• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

    2022-08-23 02:20:04HunminLeeInseopNaKamoliddinBultakovandYoungchulKim
    Computers Materials&Continua 2022年6期

    Hunmin Lee,Inseop Na,Kamoliddin Bultakov and Youngchul Kim,

    1Department of Computer Science,Georgia State University,Atlanta,30302,USA

    2Nat’l Program of Excellence in Software Centre,Chosun University,Gwangju,61452,Korea

    3Department of Computer Inf.&Communication Eng.,Chonnam Nat’l Univ.,Gwangju,61186,Korea

    Abstract: In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors.Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing; thus, it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.

    Keywords: BPR-CNN; dynamic offset-threshold method; electric potential sensor; electric field sensor; multiple convolution neural network; motion classification

    1 Introduction

    The EF(Electric Field)sensor extracts information by sensing the variations of the electric charge near the surface of the sensor and converts the signal into voltage-level output.Today, EF sensors are mainly categorized by two modes, contact mode and non-contact mode.The contact mode has widely been applied in the area of healthcare and medical applications by sensing bioelectric signals such as electrocardiogram,electromyogram and electroencephalogram[1–5].Meanwhile,non-contact type measures the electric potential signal on the surface of EF sensors induced by the disturbance of the surrounding electric field which is caused by movement of dielectric substances such as human bodies or hands due to coupling effect [6].A few of non-contact EF sensor systems have been applied in commercial products, while several studies in academic institutions have been reported in application areas of proximity sensing, placement identification, etc [7–10].As EF proximity sensing systems are gaining attention,recent studies have been published regarding the area of hand or body motion detection and recognition [11–21].Our past studies [11–14] were focused on noncontact EF sensing,extracting and processing the signals through EF sensors.Moreover,by utilizing deep learning algorithms such as LSTM and CNN,multiple hand gesture classification mechanisms were proposed after a series of signal processing steps.Wimmer et al.[22]introduced the‘Thracker’device that utilized capacitive sensing,which encouraged the possibility of interaction between human and computer systems through non-contact capacitive sensing.Singh et al.[15] suggested a gesture recognition system called Inviz for paralysis patients that implemented textile-built capacitive sensors,measuring the capacitance interaction between the patient’s body and the sensor.Aezinia et al.[16]designed a three-dimensional finger tracking system through a capacitive sensor,which was functional within 10 cm range from the sensor.

    In this paper, we present a real-time hand motion detection and classification system adopting Biometric Pattern Recognition-Convolution Neural Network(BPR-CNN)classifiers combined with a dynamic threshold method for automatic motion detection and motion-frame extraction(Fig.1)in EF signals.Our proposed system is fully automated with real-time motion detections,extracting the true frame and classifying motion types occurring at the range of up to 30 cm near the EF sensors.Accuracies of detecting hand motions and extracting signal frames were quantitatively rated through our suggested metrics.Furthermore, we suggest the simulation results of our CNN architectures;Multiple CNN(MCNN)and BPR-CNN with other classification algorithms and empirically evaluate the hand gesture classification performance.

    Figure 1:A proposed hand motion extraction and classification process

    This paper is organized as follows.Section 2 describes our suggested methods of computing the dynamic threshold for motion detection and frame extraction by analyzing the intrinsic features of the EF signals.We also explain the two CNN-based motion classifiers that were designed and thus applied into our system.In Section 3,we present the results of four hand gesture classifications through multiple experiments.In conclusion,we conclude our study and suggest the future works.

    2 Discussion

    In this section, we explain our dynamic threshold method for motion detection and frame extraction in the EF sensor signals.After setting the optimal signal frame,we conduct normalization followed by transforming the dimensions of normalized data in order to be trained into our proposed CNN model.We implement the MCNN and BPR-CNN to effectively train the features of the transformed signals thus classifying the inputs into corresponding gestures.Note that we handle the signals that have been already processed through Low-Pass-Filter(LPF)and Simple Moving Average(SMA).Since natural frequency from the human hand or arm is known to have 5~10 Hz[23],which is a domain of extremely low frequency,thus we use the 10 Hz as a cut-off frequency in the LPF.The readers can refer to our previous studies[11–14]for more information regarding the implementation of LPF to filter out unnecessary noises and conduct the Moving Average to smoothen the filtered gesture signal from the sensor.

