洲精品美女久久av网站| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 亚洲人与动物交配视频| 国产高清视频在线播放一区| 制服诱惑二区| 亚洲国产高清在线一区二区三| 国产成人精品久久二区二区91| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 午夜福利高清视频| 亚洲欧美日韩高清专用| 全区人妻精品视频| 1024视频免费在线观看| 欧美精品亚洲一区二区| av视频在线观看入口| 亚洲av成人一区二区三| 午夜福利免费观看在线| 成人一区二区视频在线观看| 长腿黑丝高跟| 怎么达到女性高潮| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三| 欧美中文日本在线观看视频| 国产野战对白在线观看| 久久这里只有精品19| 动漫黄色视频在线观看| 18禁裸乳无遮挡免费网站照片| www日本在线高清视频| 91成年电影在线观看| 日韩大尺度精品在线看网址| 99热只有精品国产| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 一本精品99久久精品77| 久久99热这里只有精品18| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 麻豆国产av国片精品| 欧美成人午夜精品| 午夜免费激情av| 国产精品一区二区精品视频观看| 99久久无色码亚洲精品果冻| 婷婷亚洲欧美| 国产精品久久久久久人妻精品电影| 欧美乱色亚洲激情| 免费看美女性在线毛片视频| 亚洲专区字幕在线| 国产黄色小视频在线观看| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 男女那种视频在线观看| 欧美黑人欧美精品刺激| 久久热在线av| 亚洲18禁久久av| 国产aⅴ精品一区二区三区波| 亚洲国产精品sss在线观看| 日本一区二区免费在线视频| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 久久香蕉精品热| 国产精品 国内视频| 国产精品国产高清国产av| 国产精品精品国产色婷婷| 精品高清国产在线一区| 淫秽高清视频在线观看| 国产亚洲精品av在线| 亚洲无线在线观看| 久久久久久久久中文| 亚洲国产欧美人成| 精品久久久久久久人妻蜜臀av| 长腿黑丝高跟| 国产1区2区3区精品| 亚洲18禁久久av| 99热这里只有是精品50| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 久久香蕉国产精品| 中文字幕高清在线视频| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 亚洲av成人一区二区三| 精品国产乱码久久久久久男人| 国产熟女xx| 精品久久久久久久毛片微露脸| 欧美最黄视频在线播放免费| 国产一区二区在线av高清观看| 亚洲 欧美一区二区三区| 国产av不卡久久| 精品国内亚洲2022精品成人| 亚洲av日韩精品久久久久久密| 脱女人内裤的视频| 亚洲无线在线观看| 国产午夜精品论理片| 亚洲九九香蕉| 一本大道久久a久久精品| 91av网站免费观看| 熟妇人妻久久中文字幕3abv| cao死你这个sao货| 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 一夜夜www| 在线十欧美十亚洲十日本专区| 搡老妇女老女人老熟妇| 亚洲午夜精品一区,二区,三区| 国产高清有码在线观看视频 | 最近视频中文字幕2019在线8| 国产1区2区3区精品| 久久久久久久午夜电影| 国产亚洲精品综合一区在线观看 | 三级男女做爰猛烈吃奶摸视频| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 欧美色视频一区免费| 亚洲精品中文字幕在线视频| 99久久国产精品久久久| 婷婷精品国产亚洲av在线| 精品一区二区三区四区五区乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕| 久久99热这里只有精品18| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 中文字幕av在线有码专区| 国产精品爽爽va在线观看网站| 韩国av一区二区三区四区| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 国产一区二区在线观看日韩 | 99riav亚洲国产免费| 精品国产亚洲在线| 女警被强在线播放| 人人妻人人澡欧美一区二区| 欧美极品一区二区三区四区| 免费电影在线观看免费观看| 可以在线观看毛片的网站| 亚洲无线在线观看| 中文亚洲av片在线观看爽| www.www免费av| 精品一区二区三区视频在线观看免费| 亚洲人成电影免费在线| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 美女午夜性视频免费| 国产精品 欧美亚洲| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| 女人被狂操c到高潮| 一区二区三区高清视频在线| 在线看三级毛片| 波多野结衣高清无吗| 首页视频小说图片口味搜索| 午夜福利18| 亚洲av电影不卡..