• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plant Identification Using Fitness-Based Position Update in Whale Optimization Algorithm

    2022-08-23 02:17:02AymanAltameemSandeepKumarRameshChandraPooniaandAbdulKhaderJilaniSaudagar
    Computers Materials&Continua 2022年6期

    Ayman Altameem,Sandeep Kumar,Ramesh Chandra Poonia and Abdul Khader Jilani Saudagar

    1Department of Computer Science,College of Applied Studies,King Saud University,Riyadh,11495,Saudi Arabia

    2Department of Computer Science and Engineering,CHRIST(Deemed to be University),Bangalore,560074,India

    3Department of Computer Science,CHRIST(Deemed to be University),Bangalore,560029,India

    4Information Systems Department,Imam Mohammad Ibn Saud Islamic University(IMSIU),Riyadh,11432,Saudi Arabia

    Abstract:Since the beginning of time,humans have relied on plants for food,energy,and medicine.Plants are recognized by leaf,flower,or fruit and linked to their suitable cluster.Classification methods are used to extract and select traits that are helpful in identifying a plant.In plant leaf image categorization,each plant is assigned a label according to its classification.The purpose of classifying plant leaf images is to enable farmers to recognize plants,leading to the management of plants in several aspects.This study aims to present a modified whale optimization algorithm and categorizes plant leaf images into classes.This modified algorithm works on different sets of plant leaves.The proposed algorithm examines several benchmark functions with adequate performance.On ten plant leaf images, this classification method was validated.The proposed model calculates precision, recall, F-measurement,and accuracy for ten different plant leaf image datasets and compares these parameters with other existing algorithms.Based on experimental data, it is observed that the accuracy of the proposed method outperforms the accuracy of different algorithms under consideration and improves accuracy by 5%.

    Keywords: Bag-of-features; feature optimization; plant leaf classification;swarm intelligence;nature-inspired algorithm

    1 Introduction

    In the agricultural sector, plants play a vital role for all living things.Plant identification with greater precision is a complex issue that requires interdisciplinary research.The multidisciplinary approach combines computer vision and plant/botanical taxonomy.This approach helps in the automated classification and identification of plants.These techniques use leaf images as an input and perform classification/identification using machine learning and deep learning approaches.The main obstacle to automated identification is the lack of a suitable dataset.With the advancement in computer vision,many sophisticated models have been proposed to automate agricultural activities,including plant identification,soil classification,disease identification,weeds plant identification,and crop row detection.The timely and efficient identification of plants helps in management of crop related activities,including timely irrigation,supply of fertilizer,and removal of weed plants.

    The process of plant identification includes feature extraction, optimization, and classification.Generally, feature extraction is performed by speed-up robust features (SURF) [1], scale-invariant feature transform (SIFT) [2] etc.The feature optimization phase is an important step where an individual can deploy an algorithm to select the best feasible set of features.Recent research used spider monkey optimization(SMO)[3],whale optimization algorithm(WOA)[4],bat algorithm[5],differential evolution (DE) [6], salp swarm algorithm (SSA) [7], sine cosine algorithm (SCA) [8],and many other swarms and evolutionary algorithms for solving this combinatorial optimization problem.Most of the recent research in the domain of plant identification used artificial neural network (ANN) and support vector machine (SVM) [9], deep residual network [10], convolutional neural network (CNN) [11], deep learning models (AlexNet, VGGNet, and GoogLeNet) [12] CNN models (Xception, ResNet50, InceptionV3, and MobileNet) and recurrent neural networks (RNN)including simple RNN, gated recurrent unit (GRU), and long short term memory (LSTM) models[13],and convolutional siamese network(CSN)[14]for efficient classification.

    The automated identification of plants is based on the analysis of leaf images.Therefore,leaves are critical sources of information about the plant.However,this task is challenged by many hurdles like similarity in plant leaves, background variation, and the colour of leaves.Moreover, natural images require an efficient segmentation approach for further processing.Thus,developing machine learning and deep learning approaches to identify plants with higher accuracy is highly desirable.This study presents a new method for plant identification with improved WOA-based feature selection,leading to efficient classification.The significant research contribution of this paper is as follows:

    1.A fitness-based WOA(FWOA)was proposed,and its performance was evaluated over a set of benchmark functions.

    2.Feature extraction was performed using SIFT and SVM classifier used for classification.

    Following is a breakdown of the rest of the paper.Section 2 discusses some recent developments in plant identification and WOA.Feature extraction,feature selection,and classification are discussed in Section 3.Section 4 discusses the experimental results of FWOA and its application to plant leaf identification.Section 5 concludes the paper.