    2.1 Dynamic Offset and Threshold

    One of the challenging problems in dynamic thresholding in order to detect the signal and to locate the “genuine”signal frame is to compute an offset voltage for each Electric Potential Sensor(EPS)and adjust the threshold values periodically before detecting the target hand motion.As most hand motions and gestures are being done within a short period of time,we set the update cycle time unit to be a second.We implemented two EPS(Sensor A,B,sensor type PS25401)[14,23],and each sensor started with unidentical initial offset due to the various electric charging and discharging states near the sensors according to diverse environmental conditions in the moment of time.

    Through our empirical past simulations,the initial voltagevinit∈R(unit:V)ranges from-0.2 ≤vinit≤0.02 withμ(?vinit)= -0.08 andσ(?vinit)= 0.03 whereμdenotes average andσis standard deviation,when implementing EPS to measure the capacitance changes when the subject is proximally located.The statistics were acquired from four distinct hand gesture types(Tab.1),each conducting 600 trials;n(?vinit)=600,and the distribution visualization ofvinitis shown in Fig.2a.LetS={vn|1 ≤n≤T·1000,n∈N} be a set of time series raw sensor (voltage) datavn, where the sampling ratewhichn(S)=1000 whenT=0.001sec.

    Table 1: Motion types and their images

    Likewise,due to heterogeneous property ofS,dynamictracks the discrete variantand its upper and lower bound, which maintains the robustness regardless of time-variant offset value.As for the time-varying signal pattern which is the electric field disturbances due to hand motion,charging and discharging the electrics triggers the voltages to display waveform.Figs.2b and 2c shows the typical output signal that charges and discharges the sensor plate which soars up(otherwise falls down),reaching its peak(bottom),then descends to bottom point(vice versa)and finally returns to an initial level when there was a hand gesture near the sensor plate.

    Figure 2:(a)distribution of vinit in 800 trials.(b,c)the produced EF signals,each with sensor A,B and A–B,where is(b)after the LPF and(c)after LPF&SMA

    Due to these features,dynamicare considered to be effective in order to detect our targets which limits the possible starting point of a next hand motion,and we empirically show its detection rate in Section 3.

    2.2 Motion Detection and Extraction

    Each individual hand motion generates unidentical signal phases depending on various conditions such as hand movement speed,distance and direction.In order to detect and extract the corresponding motion frames,we considered not only the duration,but also the time frame that could be divided into the stages of motion.The detection is composed of 4 steps where the left and right term enclosed with braces each indicate the two contrasting cases(case 1,2).The detection steps are indicated as follows;

    In Fig.3,a signal of hand gesture moved from left to right(LR)is shown.As we make another hand gesture,it detects the motion and locates the following frame continuously.Fig.3 contains two motion signals;each signal obtained from two different sensors(A-red and B-blue),where the dotted lines intersected with the signals show the starting point of the frame(magenta dot)and ending point of the frame(black dot).Each red and blue dot indicates the intersection point where=vi.Through these steps we could successfully distinguish the hand motions and compute the significant frame that encompasses the authentic motion signals.

    2.3 Normalization of an Extracted Motion Frame

    When hand motions are identified by the sensor,the time period of the extracted frame is diverse even if the motions were the same types,due to the speed or distance range of the motion.Likewise,the amplitude of the motion signal also tends to change on every new motion since the subject’s potential electrostatic state varies through numerous conditions such as textile of the cloth,location,or nearby machines,etc[4,9,11,12].Thus,it is imperative to conduct normalization in order to be properly trained in deep learning models as normalizing input data is known to be a productive measure to enhance the performance.In our signal,the time(X-axis)and voltage(Y-axis)are the two axes that are to be normalized.For Y-axis,standardization was applied and letwhered=(n′′-|n′′-n′|·0.1)-(n′+|n′′-n′|·0.1),For X-axis,we normalizedn(into 1000, deletingd- 1000 data ink-periodical sequence, whereThis leads to= 1000, computingwhere 0 ≤m <(d-1000).The normalized signal is shown in Fig.4, where the dotted line indicates the extracted frame of clockwise(CW)hand gesture,meanwhile solid line is the result after the normalization.Note that even if the identical subject performs the same motion type in a homogeneous environment such as time and location,the phase of the signal is distinctive due to the constantly varying charging state.

