• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning

    2022-08-23 02:20:26UurAyvazseyinlerFaheemKhanNaveedAhmedTaegkeunWhangboandAbdusalomovAkmalbekBobomirzaevich
    Computers Materials&Continua 2022年6期

    Uur Ayvaz,Hüseyin Gürüler,Faheem Khan,Naveed Ahmed,Taegkeun Whangbo,and Abdusalomov Akmalbek Bobomirzaevich

    1Department of Computer Engineering,Istanbul Technical University,Istanbul,34485,Turkey

    2Department of Information Systems Engineering,Mugla Sitki Kocman University,Mugla,48000,Turkey

    3Artificial Intelligence Lab,Department of Computer Engineering,Gachon University,Seongnam,13557,Korea

    4Department of Computer Science,College of Computing and Informatics,University of Sharjah,Sharjah,27272,UAE

    Abstract: Automatic speaker recognition (ASR) systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients (MFCCs).Recent researches show that MFCCs are successful in processing the voice signal with high accuracies.MFCCs represents a sequence of voice signal-specific features.This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings.Since the human perception of sound is not linear,after the filterbank step in the MFCC method,we converted the obtained log filterbanks into decibel (dB) features-based spectrograms without applying the Discrete Cosine Transform (DCT).A new dataset was created with converted spectrogram into a 2-D array.Several learning algorithms were implemented with a 10-fold cross-validation method to detect the speaker.The highest accuracy of 90.2%was achieved using Multi-layer Perceptron(MLP)with tanh activation function.The most important output of this study is the inclusion of human voice as a new feature set.

    Keywords: Automatic speaker recognition; human voice recognition;spatial pattern recognition;MFCCs;spectrogram;machine learning;artificial intelligence

    1 Introduction

    The voice signal contains infinite information and voice instances can be used for extracting information about speech words,expression,style of speech,accent,emotion,speaker identity,gender,age, health state of the speaker etc.Advances in biometrics and computer science have provided identifying some of the characteristics of individuals.ASR systems are widely used in the field of security and forensic science,for instance,to create voice signature and to identify suspects.The main motivation behind ASR is to convert the acoustic voice signal into a computer-readable format and to identify the speakers depending upon their vocal characteristics[1].

    Analysing and synthesizing the voice signal is a complex process.To simplify, two factors have been developed; feature extraction and feature matching.The traditional ASR systems were built on Gaussian mixture models(GMMs)and Hidden Markov models(HMMs)to perform the feature matching process.Herein,HMMs are used to deal with the temporal variability of speech and GMMs used to determine how well each of the HMMs fit into a frame or brief window of coefficients representing acoustic input [2].As an example of the feature extraction methods; Linear Prediction Coefficients(LPCs)and Linear Prediction Cepstral Coefficients(LPCCs)were used to extract feature vectors from acoustic signal data, especially with HMMs.Davis and Mermelstein introduced the MFCC features in the 1980’s [3].These features have been widely used and have been regarded as the state-of-art since that date.

    MFCCs are coefficients that represent the audio based on human perception[4].They are derived from the Fourier Transform of the audio clip.The difference is that in MFCC method the frequency bands are positioned logarithmically.As the perception of the frequency content of the human speech signal by the human does not follow a linear scale,applying logarithmically positioning in MFCCs,makes it more closely to human perception[5].

    In literature, MFCCs are used in various fields; speaker and speech recognition [6,7], emotion detection[8,9]and pre-detection and diagnosis of diseases like Parkinson[10].

    Korkmaz et al.[11]proposed a novel MFCC extraction system,which is faster and more energyefficient method than conventional MFCC realization.They used low-pass filter instead of highpass pre-emphasizing filter.Since pre-emphasizing is also required for enhancing the energy of the signal in high frequencies they implemented a bandpass filter that performs highpass filter.They stated that the most time-consuming part in conventional method is FFT with the cost of 72,67%and they discarded this phase.

    Lalitha et al.[12] changed the conventional MFCC structure and offered a new model to voice activity detection.In contrast to triangular filterbanks employed during the MFCC process, they proposed new smoother and DCT involved method.