    2 Preliminaries

    Computational intelligence-based techniques can solve a complex optimization problem with fewer resources.These techniques are classified into different classes based on their source of inspiration, like swarm-based, evolutionary, and bio-inspired.These algorithms start with a set of randomly generated populations.Subsequently, each update their position shares details with other individuals and selects the best one for the next iteration.This section discusses recent development in plant identification and the basics of WOA[15].

    2.1 Plant Identification

    Machine learning and deep learning are becoming more popular nowadays for the identification of plants.Some of the recent research contributions for the identification of plants using these techniques are discussed here.Pankaja and Suma deployed WOA to reduce dimensions and classified using Random Forest (RF) [15].The author extracted texture, shape, and color features from the leaf image dataset.The WOA-based approach selects a set of optimal features.They used Flavia and Swedish leaf datasets for this experiment.Results reported that the WOA-based strategy outperformed other considered algorithms for feature extraction,feature selection,and plant identification.Sun et al.deployed a deep residual network with 26 layers on the BJFU100 dataset collected from their university campus[16].The new approach was first validated on the Flavia leaf dataset with a 99.65%recognition rate.The main feature of this work is that Sun et al.acquired this data set on a mobile device [16].Ghazi et al.employed transfer learning with a deep neural network[12].Here,the author performed fine-tuning of the pre-trained model and used AlexNet,VGGNet,and GoogLeNet.The new model gives significantly improved results.Zhu et al.deployed a deep CNN with a set of five max-pooling layers, five soft-max layers, three fully connected layers, and sixteen convolutional layers [11].This study concluded that the use of ReLUs along with these layers improved overall performance.Finally,Rzanny et al.studied various image acquisition and preprocessing techniques to identify plants with varying backgrounds[17].Kho et al.focused on intact leaves[9]and used ANN and SVM to identify Ficus species plants.Original images were preprocessed by detecting edges and segmentation.While extracting shape and texture features,they reported 83%accuracy.Bodhwani et al.deployed a 50-layer deep residual network for plant identification and achieved 93%accuracy[10].Liu et al.combined pretrained CNN(Exception,ResNet50,InceptionV3,and Mobile Net)and RNN(simple RNN,GRU,and LSTM)models[13].Some of the combinations archived very high accuracy.A summary of some of the recent development in plant identification is illustrated in Tab.1.

    Table 1: Recent development in plant identification

    Table 1:Continued

    2.2 Whale Optimization Algorithm

    The WOA is a new nature-inspired algorithm developed by Mirjalili and Lewis in 2016 [4].This nature-inspired optimization algorithm is used to solve many complex real-world optimization problems.WOA is inspired by the bubble-net hunting approach used by humpback whales during foraging.This method mimics the hunting style by using the fittest search agent to hunt the prey,and the spiral method is used to model the bubble-net attacking mechanism.The hunting method is an exciting mechanism for humpback whales.This approach of hunting is recognized as the bubble-net feeding strategy[20].The mathematical model of this optimization algorithm majorly consists of three steps.The first step is encircling prey,the second step is a bubble net attacking method(exploitation phase), and the last step is the search for prey (exploration phase) [4].Each phase is illustrated in subsequent sections.

    2.2.1 Encircling Prey

    Humpback whales locate the target and encircle it.Initially,the optimal design is unknown;hence,the WOA method assumes the target prey as the present ideal candidate solution,or it can be close to the optimum.Once the optimal search agent is well-defined,some other agent will update the location of the existing best search agent.

    2.2.2 Bubble-Net Attacking Method

    The exploitation phase in WOA is simulated by the bubble-net behaviour of humpback whales with two steps.

    where d is the distance of prey fromithwhale to take the best solution obtained so far,l is a random number,b is a constant,which defines the shape of the spiral.Thus,humpback whales continuously swim in a spiral-shaped path within a decreasing circle around the prey.To model this synchronized behaviour,assume a 50%probability of selecting either a shrinking circle or a spiral model to update the whale’s location.The calculated model is shown in Eq.(6).

    where p is a random number within the range[0,1].

    2.2.3 Search for Prey

    In the bubble net technique, humpback whales hunt prey randomly according to each other’s location.Vector A is used to search for prey in the exploration phase, calculated in the first phase.In this step,update the location of the search agent by using the randomly selected search agent.This method sheds light on exploration and allows this algorithm to perform global searches.The calculated model is shown in Eqs.(7)and(8).

    whereXrandis an||arbitrarily chosen whale from the current population.The detailed pseudo code for WOA is given in Algorithm 1.

