• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current-Induced Magnetic Switching in an L10 FePt Single Layer with Large Perpendicular Anisotropy Through Spin-Orbit Torque

    2022-08-17 07:18:26KaifengDongChaoSunLaizheZhuYiyiJiaoYingTaoXinHuRuofanLiShuaiZhangZheGuoShijiangLuoXiaofeiYangShaopingLiLongYou
    Engineering 2022年5期

    Kaifeng Dong, Chao Sun, Laizhe Zhu, Yiyi Jiao, Ying Tao, Xin Hu, Ruofan Li, Shuai Zhang,Zhe Guo, Shijiang Luo, Xiaofei Yang, Shaoping Li, Long You,e,f,*

    a School of Automation, China University of Geosciences, Wuhan 430074, China

    b Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China University of Geosciences, Wuhan 430074, China

    c School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

    d China Resources Microelectronics Limited, Shanghai 200072, China

    e Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China

    f Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China

    Keywords:L10 FePt SOT Inversion asymmetry Magnetic switching Perpendicular anisotropy

    ABSTRACT In this study,current-induced partial magnetization-based switching was realized through the spin-orbit torque (SOT) in single-layer L10 FePt with a perpendicular anisotropy (Ku⊥) of 1.19 × 107 erg·cmˉ3 (1 erg·cmˉ3 = 0.1 J·mˉ3), and its corresponding SOT efficiency (βDL) was 8 × 10ˉ6 Oe·(A·cmˉ2)ˉ1 (1 Oe=79.57747 A·mˉ1),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work. The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore, the FePt grown on MgO with a granular structure had a larger effective SOT field and efficiency than that grown on SrTiO3(STO) with a continuous structure. The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure. Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.? 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1. Introduction

    A simple and efficient means of reorienting the magnetization of films with high magnetic anisotropy energy is highly desirable for further advancement of modern information technologies[1,2].Compared with magnetization switching by a magnetic field,current-induced spin torque switching enables higher storage density,faster writing speed,and lower energy consumption[3,4].The electrical manipulation of the magnetization in ferromagnetic(FM)nanostructures through current-induced spin-orbit torque(SOT)is one of the representative phenomena based on spin-orbit coupling(SOC) and has recently attracted considerable attention as a new route for magnetization switching[5-10].In general,SOT is recognized as a spin transfer torque originating from a spin current (Js)converted from a charge current via spin-orbit effects, such as the spin Hall effect (SHE) and Rashba-Edelstein effect [11-13].FePt in the L10phase possesses one of the highest perpendicular magnetocrystalline anisotropies among transition metal compounds, which enables memory cells with sufficient thermal stability to be scaled down to 5 nm [14,15]. However, reversing the magnetization of L10FePt is extremely challenging. Although different strategies,such as energy-assisted magnetic recording,voltage control,and probe-based spin injection,have been proposed to ease the magnetization switching of L10FePt,major issues regarding reliability,compatibility,and efficiency prevent practical applications. If we examine the mechanism of the high magnetic anisotropy of L10FePt, it mainly originates from the strong coupling between the spin and orbital angular momenta and hybridization between Pt 5d and Fe 3d electrons. SOC is also the premise of the recently discovered SOT effect, which opens new avenues for the possible electrical manipulation of the magnetization of L10FePt.A few recent works demonstrated current-induced perpendicular magnetization switching in an L10FePt single layer[16-19]. These findings could become a guide toward a method for highly efficient SOT switching of magnetic materials with high anisotropy energy. However, the effect of the microstructure on the SOT properties has not been systematically investigated.Actually, different microstructures would induce different perpendicular anisotropies and chemical ordering,thus causing discrepancies in the SOT properties.How the microstructure of FePt films affects the SOT properties must be clarified in detail. For this purpose, in this work,current-induced SOT switching of magnetization is realized in a FePt single layer. The effective fields of patterned FePt films grown on different substrates with different growth temperatures are systematically investigated. With varying growth temperature and substrate, perpendicularly magnetized FePt films with different microstructures are achieved. We find that the SOT efficiency in a FePt single layer dramatically depends on the microstructure of the films.