    Figure 3:Motion frame extraction visualization

    Figure 4:Visualization of original clockwise hand motion frame signal and normalized frame signal

    2.4 Signal Dimension Transformation

    After applying the normalized motion frame, the signal frame must be transformed from 1-dimension voltage signal to 2-dimension image in order to train the CNN model.Based onwheren(=1000,we primarily reducen()into 900,deleting theandin order to compute the 30×30×1 image(900 = 30·30).Fig.5 shows the schematization of transforming the motion frame into the 30×30×1 image format.

    Figure 5: Dimensional transformation of a motion frame: (a) the transformation schematization reshaped into(30×30×1)grayscale image,(b)the transformed images for 4 hand gestures

    2.5 Motion Classification Through CNN Models

    In this section,we define the structure of our two CNN-based classifiers;MCNN and BPR-CNN that were implemented to effectively categorize the types of input hand motion signal images.

    2.5.1 Multiple CNN Classifiers with Voting Logics

    The first classifier is composed of five pre-trained CNN models, which are operated in parallel with unidentical filter size in their convolution layer.Fig.6 shows a five-layer CNN structure that was applied in our MCNN.

    This model was trained through the extracted feature patterns from convolution layers learning local features to global features.After the fully-connected layer andsoftmaxfunction,it outputs the class probabilityp(f(x)|x)(soft label).Once the CNN classifiers have been trained,each CNN predicts the input into a single category.Fig.6 represent that an example of implemented CNN structure.The kernel size of each Chin?is as follows;δ(C1,??)= (5×5),δ(C2,??)= (7×7),δ(C3,??)= (3×3),δ(C4,1)=(5×5),δ(C4,2)=(3×3),δ(C5,1)=(7×7)andδ(C5,2)=(3×3).

    Figure 6:An example of implemented CNN structure

    The outputs from the five CNNs are considered in order to make the final classification prediction through majority voting as shown in Fig.7.Each input data consists of three 30×30×1 images,which represents three channels for sensor A,B and A-B signals.These three motion signal images are extracted in real-time and inserted into pre-trained CNN classifiers in Fig.6.

    Figure 7:Parallel multiple CNN with majority voting classifier

    Our ultimate goal is to successfully classify the four types of hand motions (Tab.1) with high accuracy.Recall that the five CNN contains different kernel sizes,(refer to Fig.6 for detailed kernel sizes in each layer) and MCNN classifier conducts majority voting (Fig.7) between soft labels.LetH= {Ch|1 ≤h≤5,h∈N} and letδ(Ch,?)a kernel size on convolution layerCh??= {1,2},whereChdenotes a CNN model,andhis an index of the model.Ch(y,f(x),L(w,b,x))=Ph(x),whereydenotes the true class,f(x)is a prediction class and loss functionL(·)based on set of weightw,biasband inputx.Ch(·)calculates a label prediction probabilityPhand eventually computing hard labelH(x)=argVoting classifier aggregates theH?h(x), and final classification ?y=arg max(φ(H?h(x)))whereφ(Hh(x))= {γi|1 ≤i≤4,i∈N,(Hh(x)=g(i))→γi+1}where initialγ?i=0.

    2.5.2 BPR-CNN Classifier

    Biomimetic Pattern Recognition (BPR) [16,23–25] utilizes high-level topology features from biomimetic signals to discover certain patterns, which focuses on the concept of cognizing feature topology.Combining BPR with CNN (BPR-CNN) triggers higher performance as features are extracted from the CNN model, and BPR computes the topological manifold properties in given Euclidean parameter space based on Complex Geometry Coverage (CGC) [26] as shown in Fig.8.Manipulating the prediction probabilityP(x),it computes theηnumber of distance-based clusters?η,?η?P(xi)where 1 ≤i ≤n(x),i ∈N,η=n(classes)=n(P(x)).Since the set of trained w and b itself are not permutationally invariant,we cannot implement the distance-based geometry coverage based on the w and b.

    Figure 8:Visualization of the BPR-CNN mechanism

    However,P(x)would indicate the proximity between the classes and the output ofx, which guarantees the closest single class in the Euclidean space.Based on the proximity of class-wise topological space,it cognizes the matter using the high-level features.The processed input image set is abstruse to distinguish the classes or interpret the meanings of the indicated number of the pixels in the human eye,thus high-level robust features are preferred to accurately compute the decision boundary instead of using low-level features.To elaborate,input images that clearly show an object for CNN to classify the target such as cat or dog,their intrinsic features are distinct such as its eye,nose,or other parts of the subject,whereas our case doesn’t.