    Sangeetha et al.[13] investigated an alternative approach to conventional DCT method.They stated that traditional DCT is not as efficient as the proposed method in terms of de-correlation of filterbank features.They offered a new distributed DCT method for MFCC extraction,which reduces the correlation and feature count.

    Upadhya et al.[14]tried a new method to recognize hand-written numbers using MFCC features and HMM.They used MNIST and Fashion MNIST dataset and converted 2D image arrays to 1D sound array.Then,they extracted MFCCs from this 1D array.They input the HMM model with 39 MFCC feature vectors and an accuracy value of 86.4%is obtained.

    Since the MFCC feature extraction process already have a phase where image patterns called spectrograms are produced,we applied spatial pattern recognition techniques on these mel spectrograms in this study.After applying pre-processing and MFCC processing steps to the speech signals, we obtained mel-scale power spectra,convert them into spectral energy decibels(dB)features and saved each spectrum pixel as a power spectrogram image.Each spectrogram has a characteristic pattern and each pixel of a spectrogram represents our features for the classification model.In signal processing phase,we produced these spectrograms applying MFCC steps and create our dataset instances.Each instance includes a 1D array of pixel values of the spectrogram and a label indicating the speaker.In classification section, we trained machine learning models using the training dataset and chose the model giving the best performance in terms of accuracy.Detailed information about methodology is given in Section 2.

    2 Proposed Methodology

    In this study, we investigated the usage of mel-scale spectrograms as an input to a deep neural network to recognize Turkish speakers.A new voice dataset is created and used to test the real-time performance of the ASR system.The participants are informed about the details of the experiment before the data collection process to minimize the artifacts and noise of voice signal.We also applied the spectral subtraction[15]to obtain clean voice signal.The ASR system proposed in this article is intended for people who use voice-controlled systems in daily life.In such systems, security comes first,the person giving the command is important.That’s why we focused on improving our speaker recognition performance rather than speech recognition.

    The first step in designing an ASR system is to determine the appropriate data set.Although there are many English voice dataset available on the Internet,there are limited Turkish voice dataset.However,each instance in the dataset had to be labeled carefully with the corresponding individual.Whenever we needed a precise command from a particular person,we would have to search for it.This was difficult and time consuming to implement in the real-time system.We collected our own voice dataset from undergraduate and graduate students.In this way,we have full control over the dataset for the system we will develop.More details on the data collection process are given in 2.1.Finally,the real-time performance of the ASR system in voice-controlled systems such as voice command phone unlocking is investigated.The system will unlock a phone only if the command is given by the owner.

    The signal processing is one of the most sensitive parts of ASR systems.Although we recorded voice data in a quiet laboratory environment, noises may occur due to both external factors and the sound recording device.In the first step of signal processing, the noise removal and speech enhancement technique called spectral subtraction is applied to each voice signal in Matlab.

    Speeches are trimmed to a length of 5 s to extract features of the same size.Lyons’Python Speech Features library[16]is used to extract speech features.This library supports the following voice features;MFCCs,Filterbank Energies,Log Filterbank Energies and Spectral Subband Centroids.Log Filterbank Energies were used to get power spectrogram and pixel features.To detect the speaker,we applied several machine learning algorithms on Orange 3.It is basically a python-based visual data mining programming unit.These processes are illustrated in Fig.1.The detailed information about the dataset and the speaker recognition processes is given in the Sections 2.1 and 2.2.

    2.1 Turkish Speakers’Voice Dataset

    The voice dataset is collected from 15 people(7 men and 8 women)in a noiseless laboratory.In the data collection phase,all participants read 40 specific sentences that involve the characteristics of a Turkish speech selected by the Free Software Foundation[16].Each participant read these sentences that were recorded using a smart phone.The sample rate of 48000 Hz and the number of bits per second encoded in the record file of 1411 kbps were set for each record.Each recording lasted 5 s and speakers read a single sentence in each record.These sentences are available in the Google Docs[17].Data acquisition process is represented in Fig.2.Sections 2.2 and 2.3 describe our dataset in depth.

    Figure 1:Flowchart of signal processing and feature extraction

    Figure 2:Part of the Turkish speakers dataset

    Fig.2 shows part of the Turkish speakers dataset.The creation processes of this dataset are described in detail in Sections 2.2 and 2.3.