    2. Experiments

    Four types of samples with different film growth temperatures and substrates were used: FePt 10 nm (300 °C)/MgO substrate(Sample I), FePt 10 nm (400 °C)/MgO substrate (Sample II), FePt 10 nm (500 °C)/MgO substrate (Sample III), and FePt 10 nm(400°C)/SrTiO3(STO)substrate(Sample IV).The films were deposited using an ultrahigh vacuum magnetron sputtering system,and their stack is shown in Fig. 1(a). They were then patterned into a Hall bar microstructure of a 20-45 μm length, with a 15 μm wide path for the flow of current and a 6 μm wide path for voltage detection,using ultraviolet lithography followed by argon ion etching.Pt electrodes were deposited at the four ends of the Hall bar to facilitate electrical measurement. We assigned the same serial number to the device as the corresponding sample from which it had been fabricated.Fig.1(b)illustrates a schematic of the devices showing the schematic of the Hall bar structure with the definition of the coordinate system,and Fig.1(c)shows an optical image of a device.Anomalous Hall effect(AHE)and current-induced magnetization switching measurements were performed using a homemade setup with a Keithley 2602B (USA) as a current-source meter and a Keithley 2182 as a nanovoltage meter.The pulse duration was set as 12 ms. A small current (100 μA) was applied after each pulse current to measure the anomalous Hall resistance(RH). The effective SOT fields of the devices were measured by a harmonic voltage analysis system. During measurement, a lowfrequency alternating current(AC)was applied to the current path of the Hall bar. The AC frequency was 317.3 Hz. The external trigger function of the phase generator of the current source was used to lock the input channel and reference channel of the lockin amplifier. The voltage path of the Hall bar was connected to two lock-in amplifiers to measure the first and second components of the harmonic Hall voltage. Microstructure characterization of the films and energy-dispersive X-ray (EDX, Bruker super-X EDS,Germany) composition mapping were performed by using a transmission electron microscope (TEM, FEI Titan Themis 200 TEM, USA).

    3. Results and discussion

    Fig.1. (a)Film stack structure;(b)schematic of a Hall bar with the coordinate system;(c)optical microscope image of a device;(d)AHE loops of FePt 10 nm/MgO and FePt 10 nm/STO films;(e,f)MˉH loops of(e)FePt 10 nm/MgO and(f)FePt 10 nm/STO films.All the films were grown at the temperature of 400°C.The inserts in(e)and(f)show the corresponding low-magnification cross-sectional TEM images. 1 Oe = 79.57747 A·mˉ1; 1 emu·cmˉ3 = 1 × 103 A·mˉ1.

    Fig.1(d)shows the AHE measurements of patterned 400°C FePt 10 nm/MgO and FePt 10 nm/STO films.Both patterned films exhibited excellent perpendicular anisotropy.The MˉH loops(Figs.1(e)and(f))of the films were consistent with the AHE results.The lowmagnification cross-sectional TEM image revealed that the FePt films grown on MgO had an island structure (insert in Fig. 1(e)),while the FePt films grown on STO had a continuous structure(insert in Fig.1(f)). Moreover, the perpendicular anisotropy(Ku⊥)can be calculated from Ku⊥= MsHk/2 + 2πMs2, where Msis saturated magnetization, Hkis the magnetic anisotropy field (estimated by extrapolating the hard axis loop). The calculated Ku⊥values were 9.8 × 106erg·cmˉ3(1 erg·cmˉ3= 0.1 J·mˉ3) (MgO) and 9.4 × 106erg·cmˉ3(STO),as shown in Table 1,which were much larger than those reported for SOT devices using other materials,such as CoFeB[6,7],Co[8-10],CoNi[11],and CoFe[12].FePt films grown on MgO had better chemical ordering and perpendicular anisotropy than those grown on STO, which can be attributed to lattice mismatch-induced microstructural evolution [20].