    Our case specifically requires the robust features in high-level feature space where the trend of each hand motion signal image could be found.Implementing the BPR-CNN,we could derive better input signal classification performance compared to conventional CNN,and we validate this through experiments in Section 3.In BPR classifier,pre-trained CNN model=P(x)andφ(?P(xi))=?η,whereφ(·)indicates pairwise distance-based clustering such as K-means(K=η)[27].In Euclidean space Rη,where Rη??η?P(xi),K(xnew)=argmin1≤k≤η,k∈NdL2(μ(?k),P(xnew)),which allocatesxnewto?Kwherexnew/xi.The layer structure of the CNN was set with Conv-MaxPooling-Conv-MaxPooling- Conv-MaxPooling-Dense-Dense.The kernel size of each convolution and maxpooling layers were set with 5×5 and 2×2 respectively.

    3 Experimental Results

    3.1 Experiment Setting

    Through the empirical experiments,we evaluate the performance of our designed methodology.Utilizing the EPS sensor[14,28],four hand motion types indicated in Tab.1 were extracted from each of six subjects, 100 gestures for each motion, collecting a total of 2400 motion samples.Among the dataset, we randomly split the 2160 samples for training and 240 for test data.The extracted raw signal was processed through consecutive signal processing methods starting from the LPF and SMA,followed by automatically detecting hand motions and setting signal frame by dynamic threshold,and normalizing the signal.Next,we transform the signal into an image and a pre-trained classifier determines its label.Note thatη=4,since our objective is to classify the four motion types(Tab.1).All this process(Fig.1)is operated in real-time and test dataset were generated and classified(Less than second when computing through CPU i7–7500U RAM 8GB).The performance has been measured through our metrics of Correct Detection Rate(CDR),Motion Frame Matching Rate(MFMR)and Detection & Extraction Success Rate (DESR).CDR shows the degree of correspondence between the signal and the actual motion, and the MFMR quantitatively assesses the matching rate of the computed motion frame.Finally,DESR is obtained by CDR multiplied by MFMR to indicate their combined accuracy level.The training epoch was set with 20 and learning rate of 0.01, withreluactivation function in each convolution layer.

    3.2 Experiment Result

    Following Tab.2 shows the result of our three designated metrics, which validates that the proposed method of our study works with high accuracy of around 98%on average.

    Table 2: Performance of the selected metrics

    Following Tab.3 displays the experiment results of the four classifier algorithms.Their performances were evaluated with classification accuracy based on identical test data of four specific hand motions in Tab.1.We denote the average of four motion accuracy as Classification Correction Rate(CCR), which is computed in Tab.3.From each motion in Tab.1, three distinct output signals are produced;sensor A value,sensor B value and subtracted value(A-B).Performance of the two CNN classifiers (MCNN and BPR-CNN) were also compared with other algorithms such as HMM and SVM.Our experiment results show that the suggested motion detection and frame extraction based on the two threshold works with high CDR and MFMR,and also the classification accuracy of BPRCNN classifier outperformed other competitive models.

    Table 3: Classification correction rate of the BPR-CNN model

    4 Conclusion and Future Works

    In this paper,we proposed the dynamic thresholding and framing algorithms in order to set the accurate motion EF signal frame in real-time, and evaluated its performance using the following metrics;99.4%in CDR,98.4%in MFMR,97.8%in DESR.Moreover,we implemented the MCNN and BPR-CNN motion classifiers and compared the accuracy with other algorithms.Based on the extracted features of the 3 channel (sensor A, B, A-B) input signal images, BPR-CNN had shown the highest performance of 97.1% in CCR.Utilizing EF sensing is regarded as a prospective research domain and accommodates practical usage in industry due to diverse advantages such as low computation & price, high sensitivity & recognition speed.Our future work is to adopt the introduced methods to mobile devices and apply the algorithms to control the interface through noncontact hand motions.Training and classifying the diverse and detailed gestures in order to gain algorithmic robustness and versatility is a part of our future work.Combining our studies into interface technologies such as Human Computer Interaction(HCI)or Natural User Interface(NUI),we expect the further utilizations of controlling the various applications through user-friendly interfaces based on EF sensing.