    2.2 Implementatation Steps of MFCC

    MFCC is based on a concept called cepstrum or spectrum.Cepstrum also known as a quefrency[18].Oppenheim and Schafer [19] defined the Cepstrum transform as composite of the following transactions; Fourier transform, followed by Complex Logarithm and implementation of Inverse Fourier transform.Davis and Mermelstein developed this theory and applied a non-linear filterbank in frequency domain.The implementation steps of their algorithm are given in Fig.3.

    Figure 3:Obtaining the mel-filterbank features from the MFCCs process

    A normal MFCC extraction includes DCT phase.During the MFCC process highly correlated features are extracted.This high correlation may be problematic for conventional machine learning algorithms.DCT decorrelates the highly correlated MFCC features.On the other hand, with the development of deep neural networks which are less sensitive and capable to handle correlated data this will not a big problem anymore [20].In our ASR design, we discarded DCT phase and applied spatial pattern recognition on mel-scale spectrograms.

    The Mel-scale relates the perceived frequency of a pure tone to its actual measured frequency.The actual frequency was converted to the mel-scale frequency by the Eq.(1).

    At the first step, the pre-emphasis process is applied to the speech signal to amplify the high frequencies by Eq.(2).Pre-emphasising is crucial for(1)balancing the frequency spectrum since high frequencies usually have smaller magnitudes compared to lower frequencies, (2) avoiding numerical problems during the Fourier transform operation and(3)improving the Signal-to-Noise Ratio(SNR)[20].

    wherex(t)is speech signal and 0.9 ≤α≤1.

    Finally, the number of triangular filters set 26 as default and log filterbank energy features computed.This step is the difference of MFCC from FFT because filterbanks are non-linear whereas Fourier transform is linear-based.Normally, in the MFCC method, DCT is applied after the implementation of filterbanks.DCT is a linear transformation and it discards some important information in the speech signal that is non-linear [20].Therefore, we didn’t prefer to use DCT, the origin of our features in the dataset are filterbank energy features as shown in Fig.4.

    At the second step,framing and windowing processes were applied.After the speech signals preemphasised and divided into frames,well known windowing method Hamming[21,22]was applied.Then, Discrete Fourier Transform (DFT) was calculated for each windowed spectrum as given in Eq.(3),while the periodogram estimated power spectrum was calculated for the speech frame as given in Eq.(4).

    whereS(n)demonstrates the signal domain andSi(n)is a framed signal.Si(k)represents the frame in the time-domain,Pi(k)denotes the power-spectrum of framei.h(n)isNsample long analysis window(e.g.,hamming window),whileKis the length of the DFT[23].

    Figure 4:Plots of Mel-Scale filterbank and windowed power spectrum[23](a)the full filterbank,(b)example power spectrum of an audio frame,(c)filter 8 from filterbank,(d)windowed power spectrum using filter 8,(e)filter 20 from filterbank,(f)windowed power spectrum using filter 20

    2.3 Creating Spectrogram Feature

    After the extraction of logarithmically positioned mel-scale filterbanks, “l(fā)ibrosa”[24] a Python library for audio and music signal analysis,was used to convert power spectrums(amplitude squared)to decibels (dB).Herein, librosa’s power_to_db method was applied and the units were saved as mel-scale spectrograms with the size of 800 × 600 pixels representing MFCC features.Each spectrogram contained a five-second characteristic speech signal information for each individual.These mel-spectrograms were subjected to certain image processing operations before the classification stage.Each image instance in the dataset contained 480000 features, which were multiplied by 800×600 pixels.To cope with training time and complexity of the model,each image was size reduced to 80×60 pixels as seen in the Figs.5a and 5b.

    Figure 5:(a)speaker-1’s voice mel-spectrogram,(b)speaker-2’voice mel-spectrogram

    Resized spectrograms converted to grayscale images.Every grayscale image contains 80 × 60 features of a single sentence recorded for an individual.At the end of this stage,the Turkish speaker dataset obtained is obtained as shown in Fig.6 with 530 instances belonging to 15 people.Each instance consists of 4800 features and a speaker class.