在线观看| 宅男免费午夜| 啦啦啦韩国在线观看视频| 90打野战视频偷拍视频| 日本熟妇午夜| 又大又爽又粗| 精品电影一区二区在线| 又爽又黄无遮挡网站| av欧美777| 久久人妻av系列| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 91av网站免费观看| 手机成人av网站| 嫁个100分男人电影在线观看| 不卡一级毛片| 欧美色欧美亚洲另类二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 亚洲18禁久久av| 色综合婷婷激情| а√天堂www在线а√下载| 黄色成人免费大全| 精品欧美国产一区二区三| 嫩草影视91久久| 免费看日本二区| 久久婷婷人人爽人人干人人爱| 久久久久久久久免费视频了| 亚洲无线在线观看| 国产精品国产高清国产av| 又大又爽又粗| 久久精品人妻少妇| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 欧美日本视频| 免费搜索国产男女视频| 老司机靠b影院| av片东京热男人的天堂| 久久99热这里只有精品18| 一级毛片女人18水好多| 免费观看人在逋| 国产黄片美女视频| 国产真实乱freesex| 久久人人精品亚洲av| 国产久久久一区二区三区| 亚洲男人天堂网一区| 看片在线看免费视频| 天天添夜夜摸| av福利片在线观看| 国产真实乱freesex| 久久国产乱子伦精品免费另类| 欧洲精品卡2卡3卡4卡5卡区| 床上黄色一级片| 国产午夜精品论理片| 最近最新免费中文字幕在线| 身体一侧抽搐| 国产单亲对白刺激| 在线免费观看的www视频| 中文字幕av在线有码专区| 欧美一区二区国产精品久久精品 | 99国产极品粉嫩在线观看| 免费在线观看黄色视频的| 国产一区二区三区视频了| 99国产精品一区二区蜜桃av| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 国产激情久久老熟女| av欧美777| 最新美女视频免费是黄的| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av香蕉五月| 狂野欧美激情性xxxx| 天天躁狠狠躁夜夜躁狠狠躁| 精品无人区乱码1区二区| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 性色av乱码一区二区三区2| 日本熟妇午夜| 岛国在线免费视频观看| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 国产黄片美女视频| 69av精品久久久久久| 曰老女人黄片| 亚洲国产精品成人综合色| 无限看片的www在线观看| 日本免费a在线| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 日日摸夜夜添夜夜添小说| 亚洲人成77777在线视频| 国产成人精品久久二区二区免费| 黄色视频,在线免费观看| 国产亚洲精品av在线| 亚洲精品美女久久av网站| 婷婷六月久久综合丁香| 精品日产1卡2卡| 亚洲片人在线观看| 欧美国产日韩亚洲一区| 国产精品av视频在线免费观看| www.熟女人妻精品国产| 欧美午夜高清在线| 老司机午夜福利在线观看视频| 国产真人三级小视频在线观看| 制服诱惑二区| xxxwww97欧美| 91字幕亚洲| 久久久国产成人精品二区| 久久国产乱子伦精品免费另类| 精品日产1卡2卡| 亚洲美女视频黄频| 精品久久久久久久久久久久久| 亚洲av美国av| 国内久久婷婷六月综合欲色啪| 色噜噜av男人的天堂激情| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 91大片在线观看| 变态另类丝袜制服| 黄色毛片三级朝国网站| 国产精品自产拍在线观看55亚洲| 亚洲国产日韩欧美精品在线观看 | 亚洲av中文字字幕乱码综合| 欧美激情久久久久久爽电影| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 亚洲欧美一区二区三区黑人| 欧美绝顶高潮抽搐喷水| cao死你这个sao货| 欧美日韩精品网址| 18美女黄网站色大片免费观看| av免费在线观看网站| 又大又爽又粗| 精品国产亚洲在线| 一进一出抽搐动态| 亚洲真实伦在线观看| 老司机福利观看| av欧美777| 高清在线国产一区| 18禁国产床啪视频网站| 一本精品99久久精品77| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 波多野结衣高清作品| 两个人看的免费小视频| 哪里可以看免费的av片| 99国产精品99久久久久| 亚洲性夜色夜夜综合| 色综合婷婷激情| 精品免费久久久久久久清纯| 国产乱人伦免费视频| 十八禁人妻一区二区| 午夜视频精品福利| 桃色一区二区三区在线观看| 一区福利在线观看| 亚洲精华国产精华精| 老司机在亚洲福利影院| 青草久久国产| 亚洲 国产 在线| 国产v大片淫在线免费观看| 国产av一区二区精品久久| 免费在线观看日本一区| 亚洲九九香蕉| 熟妇人妻久久中文字幕3abv| 久久精品91无色码中文字幕| 两个人的视频大全免费| 亚洲成a人片在线一区二区| 草草在线视频免费看| 亚洲人成网站高清观看| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 身体一侧抽搐| 精品久久蜜臀av无| 亚洲精品国产精品久久久不卡| 精品少妇一区二区三区视频日本电影| 免费看日本二区| 九九热线精品视视频播放| 亚洲熟女毛片儿| 熟女少妇亚洲综合色aaa.| 亚洲狠狠婷婷综合久久图片| 人妻夜夜爽99麻豆av| 在线播放国产精品三级| 日本a在线网址| 国产精品影院久久| 免费在线观看日本一区|