    Funding Statement:This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产视频内射| 国产午夜精品论理片| 小说图片视频综合网站| 色在线成人网| 制服丝袜大香蕉在线| 99在线视频只有这里精品首页| 直男gayav资源| 搞女人的毛片| 日本与韩国留学比较| 国产一区二区在线av高清观看| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | 亚洲性久久影院| 国产高潮美女av| 免费电影在线观看免费观看| 日韩高清综合在线| 内地一区二区视频在线| 亚洲专区国产一区二区| 男女做爰动态图高潮gif福利片| 一个人免费在线观看电影| 国产成人av教育| 成人综合一区亚洲| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| 亚洲国产色片| 成人精品一区二区免费| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 国产淫片久久久久久久久| 国产aⅴ精品一区二区三区波| 国语自产精品视频在线第100页| 美女免费视频网站| 亚洲黑人精品在线| 久久久久精品国产欧美久久久| 欧美不卡视频在线免费观看| 搡女人真爽免费视频火全软件 | 男人的好看免费观看在线视频| 亚洲美女搞黄在线观看 | 男人舔女人下体高潮全视频| 亚洲精品影视一区二区三区av| 老司机福利观看| 亚洲,欧美,日韩| 日日啪夜夜撸| 天美传媒精品一区二区| 国产精品久久电影中文字幕| 国产老妇女一区| 黄色女人牲交| 国产亚洲精品久久久com| 尤物成人国产欧美一区二区三区| 国语自产精品视频在线第100页| 日本 av在线| 一进一出抽搐gif免费好疼| 丰满人妻一区二区三区视频av| 午夜福利在线观看吧| 蜜桃久久精品国产亚洲av| 黄色配什么色好看| 久久久久久伊人网av| 日本 欧美在线| 免费黄网站久久成人精品| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看 | 在线天堂最新版资源| 国产高清激情床上av| 色哟哟·www| 国产精品日韩av在线免费观看| 国产伦精品一区二区三区四那| 欧美最黄视频在线播放免费| 国产午夜精品论理片| 国内少妇人妻偷人精品xxx网站| 成人国产一区最新在线观看| 一级a爱片免费观看的视频| 久久久久久久久久黄片| 在线观看美女被高潮喷水网站| 一边摸一边抽搐一进一小说| 亚洲一区高清亚洲精品| 人人妻人人看人人澡| 欧美最新免费一区二区三区| 国产伦一二天堂av在线观看| 亚洲av二区三区四区| 精品一区二区三区人妻视频| 午夜福利高清视频| 国产精品,欧美在线| 久久久久久久午夜电影| 亚洲av免费高清在线观看| 亚洲国产精品久久男人天堂| 少妇的逼水好多| 亚洲电影在线观看av| 国产高清激情床上av| 综合色av麻豆| 嫁个100分男人电影在线观看| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 最新中文字幕久久久久| 嫩草影院新地址| 熟女人妻精品中文字幕| 久久久久精品国产欧美久久久| 最近最新中文字幕大全电影3| 国产精品不卡视频一区二区| 亚洲,欧美,日韩| 亚洲成av人片在线播放无| 久久精品国产亚洲av涩爱 | 观看美女的网站| 亚洲欧美清纯卡通| 国产精品伦人一区二区| 久久久久久久亚洲中文字幕| 国产精品99久久久久久久久| 中文亚洲av片在线观看爽| 午夜影院日韩av| 国产伦人伦偷精品视频| 天堂影院成人在线观看| 男女啪啪激烈高潮av片| 日日干狠狠操夜夜爽| 99热这里只有精品一区| 又紧又爽又黄一区二区| 亚洲精品色激情综合| 十八禁网站免费在线| 午夜日韩欧美国产| 国产色婷婷99| 伦理电影大哥的女人| 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 亚洲欧美日韩高清在线视频| 精品久久久久久,| 免费搜索国产男女视频| 大又大粗又爽又黄少妇毛片口| 22中文网久久字幕| 女人十人毛片免费观看3o分钟| 亚洲不卡免费看| 中文亚洲av片在线观看爽| 99在线人妻在线中文字幕| 国产成人aa在线观看| 国产成人一区二区在线| 久久久久久久久大av| 亚洲欧美日韩高清专用| 波多野结衣巨乳人妻| 色在线成人网| 国内精品宾馆在线| 中文字幕av在线有码专区| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 欧美日韩亚洲国产一区二区在线观看| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 干丝袜人妻中文字幕| 看十八女毛片水多多多| АⅤ资源中文在线天堂| 女的被弄到高潮叫床怎么办 | 最近中文字幕高清免费大全6 | 成人三级黄色视频| 午夜福利在线观看吧| 欧美最黄视频在线播放免费| 国产高清激情床上av| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 一进一出好大好爽视频| xxxwww97欧美| 全区人妻精品视频| 舔av片在线| 亚洲av电影不卡..