    Figure 6:A part of the Turkish speakers dataset

    2.4 Classification

    Orange3[25]machine learning tool used to evaluate the accuracy of the model.In this study,ML algorithms were attempted to be trained with the dataset.Since the human voice is nonlinear in nature,linear models are not suitable for ASR systems.The nonlinear ML algorithms such as deep neural network(DNNs)are more dominant pattern recognition techniques[26].In this study we prioritized three nonlinear algorithms in terms of ASR performance.These are SMO[27],Random Forest(RF)[28],and a 3-layer NN called Multilayer perceptron(MLP)[29]algorithms.

    SMO is an SVM based classification algorithm that implements John Platt’s sequential minimal optimization algorithm for training a support vector classifier.RF introduced by Breiman to construct random trees in classification.The DNN classifier used in our model consists of 3-hidden layers and 64 neurons in each layer.The extracted 4800-pixel features are inputs and 15 speakers are outputs as seen in Fig.7.Finally,the 10-fold cross validation method was used for evaluation of each algorithm.

    Figure 7:Structure of MLP classifier used in model

    3 Materials and Results

    This study held on NVidia GeForce GTX 860M laptop and Python platform.Data features were extracted from the collected Turkish speakers’voice instances using MFCCs method andLyons’Python Speech Features libraryand resulted in a new dataset.This library supports the following voice features;MFCCs,Filterbank Energies,Log Filterbank Energies and Spectral Subband Centroids.Log Filterbank Energies were used to get power spectrogram and pixel features.To detect the speaker,we applied several machine learning algorithms on Orange 3.It is basically a python-based visual data mining programming unit.

    In this study,we tried a novel approach and used more features than MFFCs.If the complexity of a dataset increases the DNNs as shown in Fig.8 are a good choice to train it.So,one of the most satisfying and promising result of this study was getting the highest evaluation score with DNN model.Before choosing the optimum model, several classifier methods used and the evaluation results in Tab.1 was obtained.

    The best model achieved for our dataset was withtanhactivation functions.When look at the confusion matrix, we can see that the misclassification is more in women voices.This situation may show that women’s voices in the dataset are more similar in terms of dB and mel-scale energy.

    Figure 8:Confusion matrix of DNN classifier(64×64 neurons)

    Table 1: Evaluation results of models

    4 Conclusions

    This was a preliminary study for the Turkish speaker recognition system.We introduced a new approach to speaker recognition using MFCCs.Mel spectrogram pixels are used instead of traditional MFCCs as our feature set.Although the feature size is larger and correlation is higher than MFCCs,our proposed model operates over DNN,which can handle complex and correlated dataset.And the near future,we are planning to develop a more robust model for use in real-time speeches.Since we are working with spectrograms, which having voice information, CNN model may be applicable in the future works.The Turkish speakers dataset produced in this study is a novel dataset.During the pandemic, we were unable to collect new data and conduct experiments on them.However, we aim to improve our dataset in the near future.The most important output of this study is the picture of human voice investigated as a new feature set.Therefore,we believe that the mel spectrograms may be used as voice fingerprints in the near future.

    Acknowledgement:We thank our families and colleagues who provided us with moral support.

    Funding Statement:This work was supported by the GRRC program of Gyeonggi province.[GRRCGachon2020(B04),Development of AI-based Healthcare Devices].