    Algorithm 1:Whale Optimization Algorithm Initialize population of N whales Evaluate the fitness of all individuals and choose the best search agent while Termination criteria is not meet do for every individual do Update value of A,C,a,1,p if p <0.5 then if|A|<1 then Update position using Eq.(2)else Update position using Eq.(8)end if else Update position using Eq.(5)end if end for Evaluate the fitness of new solution and update the best search agent End while

    Initially, the WOA starts with some arbitrary solutions.Then, individuals update the positions using the best answer ever found on each iteration or an arbitrarily picked individual.Using vector,update the location of an individual with the condition ifselects a random search agent,and if<1 selects the best solution.WOA includes the exploration and exploitation phase.Hence it is considered a global optimizer.Moreover, the proposed method describes a search space in the locality.WOA mainly includes two vector parameters, namelyHowever, modification and additional evolutionary procedures are included in WOA formulation to mimic the behaviour of humpback whales.

    Algorithm 2:Fitness-based solution update strategy Input:Current solution,pr.=0,A,C,a,1,p Compute pr using pr=0.9 x(Fitnessi/Fitnessmax)+0.1 if pr <0.2 then if|A|<1 then Update position using Eq.(2)else Update position using Eq.(8)end if else Update position using Eq.(5)end if

    3 Fitness-Based Whale Optimization Algorithm

    Exploitation and exploration are two significant phases in all the meta-heuristic algorithms for accomplishing the precise solution.The performance of an algorithm is strongly reliant on balancing these two opposing processes.In the WOA algorithm, bubble-net attacking is responsible for exploitation and search for prey phase perform exploration.They are essential phases in the WOA algorithm and affect the convergence behavior of WOA.The exploration phase searches whales’property for renovating position; this selection uses the random function for updating to recognize the best whale[4].To improve the performance of WOA,a new version of WOA is proposed here and named fitness-based status update WOA(FWOA).The new variant update uses highly fitted solutions and explores the search space for a solution with low fitness.The introduced concept works on the principle that solutions in the proximity of higher fitness solutions are also highly fitted and try to exploit the best solution.In the case of low fitness,it updates its position according to the search for prey phase.Detailed pseudo-code for the new strategy is given in Algorithm 2.

    Additionally, a fitness-based method is used to compute the value ofandinstead of a random function,which improves the performance of the current method.In addition,the accuracy of the proposed model is increased by using the fitness function.Calculate the values ofandto surround the hunting stage according to Eqs.(9)and(10).

    The new approach takes advantage of a highly fitted solution.It assumes that the proximity of highly-fitted solutions may be a feasible solution for the considered problem.As a result,the swarm always moves in the direction of the solution with good fitness with self-organizing characteristics,and it improves the convergence speed and avoids skipping real solutions.

    The performance of the newly proposed FWOA is evaluated over a set of thirteen benchmark problems [4].The selected problems are uni-modal and multi-modal optimization problems with known solutions and search.Performance of FWOA and other competitive algorithms compared in terms of the average function value(Avg),standard deviation(SD),and optimal function value.All the algorithms are implemented in MATLAB R2020b on an Intel Core i7 machine with 16 GB RAM and 8 GB GeForce GTX1650Ti Graphics processor to measure these parameters.Tabs.2 and 3 illustrate results for FWOA, WOA [4], SSA [16], SCA [8].Tab.2 illustrates the efficiency and robustness of FWOA in comparison to other algorithms.Graphical representations of results for functions F1,F8,and F12 are depicted in Fig.1.These results proved that FWOA outperformed considered algorithms in terms of best function value,as shown in Tab.3.

    Table 2: Results for benchmark problems

    Table 3: Comparison of optimal value for benchmark problems

    Figure 1: Performance assessment for selected functions.(a) F1 WOA (b) F1 SSA (c) F1 SCA (d) F1 FWOA(e)F8 WOA(f)F8 SSA(g)F8 SCA(h)F8 FWOA(i)F12 WOA(j)F12 SSA(k)F12 SCA(l)F12 FWOA

    4 FWOA-Based Plant Identification System

    The proposed model introduced a fitness-based WOA to classify plants based on the leaf image dataset.The suggested model has three significant steps:feature extraction using the SIFT algorithm,feature selection, histogram generation using the modified WOA, and classification of plants based on their leaf image using the SVM classifier, as shown in Fig.2.A detailed description is given in later sections.The detailed process of the plant leaf classification model is shown in Fig.3.To validate the proposed model, images of apple, banana, borages, maize, grapes, mint, orange, pepper, potato,and tomato leaf were used in this research.This dataset is used as a sample dataset for validating this model.Some sample images from each category are depicted in Fig.4.

    Figure 2:Process of the proposed model

    4.1 Feature Extraction

    In image processing and computer vision, a feature is an information in a picture [21].Objects,edges,and points,for example,have extraordinary quality and distinct structure.Feature extraction is a process of classifying essential features of an image, classifying common themes from a broad collection of images,and pattern recognition[22].The proposed model’s first step is to extract all image features and group them into corresponding groups.This extraction is one of the leading steps for image analysis relating to their features.Similar and different image features have to be extracted and stored in respective clusters for practical analysis.The SIFT algorithm is used to extract the features in the proposed method.SIFT is a feature detection method that detects and defines local features of plant leaf images.These local features are essential points in the image that aid in identifying the object of the image[23].This method can rotate and select an image of a different scale and handle the noise points.Therefore,it is a practical algorithm for feature extraction.