在线观看| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 偷拍熟女少妇极品色| 九九爱精品视频在线观看| 悠悠久久av| 国内毛片毛片毛片毛片毛片| 欧美一级a爱片免费观看看| 国产av在哪里看| 亚洲精品影视一区二区三区av| 乱码一卡2卡4卡精品| 亚洲成人免费电影在线观看| 亚洲经典国产精华液单| 国产av不卡久久| 国产精品久久视频播放| 国产精品久久久久久久久免| 国产精品av视频在线免费观看| 精华霜和精华液先用哪个| 欧美性猛交黑人性爽| 欧美成人性av电影在线观看| 中国美女看黄片| 免费看美女性在线毛片视频| 精品久久久久久久末码| 在线观看午夜福利视频| 91麻豆av在线| 欧美高清成人免费视频www| 日本-黄色视频高清免费观看| 午夜a级毛片| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 老司机福利观看| 中文资源天堂在线| 老熟妇仑乱视频hdxx| 一区福利在线观看| 国内毛片毛片毛片毛片毛片| 国产美女午夜福利| 日韩一区二区视频免费看| av天堂在线播放| 日韩av在线大香蕉| 18+在线观看网站| 日本 av在线| 国产麻豆成人av免费视频| 国产乱人伦免费视频| 国产av不卡久久| 美女高潮的动态| 夜夜看夜夜爽夜夜摸| 听说在线观看完整版免费高清| 国产av一区在线观看免费| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久久久免费视频| 91av网一区二区| 男插女下体视频免费在线播放| 小蜜桃在线观看免费完整版高清| 他把我摸到了高潮在线观看| bbb黄色大片| 99久久九九国产精品国产免费| 哪里可以看免费的av片| 久久精品国产亚洲av天美| 国产高潮美女av| 岛国在线免费视频观看| 中文字幕久久专区| 美女大奶头视频| 桃红色精品国产亚洲av| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 亚洲在线观看片| 91av网一区二区| 精品欧美国产一区二区三| 日韩国内少妇激情av| 丰满人妻一区二区三区视频av| 亚洲成a人片在线一区二区| 日本成人三级电影网站| 免费看美女性在线毛片视频| 免费一级毛片在线播放高清视频| 3wmmmm亚洲av在线观看| 能在线免费观看的黄片| 精品不卡国产一区二区三区| 搡老妇女老女人老熟妇| 联通29元200g的流量卡| 国产蜜桃级精品一区二区三区| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 日韩欧美三级三区| 久久99热6这里只有精品| 不卡一级毛片| 亚洲精品久久国产高清桃花| 欧美不卡视频在线免费观看| 制服丝袜大香蕉在线| 窝窝影院91人妻| 久久久久久伊人网av| 干丝袜人妻中文字幕| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| av天堂中文字幕网| 亚洲av熟女| 中文字幕高清在线视频| 变态另类丝袜制服| 高清在线国产一区| 国产男靠女视频免费网站| 真人一进一出gif抽搐免费| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 美女黄网站色视频| 亚洲第一电影网av| 色噜噜av男人的天堂激情| 麻豆精品久久久久久蜜桃| 日本-黄色视频高清免费观看| 成人午夜高清在线视频| 不卡视频在线观看欧美| 日韩欧美免费精品| 在线观看舔阴道视频| 国产国拍精品亚洲av在线观看| 国产v大片淫在线免费观看| ponron亚洲| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 成人精品一区二区免费| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 美女 人体艺术 gogo| 日韩中文字幕欧美一区二区| videossex国产| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| av在线老鸭窝| 高清日韩中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| av视频在线观看入口| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 天堂网av新在线| 香蕉av资源在线| 亚洲欧美精品综合久久99| 免费看a级黄色片| 国产麻豆成人av免费视频| 日本黄大片高清| 午夜福利在线观看吧| 日韩精品中文字幕看吧| 丝袜美腿在线中文| 成年版毛片免费区| 欧美成人a在线观看| 欧美绝顶高潮抽搐喷水| 免费观看人在逋| 亚洲国产日韩欧美精品在线观看| a级毛片免费高清观看在线播放| 国产精品一区二区免费欧美| 国产精品一及| 乱码一卡2卡4卡精品| 草草在线视频免费看| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线| 亚洲avbb在线观看| 日本色播在线视频| 亚洲av电影不卡..