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    美女xxoo啪啪120秒动态图| 午夜免费观看性视频| 国产av精品麻豆| av福利片在线| 狂野欧美激情性xxxx在线观看| 日本av手机在线免费观看| 狂野欧美白嫩少妇大欣赏| 久久国产精品男人的天堂亚洲 | 少妇的逼水好多| 亚洲成色77777| 久久99一区二区三区| 桃花免费在线播放| 亚洲国产最新在线播放| 久久久久久人妻| 在线播放无遮挡| 久久热精品热| av天堂久久9| 精品人妻熟女av久视频| 在线观看免费视频网站a站| 午夜福利在线观看免费完整高清在| av免费观看日本| 亚洲国产精品一区三区| 999精品在线视频| 久热这里只有精品99| 老司机影院毛片| 国产国语露脸激情在线看| 精品少妇久久久久久888优播| 曰老女人黄片| av视频免费观看在线观看| 永久免费av网站大全| 日韩中文字幕视频在线看片| 欧美日韩av久久| 精品久久久噜噜| 99国产综合亚洲精品| 精品久久久久久电影网| 99久久精品国产国产毛片| av黄色大香蕉| 欧美三级亚洲精品| 少妇人妻久久综合中文| 大香蕉97超碰在线| 一级毛片aaaaaa免费看小| 日本黄大片高清| 成人国语在线视频| av电影中文网址| 国产深夜福利视频在线观看| 欧美性感艳星| 国产爽快片一区二区三区| 国产欧美亚洲国产| 人人妻人人澡人人看| 高清不卡的av网站| 三上悠亚av全集在线观看| 久久精品国产亚洲av涩爱| 一区二区三区精品91| a级毛片免费高清观看在线播放| 午夜福利影视在线免费观看| 午夜免费观看性视频| 国产永久视频网站| 黑人欧美特级aaaaaa片| 999精品在线视频| 91精品三级在线观看| 欧美日韩在线观看h| 国产成人av激情在线播放 | 一级毛片黄色毛片免费观看视频| 亚洲欧美成人综合另类久久久| 在线观看美女被高潮喷水网站| 亚洲欧美一区二区三区国产| 欧美+日韩+精品| 街头女战士在线观看网站| 18禁在线播放成人免费| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 最新的欧美精品一区二区| 伦理电影免费视频| 国产亚洲精品第一综合不卡 | 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 美女中出高潮动态图| 国产免费一级a男人的天堂| 国产成人精品婷婷| 下体分泌物呈黄色| 国产伦理片在线播放av一区| 街头女战士在线观看网站| 日本爱情动作片www.在线观看| 麻豆精品久久久久久蜜桃| 久久亚洲国产成人精品v| 免费人妻精品一区二区三区视频| 校园人妻丝袜中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 观看av在线不卡| 午夜免费鲁丝| 久久人人爽人人片av| 亚洲国产精品999| 黄片无遮挡物在线观看| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 一级毛片黄色毛片免费观看视频| 九色成人免费人妻av| 九色亚洲精品在线播放| 久久久久国产网址| 亚州av有码| 中文乱码字字幕精品一区二区三区| 在线观看一区二区三区激情| 男女边摸边吃奶| 制服人妻中文乱码| 久久久久久久国产电影| 大话2 男鬼变身卡| 黄片播放在线免费| 国产在线一区二区三区精| 日本免费在线观看一区| 一级毛片电影观看| 国产欧美日韩一区二区三区在线 | 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 黄片无遮挡物在线观看| 亚洲欧美清纯卡通| 午夜免费男女啪啪视频观看| 最黄视频免费看| 亚洲高清免费不卡视频| 日韩视频在线欧美| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| 精品视频人人做人人爽| 一区在线观看完整版| 好男人视频免费观看在线| 午夜福利视频在线观看免费| 亚洲精品久久久久久婷婷小说| √禁漫天堂资源中文www| 一级黄片播放器| 99国产精品免费福利视频| 免费播放大片免费观看视频在线观看| 最后的刺客免费高清国语| 又黄又爽又刺激的免费视频.