    Figure 3:Proposed plant leaf classification model

    4.2 Feature Selection

    Feature selection is a technique that significantly affects the performance of the proposed classification model.A combinatorial optimization problem is selecting an optimal collection of features from a vast set of extracted features.Thus, it is highly desired to solve this problem with a non-conventional optimization algorithm.This step chooses the most relevant elements that will aid in estimating the class of each leaf image.Next, extracted features from the previous step are used to select the optimal features and create clusters using selected features,increasing accuracy and decreasing overfitting.This paper used the modified WOA for clustering to select optimal features.Finally,a histogram is plotted using selected features by the proposed model.This histogram shows the fundamental frequency distribution of the selected features.In addition, the histogram allows the review of the selected features in terms of outliers and skewness.The graphical representation is depicted in Fig.5.

    Figure 4:Sample plant leaf image set for considered plants.(a)Apple(b)Banana(c)Borages(d)Corn(e)Grapes(f)Mint(g)Orange(h)Pepper(i)Potato(j)Tomato

    Figure 5:Histogram of the proposed model

    4.3 Plant Leaf Classification

    Classification of plants using a leaf image dataset is the final step of this proposed method.In the previous step,the histogram is generated based on the selected features and passed to SVM classifier along with their labels[24].SVM is a high-performance binary classifier,which creates a hyperplane in ample feature space for separate leaf images into their respective classes[25].In this step,the SVM classifier predicts the class labels of each plant leaf image based on training.Hence labelling,training and testing plant leaf image dataset confirm the accuracy of this model.Experimental results are discussed in the next section.

    5 Experimental Results for Plant Identification

    Three steps are used to analyze the proposed plant classification using a leaf image dataset based on FWOA.The first step represents plant leaf dataset description, the second step shows the performance of benchmark functions,and the third step analyses the result of FWOA based plant leaf classification.

    5.1 Dataset Description

    This dataset consists of more than 10000 images; 200 images from each category are used for training and testing this model.This dataset is categorized into ten different classes named apple,banana,borages,corn,grapes,mint,orange,pepper,potato,and tomato.This dataset is taken from Plant Village[26]and Kaggle[27].This dataset is used to measure the performance of the proposed method in terms of the accuracy of classification of each class using a leaf image dataset.These images are divided into a 70%–30%train cross-test split for each class.

    5.2 Experimental Results for Plant Leaf Image Classification

    The proposed model has been predicted outputs using Python programming.In this section,the proposed approach is described using experimental results based on the input image dataset.Tab.4 shows some of the parameters and best fitness values.The value of these parameters is decided with exhaustive experiments.The proposed modified WOA has been compared with SCA,BAT,SSA,DE,and WOA.An equal number of image sets have been from each class for these algorithms.Create a confusion matrix concerning each class for performance analysis.The confusion matrix for each class is depicted in Fig.6.These matrixes show the comparison of actual data and predicted data.The performance of all the considered algorithms for classification is illustrated in Fig.6.It is important as the considered data set has ten classes.In the case of three or more categories,it is better to visualize results with confusion matric as accuracy can be misleading.The results are measured by calculating the F1 score,precision,recall,and accuracy.

    where TP stands for true positive,TN for true negative,FP for false positive,and FN for false negative.The measured performance and comparisons are shown in Tab.5.This table summarizes accuracy and other matrices for considered algorithms.The proposed method shows better performance when compared with another existing algorithm.For example,compare the accuracy of the modified WOA algorithm with some other algorithms, which is depicted in Fig.7.Hence, it can be stated that the proposed modified WOA classification method is better than the existing algorithms.

    Table 4: Parameter setting for WOA

    Figure 6:Confusion matrix for considered algorithms.(a)SCA(b)BAT(c)SSA(d)DE(e)WOA(f)MWOA

    Table 5: Performance comparison of modified WOA with BAT,SSA,SCA,DE and WOA

    Table 5:Continued

    Figure 7:Comparison of overall accuracy

    6 Conclusion

    Using a plant leaf image dataset,this study presents a new plant classification method.The new version of WOA uses a fitness-based status update method instead of random numbers.This method shows the effectiveness of the results by estimating the maximum accuracy value.In this study, we primarily used three steps: feature extraction using the SIFT method, feature selection using the modified WOA method, and classification using the SVM classifier.The proposed method achieves maximum recall,precision,F1 scores,and accuracy with 80.16%.We analyze the experimental results,and it was found that the WOA with the fitness function increased the efficiency of the proposed algorithm.WOA is employed to handle the problem of feature selection and clustering in this study.The proposed algorithm results are compared with well-known stochastic algorithms such as BAT,DE,WOA,SCA,and SSA.