在线观看| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 国产三级在线视频| 97超级碰碰碰精品色视频在线观看| 成人毛片a级毛片在线播放| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 久久九九热精品免费| 夜夜看夜夜爽夜夜摸| www.www免费av| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 日韩中文字幕欧美一区二区| 国内精品宾馆在线| 悠悠久久av| 精品欧美国产一区二区三| 日本黄色视频三级网站网址| 免费观看的影片在线观看| 国产熟女欧美一区二区| 国产精华一区二区三区| 亚洲中文字幕日韩| 日本欧美国产在线视频| 日韩中文字幕欧美一区二区| 日韩亚洲欧美综合| 成人av一区二区三区在线看| 1024手机看黄色片| 日韩欧美国产在线观看| 精品福利观看| 最近最新中文字幕大全电影3| 人妻夜夜爽99麻豆av| 露出奶头的视频| 精品久久久久久久久久久久久| 大型黄色视频在线免费观看| 一区二区三区四区激情视频 | 国产高清激情床上av| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 波多野结衣高清作品| 性欧美人与动物交配| 国产老妇女一区| 99九九线精品视频在线观看视频| 国产又黄又爽又无遮挡在线| 男人舔奶头视频| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| 亚洲美女视频黄频| 少妇人妻精品综合一区二区 | 一本久久中文字幕| 在线天堂最新版资源| 国产精华一区二区三区| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 国产av在哪里看| 国产69精品久久久久777片| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 国内揄拍国产精品人妻在线| 乱码一卡2卡4卡精品| 亚州av有码| 成人美女网站在线观看视频| 国国产精品蜜臀av免费| 国产午夜精品论理片| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 午夜老司机福利剧场| 熟女电影av网| 久久久国产成人免费| 日韩人妻高清精品专区| 国产69精品久久久久777片| 91av网一区二区| 欧美极品一区二区三区四区| 高清日韩中文字幕在线| 99精品在免费线老司机午夜| 极品教师在线免费播放| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 一级黄色大片毛片| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 色视频www国产| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 久久久久久久午夜电影| 久久精品国产亚洲av涩爱 | 观看美女的网站| 成人国产综合亚洲| 一本久久中文字幕| 欧美一区二区精品小视频在线| 一级黄片播放器| 日本与韩国留学比较| 91麻豆av在线| 色吧在线观看| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 色综合色国产| 亚洲欧美清纯卡通| 又粗又爽又猛毛片免费看| 久久久久性生活片| 久久精品国产自在天天线| 尤物成人国产欧美一区二区三区| 久久精品影院6| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 99久久九九国产精品国产免费| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 国产成人aa在线观看| 色在线成人网| 成年免费大片在线观看| 91午夜精品亚洲一区二区三区 | 极品教师在线免费播放| 国产久久久一区二区三区| 色在线成人网| 久久久国产成人免费| 亚洲第一区二区三区不卡| 欧美在线一区亚洲| 久久精品91蜜桃| 一进一出抽搐动态| 亚洲国产精品sss在线观看| 亚洲精品乱码久久久v下载方式| 亚洲av免费在线观看| 少妇的逼水好多| 日本爱情动作片www.