| 男女免费视频国产| 精品少妇久久久久久888优播| 欧美成人精品欧美一级黄| 色94色欧美一区二区| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 女性生殖器流出的白浆| 自拍欧美九色日韩亚洲蝌蚪91| 2021少妇久久久久久久久久久| 日韩视频在线欧美| 亚洲精品aⅴ在线观看| 亚洲av男天堂| 国产精品三级大全| 久久av网站| 最新的欧美精品一区二区| 97在线视频观看| 精品国产国语对白av| 99久久人妻综合| 五月开心婷婷网| 少妇人妻 视频| 热re99久久国产66热| 亚洲五月色婷婷综合| 久久久久久久国产电影| 男女无遮挡免费网站观看| 91精品三级在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品色激情综合| 色婷婷久久久亚洲欧美| av专区在线播放| freevideosex欧美| 国产男女内射视频| 亚洲欧美清纯卡通| 久久久国产欧美日韩av| 国产成人精品福利久久| 草草在线视频免费看| 久久久久人妻精品一区果冻| 国产精品久久久久久精品电影小说| 91成人精品电影| 插逼视频在线观看| 久久免费观看电影| 黑人欧美特级aaaaaa片| 建设人人有责人人尽责人人享有的| 赤兔流量卡办理| 国产极品天堂在线| 校园人妻丝袜中文字幕| 国产乱来视频区| 一区二区日韩欧美中文字幕 | 精品亚洲乱码少妇综合久久| 中文字幕久久专区| 欧美精品一区二区大全| 日本午夜av视频| 亚洲欧洲精品一区二区精品久久久 | 国产午夜精品久久久久久一区二区三区| 亚洲综合色惰| 国产av国产精品国产| 18禁动态无遮挡网站| 性高湖久久久久久久久免费观看| 久久久久精品久久久久真实原创| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 日本欧美视频一区| 黄色配什么色好看| 欧美日韩成人在线一区二区| 美女xxoo啪啪120秒动态图| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 国产精品成人在线| av又黄又爽大尺度在线免费看| 亚洲欧美日韩卡通动漫| 一区二区三区精品91| 我的女老师完整版在线观看| 午夜91福利影院| 老熟女久久久| 大陆偷拍与自拍| 日本wwww免费看| 久久 成人 亚洲| 九九爱精品视频在线观看| 九草在线视频观看| 视频区图区小说| 亚洲精品av麻豆狂野| 亚洲精品456在线播放app| 国产有黄有色有爽视频| av国产精品久久久久影院| 大又大粗又爽又黄少妇毛片口| 亚洲av国产av综合av卡| 亚洲精品日本国产第一区| 久久久久国产网址| 夫妻午夜视频| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 51国产日韩欧美| 成人免费观看视频高清| 9色porny在线观看| 日韩精品免费视频一区二区三区 | 人人妻人人澡人人看| 久久久久国产精品人妻一区二区| 九九在线视频观看精品| 中文字幕最新亚洲高清| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区av在线| 一本一本综合久久| 亚洲人成77777在线视频| 国产高清国产精品国产三级| 日韩电影二区| 亚州av有码| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| 春色校园在线视频观看| .国产精品久久| 亚洲av电影在线观看一区二区三区| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 人妻系列 视频| 全区人妻精品视频| 99久久综合免费| 中国美白少妇内射xxxbb| 桃花免费在线播放| 91精品国产九色| 日韩人妻高清精品专区| 99久国产av精品国产电影| 九草在线视频观看| 人人妻人人添人人爽欧美一区卜| 久久久久久久亚洲中文字幕| 亚洲国产精品专区欧美| 在线亚洲精品国产二区图片欧美 | 国产一级毛片在线| 日产精品乱码卡一卡2卡三| 大香蕉97超碰在线| 亚洲成人av在线免费| 视频中文字幕在线观看| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 在线观看www视频免费| 国产免费福利视频在线观看| 能在线免费看毛片的网站| 免费看光身美女| 男女边吃奶边做爰视频| 午夜福利视频在线观看免费| 日本vs欧美在线观看视频| 亚洲成人一二三区av| 边亲边吃奶的免费视频| 在线 av 中文字幕| 免费观看在线日韩| 精品久久久精品久久久| 少妇高潮的动态图| 亚洲精品久久午夜乱码| 亚洲在久久综合| 免费久久久久久久精品成人欧美视频 | 老司机亚洲免费影院| 亚洲中文av在线| 18禁在线播放成人免费| 蜜桃在线观看..| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 日韩中字成人| 晚上一个人看的免费电影| 最新的欧美精品一区二区| 在线 av 中文字幕| 国产av码专区亚洲av| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区 | 免费久久久久久久精品成人欧美视频 | 99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 午夜福利视频精品| 国产成人精品福利久久| 亚洲精品av麻豆狂野| 国产伦理片在线播放av一区| 搡老乐熟女国产| 大又大粗又爽又黄少妇毛片口| 成人国产麻豆网| 国产精品久久久久久精品古装| 我的老师免费观看完整版| 午夜老司机福利剧场| 免费看光身美女| 在线观看国产h片| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 九九爱精品视频在线观看| 午夜av观看不卡| 日韩一区二区三区影片| 国产精品 国内视频| 我要看黄色一级片免费的| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 国产白丝娇喘喷水9色精品| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 看非洲黑人一级黄片| 久久久精品区二区三区| 成人手机av| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 婷婷色综合www| 久久国产精品大桥未久av| 国产免费视频播放在线视频| 久久久国产精品麻豆| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 大码成人一级视频| 日韩视频在线欧美| 精品久久国产蜜桃| 久热这里只有精品99| 九色成人免费人妻av| 精品久久久噜噜| 日韩三级伦理在线观看| 精品久久久噜噜| 日韩三级伦理在线观看| 日韩视频在线欧美| 亚洲内射少妇av| 精品一区二区三卡| 夫妻午夜视频| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 亚洲综合色网址| 国产高清三级在线| 亚州av有码| 免费黄频网站在线观看国产| 大码成人一级视频| av专区在线播放| 少妇的逼好多水| 日本欧美视频一区| 色哟哟·www| 日韩欧美一区视频在线观看| 亚洲内射少妇av| 精品一品国产午夜福利视频| 精品一区在线观看国产| 亚洲国产精品999| 欧美性感艳星| 亚洲国产日韩一区二区| 精品少妇内射三级| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区成人| av一本久久久久| 考比视频在线观看| 18禁在线播放成人免费| 日本黄色日本黄色录像| 热re99久久国产66热| 亚洲成色77777| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱| 亚洲精品久久午夜乱码| 五月开心婷婷网| 国产成人a∨麻豆精品| 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 国产欧美亚洲国产| videossex国产| 黑丝袜美女国产一区| av电影中文网址| 久久人妻熟女aⅴ| 国产精品嫩草影院av在线观看| 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 性高湖久久久久久久久免费观看| 午夜福利视频精品| 高清午夜精品一区二区三区| 男人爽女人下面视频在线观看| 欧美xxⅹ黑人| 国产精品一区www在线观看| 一级,二级,三级黄色视频| 51国产日韩欧美| 久久久午夜欧美精品| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 热re99久久精品国产66热6| 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 久久久久久久久大av| 精品亚洲乱码少妇综合久久| xxx大片免费视频| 国产淫语在线视频| 青春草亚洲视频在线观看| 国产伦理片在线播放av一区| 免费观看无遮挡的男女| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 亚洲精品,欧美精品| 亚洲国产欧美日韩在线播放| 亚洲国产av影院在线观看| 涩涩av久久男人的天堂| 国产男女内射视频| 蜜桃在线观看..| 视频中文字幕在线观看| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 欧美精品人与动牲交sv欧美| 性色av一级| 看非洲黑人一级黄片| 亚洲精品一区蜜桃| 在线观看三级黄色| 亚洲欧美成人精品一区二区| 久久青草综合色| 免费av不卡在线播放| 免费观看的影片在线观看| 两个人的视频大全免费| 久久久精品区二区三区| 精品国产一区二区久久| 精品久久久噜噜| a级毛片免费高清观看在线播放| 热99久久久久精品小说推荐| 国产高清有码在线观看视频| 亚洲成人av在线免费| 老司机亚洲免费影院| 亚洲激情五月婷婷啪啪| 国产精品蜜桃在线观看| 99热网站在线观看| 一区二区日韩欧美中文字幕 | 少妇猛男粗大的猛烈进出视频| av有码第一页| 亚洲av免费高清在线观看| 伊人亚洲综合成人网| 