    The current-induced magnetization switching in samples(Samples II and IV)made from 400°C FePt 10 nm/MgO and FePt 10 nm/STO films with different external in-plane fields(Hx),ranging fromˉ1000 to 1000 Oe (1 Oe = 79.57747 A·mˉ1), is shown in Fig. 2.Here, Hxis used to break the torque symmetry. To clarify the switching evolution, we use the red eight-pointed star symbols to denote the initial states of magnetization and arrows to show the switching direction in Fig. 2. Partial magnetization switching was achieved by sweeping the pulsed current in both devices.These results show that current-induced partial magnetization switching can be realized in materials with high anisotropy energy(high perpendicular anisotropy and thick magnetic films). Moreover, the polarity of the switching loop reversed once the external magnetic field was reversed, and switching did not occur without an external magnetic field. This phenomenon is a typical SOTinduced switching behavior similar to that found in heavy-metal(HM)/FM bilayers, which agrees with the results of previous work[16]. The switching ratio ρswwas 2.5% and 3.2% under Hoptabout 500 Oe on the MgO substrate (Sample II, Fig. 2(a)) and about 1000 Oe on the STO substrate (Sample IV, Fig. 2(b)), respectively.Here, ρswis defined as the ratio of ΔRI/ΔRH(ΔRIrepresents the AHE resistance variation during current-induced switching, ΔRHrepresents the AHE resistance variation during out-of-plane field sweeping), Hoptis the optimum applied in-plane field. For films grown on the STO substrate, a larger Hx(above 200 Oe) was required for magnetization switching compared to those grown on the MgO substrate.The switching ratio ρswis smaller than those reported in previous works [16,18,19]. In the work of Tang et al.[19], the maximal switching ratio was approximately 24% for 4 nm thick FePt films. Moreover, the switching ratio was found to be affected by the FePt film thickness (4-220 nm). The thinner the FePt film was, the larger the switching ratio. However, in the work of Liu et al.[16],FePt 6 nm and FePt 20 nm appeared to have similar switching ratios of 20%, which were not dependent on the FePt thickness. Furthermore, Zheng et al. [18] found that theswitching ratio was strongly dependent on the chemical ordering,and a larger switching ratio could be obtained from a 3 nm thick FePt film with more disorder. The maximal switching ratio was approximately 88%.Based on the above works,the switching ratio,broadly speaking, is affected by several factors, namely the microstructure, magnetic properties, thickness, and so on,although some conclusions are not consistent. In addition, the imperfections in the Hall bar structure can also affect the switching ratio [21]. The reduced current density in the center of the Hall cross and the additional pinning from the magnetic Hall arms will also decrease the switching ratio.In addition,the critical switching current density (JC), defined as the value of the electrical current density at which RHbegins to change (for up-to-down and downto-up switching), of FePt films grown on the STO substrate was smaller than that of FePt films grown on the MgO substrate under the same applied in-plane field.

    Table 1 Summary of the I(001)/I(002),out-of-plane coercivity Hc⊥,magnetic anisotropy field Hk,saturated magnetization Ms,perpendicular anisotropy Ku⊥,and SOT efficiency βDL of the four FePt films.

    Fig.2. Current-induced magnetization switching of FePt films with different external fields Hx for(a)FePt 10 nm/MgO and(b)FePt 10 nm/STO with a growth temperature of 400 °C.

    The harmonic Hall voltage was measured to quantitatively analyze the SOT efficiency of the samples (Fig. 3). Fig. 3(a) shows the measurement setup. As a representative example, Figs. 3(c)-(f)show the results of typical measurements of the first(Vω)and second (V2ω) harmonic signals of the single-layer FePt/MgO prepared at 400°C, where the applied magnetic field was swept along the x and y directions. The SOT was thought to feature a damping-like torque and a field-like torque, and the corresponding effective fields,ΔHDLand ΔHFL, were calculated by

    Fig. 3. (a) Schematic illustration of the spin-orbit effective field (ΔHDL and ΔHFL) in FePt films. (b) Summary of the SOT effective field at different current densities in FePt films.(c-f) In addition to typical harmonic Hall voltage measurement results for FePt 10 nm/MgO films with a growth temperature of 400 °C,magnetic field dependence of the (c, e) first and (d, f) second harmonic signals. The external magnetic fields Hx and Hy were swept along the (c, e) x direction and (d, f) y direction.