    Furthermore,when compared to other algorithms,the proposed method’s results were effective,practical,and simple to implement.In the future,the proposed method can be applied to various plant classifications utilizing different plant leaf image datasets.Besides this,the WOA can be combined with another clustering approach to improve performance.

    Acknowledgement:The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this research.

    Funding Statement:This work was supported by the Deanship of Scientific Research, King Saud University,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    色综合站精品国产| 欧美性猛交黑人性爽| 老汉色∧v一级毛片| 精品高清国产在线一区| 女人被狂操c到高潮| 毛片女人毛片| 欧美一区二区国产精品久久精品 | 麻豆成人av在线观看| 看黄色毛片网站| 人妻久久中文字幕网| 好男人在线观看高清免费视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲人与动物交配视频| 日韩欧美免费精品| 亚洲18禁久久av| 国产三级中文精品| 亚洲成av人片在线播放无| 久久伊人香网站| 很黄的视频免费| 国产成人精品久久二区二区91| 亚洲熟妇中文字幕五十中出| 亚洲成人中文字幕在线播放| 麻豆成人av在线观看| 少妇熟女aⅴ在线视频| 精品国内亚洲2022精品成人| 欧美成人免费av一区二区三区| 国产欧美日韩一区二区精品| 狠狠狠狠99中文字幕| 91成年电影在线观看| 免费电影在线观看免费观看| 精品电影一区二区在线| 夜夜看夜夜爽夜夜摸| 少妇熟女aⅴ在线视频| 国产亚洲精品综合一区在线观看 | 麻豆成人av在线观看| 香蕉久久夜色| 国产片内射在线| 老司机午夜十八禁免费视频| 99精品久久久久人妻精品| 国产成人一区二区三区免费视频网站| 一个人免费在线观看的高清视频| 九色成人免费人妻av| 无遮挡黄片免费观看| 此物有八面人人有两片| 日韩中文字幕欧美一区二区| 白带黄色成豆腐渣| 中文字幕av在线有码专区| 两个人看的免费小视频| 国产久久久一区二区三区| 又大又爽又粗| 免费高清视频大片| 色在线成人网| 2021天堂中文幕一二区在线观| 三级国产精品欧美在线观看 | 级片在线观看| 亚洲欧美精品综合久久99| 热99re8久久精品国产| 免费看十八禁软件| 日日干狠狠操夜夜爽| 欧美日韩乱码在线| 欧美性猛交╳xxx乱大交人| 国产一区二区三区在线臀色熟女| 99在线人妻在线中文字幕| 男女床上黄色一级片免费看| 在线永久观看黄色视频| 美女午夜性视频免费| av欧美777| 三级国产精品欧美在线观看 | 在线国产一区二区在线| 亚洲欧美日韩高清在线视频| 精品第一国产精品| 午夜成年电影在线免费观看| 亚洲一区高清亚洲精品| 夜夜夜夜夜久久久久| e午夜精品久久久久久久| 亚洲欧美日韩高清专用| 久久中文字幕一级| 国产精品av久久久久免费| av在线天堂中文字幕| 黄色视频不卡| 女生性感内裤真人,穿戴方法视频| 精品国产美女av久久久久小说| 亚洲真实伦在线观看| 久久精品人妻少妇| 亚洲 国产 在线| 久久久久久九九精品二区国产 | 国产精品一区二区三区四区久久| 美女高潮喷水抽搐中文字幕| 88av欧美| 亚洲精品美女久久av网站| 国产一区二区激情短视频| 国产高清视频在线观看网站| 久久精品国产清高在天天线| 亚洲激情在线av| 两个人免费观看高清视频| 日韩欧美一区二区三区在线观看| 久久婷婷人人爽人人干人人爱| 国产91精品成人一区二区三区| 岛国视频午夜一区免费看| 亚洲国产欧洲综合997久久,| 美女黄网站色视频| 国产精品av视频在线免费观看| 搡老岳熟女国产| 精品国产美女av久久久久小说| 99在线人妻在线中文字幕| 视频区欧美日本亚洲| 最近视频中文字幕2019在线8| 日本免费a在线| 免费在线观看视频国产中文字幕亚洲| 亚洲午夜理论影院| 少妇熟女aⅴ在线视频| 国产精品一区二区精品视频观看| 熟女电影av网| 一区二区三区激情视频| 动漫黄色视频在线观看| 免费在线观看影片大全网站| 波多野结衣高清无吗| 波多野结衣高清无吗| 村上凉子中文字幕在线| 丁香欧美五月| 久久天堂一区二区三区四区| 国产免费av片在线观看野外av| 色综合亚洲欧美另类图片| 久久久久久久久久黄片| av有码第一页| 日韩欧美免费精品| 欧美zozozo另类| 老鸭窝网址在线观看| 成人手机av| 亚洲精品久久国产高清桃花| 亚洲欧美一区二区三区黑人| 欧美激情久久久久久爽电影| 午夜精品一区二区三区免费看| 成人欧美大片| 