免费黄色在线免费观看| 街头女战士在线观看网站| 久久久久久人妻| 爱豆传媒免费全集在线观看| 国产不卡av网站在线观看| 天美传媒精品一区二区| 老司机影院毛片| 国产片特级美女逼逼视频| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 亚洲av.av天堂| 精品少妇内射三级| 黄色一级大片看看| 亚洲四区av| 国产黄色免费在线视频| 婷婷成人精品国产| 女人精品久久久久毛片| 久久这里有精品视频免费| 黄片播放在线免费| 最近中文字幕2019免费版| av女优亚洲男人天堂| av播播在线观看一区| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 91精品一卡2卡3卡4卡| 亚洲欧美日韩卡通动漫| 国产免费福利视频在线观看| 国产亚洲一区二区精品| 亚洲美女视频黄频| 秋霞伦理黄片| 中文字幕av电影在线播放| 免费观看在线日韩| 天堂俺去俺来也www色官网| 一区二区av电影网| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 亚洲精品乱码久久久久久按摩| 一边摸一边做爽爽视频免费| 免费播放大片免费观看视频在线观看| 免费黄频网站在线观看国产| 中文字幕最新亚洲高清| 欧美最新免费一区二区三区| 国产精品99久久99久久久不卡 | 久久久久久久久久久丰满| 高清av免费在线| 国产成人一区二区在线| 午夜91福利影院| 日韩av在线免费看完整版不卡| 天堂俺去俺来也www色官网| 亚洲国产av新网站| 少妇的逼水好多| 国产成人免费无遮挡视频| 男女免费视频国产| 久热久热在线精品观看| 黑人高潮一二区| 尾随美女入室| av电影中文网址| 亚洲精品久久久久久婷婷小说| 18禁动态无遮挡网站| 亚洲综合色网址| 十八禁网站网址无遮挡| 在现免费观看毛片| av播播在线观看一区| 国产亚洲精品第一综合不卡 | 99热6这里只有精品| 一区二区av电影网| 考比视频在线观看| 亚洲婷婷狠狠爱综合网| 午夜日本视频在线| 伊人久久国产一区二区| 伦理电影免费视频| 大陆偷拍与自拍| 国产日韩欧美视频二区| 女人精品久久久久毛片| 亚洲国产精品999| 午夜福利影视在线免费观看| av播播在线观看一区| 一个人免费看片子| 综合色丁香网| 人体艺术视频欧美日本| 国产精品一二三区在线看| 桃花免费在线播放| 人人妻人人爽人人添夜夜欢视频| 好男人视频免费观看在线| 亚洲av中文av极速乱| 欧美成人午夜免费资源| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花| 国产 精品1| 搡女人真爽免费视频火全软件| 中文字幕久久专区| 黄色毛片三级朝国网站| 日韩一本色道免费dvd| 高清毛片免费看| 夫妻午夜视频| 国产高清不卡午夜福利| 国产视频内射| 免费不卡的大黄色大毛片视频在线观看| 两个人免费观看高清视频| 国产成人免费无遮挡视频| 国产永久视频网站| 亚洲av在线观看美女高潮| 国产高清国产精品国产三级| 全区人妻精品视频| 成人二区视频| 午夜激情久久久久久久| av有码第一页| 亚洲精品成人av观看孕妇| 99久久中文字幕三级久久日本| 国产精品人妻久久久久久| 午夜老司机福利剧场| 亚洲美女黄色视频免费看| 国产成人精品一,二区| 天美传媒精品一区二区| 人成视频在线观看免费观看| 久久精品国产亚洲av天美| 男女国产视频网站| 国产熟女欧美一区二区| 免费看av在线观看网站| 国产男人的电影天堂91| 性高湖久久久久久久久免费观看| 精品人妻熟女av久视频| www.色视频.com| 人人妻人人爽人人添夜夜欢视频| 夜夜骑夜夜射夜夜干| 五月伊人婷婷丁香| 国产av一区二区精品久久| 日韩欧美精品免费久久| 久久99精品国语久久久| 国产免费又黄又爽又色| 中文字幕av电影在线播放| 亚洲精品乱码久久久久久按摩| 亚洲图色成人| 久久久久人妻精品一区果冻| 亚洲第一区二区三区不卡| 韩国高清视频一区二区三区| 黑人高潮一二区| av有码第一页| 麻豆精品久久久久久蜜桃| 777米奇影视久久| videosex国产| 在线观看www视频免费| 国产国拍精品亚洲av在线观看| 亚洲精品美女久久av网站| 51国产日韩欧美| 一本大道久久a久久精品| 黄片无遮挡物在线观看| 久久婷婷青草| 一区二区三区乱码不卡18| 69精品国产乱码久久久| 日韩欧美一区视频在线观看| 人妻人人澡人人爽人人| 国产精品一国产av| 男女无遮挡免费网站观看| 欧美日韩国产mv在线观看视频| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三卡| 午夜91福利影院| 日本午夜av视频| 国产精品人妻久久久久久| av不卡在线播放| 国产欧美日韩综合在线一区二区| 欧美变态另类bdsm刘玥|