    To systematically investigate the effect of chemical ordering on the SOT properties, FePt films grown on the MgO substrate with different sputtering temperatures were prepared. The AHE and MˉH loops for samples grown at 300 °C (Sample I) and 500 °C(Sample III)are shown in Figs.4(a)-(c).Reexamining the magnetic properties of samples grown at 400°C(Sample II),we can see that films on the MgO substrate exhibited excellent perpendicular anisotropy when the sputtering temperature exceeded 400 °C. The FePt films with enormous disorder (300 °C, Sample I) had a larger Hall resistance RHthan the more ordered FePt films (400 °C, Sample II; 500 °C, Sample III) due to different coherent band mixing effects [17]. With increasing sputtering temperature, the intensities of the FePt(001), (002), and (003) peaks increased, and the intensity ratio I(001)/I(002)increased (I(001)/I(002)is about 0.85 for Sample II with a growth temperature of 400°C,I(001)/I(002)is about 1.18 for Sample III with a growth temperature of 500°C),suggesting that the (001) texture and thereby the chemical ordering improved (see Fig. S2 in Appendix A for details). The calculated Ku⊥also increased from 4.5 × 106to 1.19 × 107erg·cmˉ3when the sputtering temperature increased from 300 to 500 °C. The improvement in the chemical ordering and the perpendicular anisotropy originated from the improved (001) texture with increasing sputtering temperature. Partial magnetization switching was also achieved by sweeping the pulsed current in Sample I and III,as shown in Figs. 4(d) and (e). The switching ratio ρswwas 0.8%,2.5%,and 6.6%for Sample I,II,and III,respectively,under the optimum applied in-plane fields of Hoptabout 500 Oe(Sample I and II)and about 1000 Oe (Sample III). In addition, the critical switching current densities JCof the samples exhibited significant differences but were not monotonically related to the film growth temperature.

    To clarify the effect of Hxon JC,the JCas a function of Hxfor Sample I (300 °C on the MgO substrate) is summarized in Fig. 5(a). JCclearly decreased with increasing Hx, similar to the results from Lee et al.[23].The SOT effective fields at different current densities in 500 °C FePt 10 nm/MgO films were measured (see Fig. S3 in Appendix A for details)and are summarized in Fig.5(b).The effective field of Sample I(300°C)was not measured due to the imperfect perpendicular magnetic anisotropy. ΔHDL, ΔHFL, and βDL(8 × 10ˉ6Oe·(A·cmˉ2)ˉ1) increased with increasing sputtering temperature. Note that the value of βDLof 8 × 10ˉ6Oe·(A·cmˉ2)ˉ1in the single-layer FePt on the MgO substrate prepared at 500 °C was also larger than that reported in previous work on FePt(6.5 × 10ˉ6Oe·(A·cmˉ2)ˉ1) [16]. Combining this result with the results in Table 1, the effective SOT can be seen to be strongly affected by the chemical ordering and perpendicular anisotropy,and FePt films with higher chemical ordering and perpendicular anisotropy had a larger SOT effective field and a highly efficient SOT.

    Fig.4. (a)AHE loops of FePt 10 nm/MgO films with growth temperatures of 300 and 500°C.(b,c)MˉH loops of FePt 10 nm/MgO films with sputtering temperatures of(b)300 °C and (c) 500 °C. Current-induced magnetization switching of FePt films with different external fields Hx for FePt 10 nm/MgO films with growth temperatures of (d)300 °C and (e) 500 °C.

    Fig.5. (a)JC as a function of Hx for the FePt 10 nm/MgO film with a growth temperature of 300°C;(b)summary of the SOT effective field at different current densities in the FePt 10 nm/MgO film with a growth temperature of 500 °C.

    Fig. 6. For FePt 10 nm grown on the MgO substrate at a growth temperature of 500 °C: (a) high-resolution TEM cross-sectional image of the FePt and MgO layers; (b)corresponding SAED patterns of the FePt and MgO layers;(c)selected area inverse fast Fourier transform(IFFT)image;(d)low-magnification cross-sectional TEM image;and(e, f) selected area EDX mapping analyses of (e) Fe and (f) Pt and Mg atoms. L, m, and k represent different line series of X-ray.