在线观看 | 国产免费av片在线观看野外av| 淫妇啪啪啪对白视频| 91久久精品国产一区二区三区| 中国美白少妇内射xxxbb| 女生性感内裤真人,穿戴方法视频| 久久人妻av系列| 一a级毛片在线观看| 夜夜夜夜夜久久久久| 亚洲自拍偷在线| aaaaa片日本免费| 久久久久久九九精品二区国产| www.www免费av| 亚洲专区国产一区二区| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 久久精品国产清高在天天线| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄 | 国产主播在线观看一区二区| 日韩 亚洲 欧美在线| 日韩欧美精品v在线| 九九爱精品视频在线观看| 十八禁网站免费在线| 尾随美女入室| 亚洲五月天丁香| 三级国产精品欧美在线观看| 欧美3d第一页| 日日撸夜夜添| 日韩在线高清观看一区二区三区 | 亚洲成av人片在线播放无| 亚洲黑人精品在线| 国产一级毛片七仙女欲春2| 少妇人妻精品综合一区二区 | 一级黄色大片毛片| 国产麻豆成人av免费视频| 五月伊人婷婷丁香| 十八禁国产超污无遮挡网站| 欧美性感艳星| 国产精品亚洲一级av第二区| 国产成人av教育| 男女下面进入的视频免费午夜| 午夜精品一区二区三区免费看| 18禁在线播放成人免费| 九九在线视频观看精品| 亚洲人成伊人成综合网2020| 久久99热这里只有精品18| 国产精品野战在线观看| 日韩av在线大香蕉| ponron亚洲| 色av中文字幕| 十八禁网站免费在线| 欧美绝顶高潮抽搐喷水| 毛片女人毛片| 亚洲乱码一区二区免费版| 天堂影院成人在线观看| 国产精品自产拍在线观看55亚洲| 小说图片视频综合网站| 国内精品宾馆在线| 久久国产乱子免费精品| 国内精品久久久久精免费| 欧美日韩乱码在线| 午夜福利在线观看免费完整高清在 | 亚洲国产高清在线一区二区三| 久久九九热精品免费| 午夜影院日韩av| 亚洲avbb在线观看| 女生性感内裤真人,穿戴方法视频| 日韩精品中文字幕看吧| 人妻少妇偷人精品九色| 国产一区二区在线观看日韩| 成人一区二区视频在线观看| 丝袜美腿在线中文| 精品人妻偷拍中文字幕| 亚洲久久久久久中文字幕| 国产精品三级大全| h日本视频在线播放| 国产精品美女特级片免费视频播放器| 日本 av在线| 午夜视频国产福利| 天天躁日日操中文字幕| 波多野结衣高清无吗| 日本在线视频免费播放| 嫩草影院精品99| 亚洲人成网站在线播放欧美日韩| 国产视频内射| 欧美黑人欧美精品刺激| 日韩欧美在线乱码| a在线观看视频网站| 午夜影院日韩av| 亚洲在线自拍视频| 两个人视频免费观看高清| 成人av一区二区三区在线看| 国产精品久久电影中文字幕| 欧美性猛交黑人性爽| 日本成人三级电影网站| 国产亚洲欧美98| 欧美黑人欧美精品刺激| 国内精品一区二区在线观看| 熟女人妻精品中文字幕| www.色视频.com| 国产亚洲精品av在线| 免费观看的影片在线观看| 亚洲精品日韩av片在线观看| 99精品在免费线老司机午夜| 天天躁日日操中文字幕| 午夜免费成人在线视频| 国产aⅴ精品一区二区三区波| 少妇裸体淫交视频免费看高清| 国产一区二区三区视频了| 成熟少妇高潮喷水视频| 丰满乱子伦码专区| 国产亚洲精品久久久久久毛片| 麻豆av噜噜一区二区三区| 国产 一区精品| 欧美另类亚洲清纯唯美| 久久久久久久亚洲中文字幕| 他把我摸到了高潮在线观看| 亚洲精品乱码久久久v下载方式| 国产91精品成人一区二区三区| 国产在线精品亚洲第一网站| 天堂√8在线中文| 国产在线男女| 天美传媒精品一区二区| 女同久久另类99精品国产91| 色视频www国产| 天堂√8在线中文| 波野结衣二区三区在线| 啦啦啦啦在线视频资源| 国产欧美日韩精品亚洲av| 精品福利观看| 日本撒尿小便嘘嘘汇集6| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 1024手机看黄色片| 久久这里只有精品中国| 91狼人影院| av女优亚洲男人天堂| 国产免费av片在线观看野外av| 国产伦在线观看视频一区| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区二区三区在线观看| 久久久久久久久久成人| 国内精品宾馆在线| 国产主播在线观看一区二区| av在线亚洲专区| 简卡轻食公司| 一进一出好大好爽视频| 国产精品乱码一区二三区的特点| 狂野欧美白嫩少妇大欣赏| 97超视频在线观看视频| 色综合色国产| 国产亚洲欧美98| 国产成人福利小说| 亚洲专区国产一区二区| 成年女人毛片免费观看观看9| 琪琪午夜伦伦电影理论片6080| 熟女电影av网| 亚洲avbb在线观看| 欧美一区二区亚洲|