丁香六月欧美| netflix在线观看网站| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 亚洲色图av天堂| 精品一区二区三区视频在线观看免费| 老汉色∧v一级毛片| 神马国产精品三级电影在线观看 | 高清毛片免费观看视频网站| 99在线视频只有这里精品首页| 精品熟女少妇八av免费久了| 欧美丝袜亚洲另类 | 欧美av亚洲av综合av国产av| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久国内视频| 成年人黄色毛片网站| 非洲黑人性xxxx精品又粗又长| 国产单亲对白刺激| 最新美女视频免费是黄的| 午夜日韩欧美国产| 午夜激情av网站| 午夜两性在线视频| 午夜视频精品福利| 一区福利在线观看| 老汉色av国产亚洲站长工具| videosex国产| 精品久久久久久久末码| 男女之事视频高清在线观看| 日韩av在线大香蕉| 久久久国产成人免费| 成熟少妇高潮喷水视频| 午夜久久久久精精品| 精品一区二区三区av网在线观看| 亚洲国产欧美网| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av| 大型黄色视频在线免费观看| 日韩欧美精品v在线| 欧美在线黄色| 哪里可以看免费的av片| 母亲3免费完整高清在线观看| 国产成人aa在线观看| 欧美另类亚洲清纯唯美| 日韩大尺度精品在线看网址| 女人爽到高潮嗷嗷叫在线视频| 欧美不卡视频在线免费观看 | 一个人观看的视频www高清免费观看 | 最新美女视频免费是黄的| 色综合婷婷激情| 日本成人三级电影网站| av中文乱码字幕在线| 丰满人妻一区二区三区视频av | 亚洲精品久久国产高清桃花| 在线看三级毛片| 一级毛片女人18水好多| 精品福利观看| 欧美日本亚洲视频在线播放| 黄色女人牲交| 国产精品日韩av在线免费观看| 日日干狠狠操夜夜爽| 欧美人与性动交α欧美精品济南到| 免费在线观看成人毛片| 精品久久久久久久久久久久久| 亚洲国产欧美网| 国产视频一区二区在线看| 亚洲专区中文字幕在线| 婷婷六月久久综合丁香| 琪琪午夜伦伦电影理论片6080| 国模一区二区三区四区视频 | 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 国产精品 欧美亚洲| 亚洲av成人一区二区三| 变态另类成人亚洲欧美熟女| 99久久久亚洲精品蜜臀av| 日韩欧美精品v在线| 国产精品,欧美在线| or卡值多少钱| 国产精品久久视频播放| 少妇的丰满在线观看| 怎么达到女性高潮| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久免费视频| 黄色毛片三级朝国网站| 在线观看免费视频日本深夜| 巨乳人妻的诱惑在线观看| 国产一区二区激情短视频| 成人手机av| 午夜成年电影在线免费观看| 亚洲一区二区三区不卡视频| 久久久久久人人人人人| 欧美黑人精品巨大| 午夜福利免费观看在线| 免费看十八禁软件| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久久久久久| 欧美日本视频| 欧美日韩黄片免| 巨乳人妻的诱惑在线观看| 国产亚洲欧美在线一区二区| 日本免费a在线| 欧美日韩一级在线毛片| 国产久久久一区二区三区| 亚洲av片天天在线观看| 精品不卡国产一区二区三区| 人人妻人人澡欧美一区二区| 亚洲国产欧洲综合997久久,| 搡老妇女老女人老熟妇| 中文字幕精品亚洲无线码一区| 亚洲av成人精品一区久久| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 波多野结衣高清作品| 久久久久国内视频| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 国产精品综合久久久久久久免费| 久久99热这里只有精品18| 欧美成人性av电影在线观看| 免费在线观看成人毛片| 日日摸夜夜添夜夜添小说| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 一夜夜www| 国产视频内射| 免费在线观看日本一区| 亚洲人成网站在线播放欧美日韩| 一级a爱片免费观看的视频| 女生性感内裤真人,穿戴方法视频| 亚洲五月婷婷丁香| www.精华液| 亚洲欧美日韩东京热| 又粗又爽又猛毛片免费看| 天天添夜夜摸| 久久九九热精品免费| 精品国产乱子伦一区二区三区| 国产精品1区2区在线观看.| 一进一出抽搐gif免费好疼| 午夜a级毛片| 亚洲欧美一区二区三区黑人| 老司机午夜十八禁免费视频| 丁香六月欧美| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 亚洲无线在线观看| 毛片女人毛片| 级片在线观看| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜添小说| 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀| 久久久久九九精品影院| 老司机福利观看| 曰老女人黄片| 五月伊人婷婷丁香| 免费观看人在逋| 老司机午夜福利在线观看视频| 韩国av一区二区三区四区| 2021天堂中文幕一二区在线观| 制服丝袜大香蕉在线| 91麻豆av在线| 亚洲国产精品合色在线| 国产一区在线观看成人免费| 亚洲欧美一区二区三区黑人| 欧美极品一区二区三区四区| 色老头精品视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲av熟女| www.精华液| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清专用| 日日夜夜操网爽| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清 | 亚洲av成人一区二区三| 久久久久久九九精品二区国产 | 淫妇啪啪啪对白视频| 亚洲一区二区三区色噜噜| 成在线人永久免费视频| 一卡2卡三卡四卡精品乱码亚洲| 又紧又爽又黄一区二区| 十八禁网站免费在线| 久9热在线精品视频| 午夜日韩欧美国产| 日韩成人在线观看一区二区三区| 免费人成视频x8x8入口观看| √禁漫天堂资源中文www| 欧美成人午夜精品| 国产成年人精品一区二区| 高清毛片免费观看视频网站| 久久久精品大字幕| 国产精品亚洲一级av第二区| 色综合亚洲欧美另类图片| 这个男人来自地球电影免费观看| 成人亚洲精品av一区二区| 亚洲欧美精品综合一区二区三区| 国语自产精品视频在线第100页| 亚洲最大成人中文| 久久这里只有精品中国| 丝袜美腿诱惑在线| 两性夫妻黄色片| 日韩欧美国产在线观看| 老熟妇乱子伦视频在线观看| 亚洲美女黄片视频| 国产精品一及| 少妇裸体淫交视频免费看高清 | 这个男人来自地球电影免费观看| 亚洲人与动物交配视频| 免费观看精品视频网站| 老司机在亚洲福利影院| 午夜影院日韩av| 岛国视频午夜一区免费看| 国产精品美女特级片免费视频播放器 | 国产精华一区二区三区| 精品高清国产在线一区| 欧美日本亚洲视频在线播放| 中亚洲国语对白在线视频| 欧美日韩中文字幕国产精品一区二区三区| 免费搜索国产男女视频| 成人欧美大片| 亚洲美女视频黄频| 国产av又大| 久久久久免费精品人妻一区二区| 日韩精品青青久久久久久| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| 嫩草影视91久久| 免费搜索国产男女视频| 亚洲 欧美一区二区三区| 国产在线观看jvid| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 草草在线视频免费看| 久久久久九九精品影院| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 国产精品影院久久| 久久人妻福利社区极品人妻图片| 天堂影院成人在线观看| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 日韩大码丰满熟妇| 国产探花在线观看一区二区| 天天躁夜夜躁狠狠躁躁| 哪里可以看免费的av片| 成年免费大片在线观看| 婷婷亚洲欧美| 国产一区在线观看成人免费| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 国产亚洲精品久久久久久毛片| 国产精品一及| av福利片在线| 国产激情偷乱视频一区二区| 大型黄色视频在线免费观看| 大型av网站在线播放| 精品久久久久久久久久久久久| 免费无遮挡裸体视频| 午夜a级毛片| 好男人在线观看高清免费视频| 日本在线视频免费播放| 999精品在线视频| 久久久精品欧美日韩精品| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 国产亚洲精品第一综合不卡| 久久中文字幕人妻熟女| 97超级碰碰碰精品色视频在线观看| 免费在线观看日本一区| 国产一区二区在线观看日韩 | 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区精品小视频在线| 国产午夜精品久久久久久| 国产成人一区二区三区免费视频网站| 在线国产一区二区在线| 国产一区二区在线观看日韩 | 国产精华一区二区三区| 精品国产乱子伦一区二区三区| 久久久久久九九精品二区国产 | 精品午夜福利视频在线观看一区| 欧美乱码精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 亚洲片人在线观看| 十八禁人妻一区二区| 最近最新中文字幕大全电影3| 久久久久久九九精品二区国产 | 国产成年人精品一区二区| 国产熟女午夜一区二区三区| 亚洲成av人片在线播放无| 国产爱豆传媒在线观看 | 午夜久久久久精精品| 国产视频一区二区在线看| 99热只有精品国产| 国产精品 国内视频| 99热这里只有是精品50| 日本成人三级电影网站| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 国产乱人伦免费视频| 岛国视频午夜一区免费看| 女警被强在线播放| 日韩精品中文字幕看吧| 亚洲激情在线av| 两性夫妻黄色片| 中文资源天堂在线| 美女免费视频网站| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 国产免费av片在线观看野外av| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 日韩欧美一区二区三区在线观看| 啪啪无遮挡十八禁网站| 99热这里只有是精品50| 99国产极品粉嫩在线观看| 久久久久国内视频| 国产探花在线观看一区二区| 此物有八面人人有两片| 男插女下体视频免费在线播放| 怎么达到女性高潮| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 男女那种视频在线观看| 夜夜看夜夜爽夜夜摸| 淫秽高清视频在线观看| 中出人妻视频一区二区| 亚洲午夜理论影院| 精品人妻1区二区| 天天添夜夜摸| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 国产一区二区在线av高清观看| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 国产精品av久久久久免费| 成人欧美大片| 日本 av在线| 国产精品美女特级片免费视频播放器 | 99久久无色码亚洲精品果冻| 99热这里只有是精品50| 亚洲片人在线观看| 亚洲人成电影免费在线| 搞女人的毛片| АⅤ资源中文在线天堂| 精品久久久久久成人av| 国产成人系列免费观看| 91国产中文字幕| 欧美日韩瑟瑟在线播放| av有码第一页| 精品久久久久久久久久久久久| 欧美黑人精品巨大| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 精品人妻1区二区| av福利片在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲全国av大片| x7x7x7水蜜桃| 色在线成人网| 最近最新中文字幕大全电影3| www.999成人在线观看| 亚洲精品国产一区二区精华液| 99热只有精品国产| 日日摸夜夜添夜夜添小说| 岛国在线免费视频观看| 一边摸一边做爽爽视频免费| aaaaa片日本免费| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 国产免费av片在线观看野外av| 久久人妻av系列| 90打野战视频偷拍视频| 国产成+人综合+亚洲专区| 国产成人影院久久av| 欧美三级亚洲精品| 最新在线观看一区二区三区| www日本黄色视频网| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 特级一级黄色大片| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| av有码第一页| 777久久人妻少妇嫩草av网站| 日本一二三区视频观看| 午夜福利在线在线| 免费看日本二区| 中文字幕人妻丝袜一区二区| 精品第一国产精品| 香蕉丝袜av| 在线观看www视频免费| 99在线视频只有这里精品首页| 18禁黄网站禁片免费观看直播| 亚洲男人的天堂狠狠| 国产一区二区激情短视频| 欧美日本视频| 俺也久久电影网| 精品不卡国产一区二区三区| 免费在线观看亚洲国产| 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清| 日本a在线网址| 一级黄色大片毛片| 国产亚洲欧美98| 亚洲国产看品久久| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站| 熟妇人妻久久中文字幕3abv| 欧美成狂野欧美在线观看| 波多野结衣高清无吗| 国产高清videossex| 一二三四社区在线视频社区8| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说| 午夜影院日韩av| 精品一区二区三区av网在线观看| 国产一区二区三区在线臀色熟女| 中文亚洲av片在线观看爽| 最近在线观看免费完整版| 一a级毛片在线观看| 在线播放国产精品三级| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 精品无人区乱码1区二区| 成人国产综合亚洲| 毛片女人毛片| 国产一区二区在线观看日韩 | 男女之事视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| x7x7x7水蜜桃| 亚洲精品久久成人aⅴ小说| 性欧美人与动物交配| 一进一出好大好爽视频| 国产激情欧美一区二区| 黄色视频不卡| www日本在线高清视频| 麻豆成人午夜福利视频| 亚洲真实伦在线观看| 亚洲第一欧美日韩一区二区三区| 在线免费观看的www视频| 天天一区二区日本电影三级| 这个男人来自地球电影免费观看| 精品久久久久久,| 99久久综合精品五月天人人| 亚洲18禁久久av| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 啪啪无遮挡十八禁网站| 身体一侧抽搐| 欧美日韩一级在线毛片| 18禁黄网站禁片免费观看直播| 最近最新中文字幕大全电影3| 亚洲七黄色美女视频| 一边摸一边做爽爽视频免费| 亚洲第一欧美日韩一区二区三区| 91麻豆精品激情在线观看国产| 欧美性长视频在线观看| a在线观看视频网站| 欧美在线黄色| 精品久久久久久久久久免费视频| 人成视频在线观看免费观看| 999精品在线视频| 日本在线视频免费播放| 国产黄a三级三级三级人| 777久久人妻少妇嫩草av网站| 国产亚洲欧美98| 床上黄色一级片| 国产视频一区二区在线看| 特大巨黑吊av在线直播| 露出奶头的视频| 亚洲精品中文字幕在线视频| svipshipincom国产片| 国产亚洲精品久久久久5区|