    To investigate the origin of the SOT in FePt,TEM measurements were carried out. Fig. 6(a) shows a high-magnification crosssectional TEM image of single-layer FePt 10 nm/MgO prepared at 500 °C. (001) FePt grains were clearly epitaxially grown on the(200) textured MgO substrate. By combining these measurements with the corresponding selected area electron diffraction(SAED)patterns of FePt and MgO(Fig.6(b)),the epitaxial relationship between them was confirmed to be FePt(001)<100>||MgO(001)<200>,similar to our previous results [20]. All these results indicate that the FePt films had good(001)texture.Moreover,dislocations at the interface were formed to release the strain energy(Fig.6(c),marked as‘‘⊥”).Furthermore, despite the good (001) texture, some defects were observed in the FePt films (Fig. 6(c), marked by red circles). Moreover, the FePt film grown on MgO had an island structure (Fig. 6(d)),different from that grown on STO[20]. This result was consistent with the results of the slope of the hysteresis loop in Fig. 1.The EDX mapping analyses of selected areas of the Fe, Pt, and Mg atoms are illustrated in Figs. 6(e) and (f). These results show that some Mg atoms diffused into the FePt films,which might have led to the formation of defects, as shown in Fig. 6(c). From recent reports, SOT can only be observed in magnetic materials with noncentrosymmetric space groups (bulk inversion asymmetry) or noncentrosymmetric site point groups (local structural inversion asymmetry) in crystal structures. In this study, L10FePt grown on either a MgO or STO substrate could still be switched by an electric current. In our case, the dislocations and defects were inhomogeneously distributed within the samples (see Fig. S4 in Appendix A for details), which resulted in structural inversion asymmetry in the FePt films. Thus, SOT could be generated in the single-layer FePt.

    4. Conclusion

    In summary, we observed current-induced magnetic switching through SOT in an L10FePt single layer. FePt films grown on MgO had larger perpendicular anisotropy and a larger SOT effective field than those grown on STO.The SOT efficiency was found to considerably depend on the chemical ordering and lattice mismatchinduced evolution of the microstructure. A high SOT efficiency of 8 × 10ˉ6Oe·(A·cmˉ2)ˉ1was obtained for a 10 nm thick FePt layer with high perpendicular anisotropy,which implies its potential for use in magnetic memory and logic devices with high thermal stability and ultrahigh storage density.The investigation of the mechanism and performance of current-induced magnetization switching reported here should be pursued in future research in the field.

    Acknowledgments

    This work was supported by National Key Research and Development Program of China (2020AAA0109005), the National Natural Science Foundation of China (61674062, 51501168,41574175, and 41204083), the Fundamental Research Funds for the Central Universities of the China University of Geosciences(Wuhan) (CUG150632 and CUGL160414), the Fundamental Research Funds for National Universities of the China University of Geosciences (Wuhan), the Interdisciplinary program of Wuhan National High Magnetic Field Center (WHMFC202119), Huazhong University of Science and Technology, and Fund from Shenzhen Virtual University Park (2021Szvup091).

    Compliance with ethics guidelines

    Kaifeng Dong,Chao Sun,Laizhe Zhu,Yiyi Jiao,Ying Tao,Xin Hu,Ruofan Li, Shuai Zhang, Zhe Guo, Shijiang Luo, Xiaofei Yang,Shaoping Li, and Long You declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.09.018.

    亚洲精品色激情综合| 国产成人福利小说| 国产一区二区亚洲精品在线观看| 欧美色欧美亚洲另类二区| 亚洲精品一区av在线观看| 99热这里只有精品一区| 国产黄色小视频在线观看| 国产乱人视频| 成人综合一区亚洲| 亚洲国产色片| 十八禁国产超污无遮挡网站| 日韩欧美免费精品| 不卡一级毛片| 老师上课跳d突然被开到最大视频| 国产伦人伦偷精品视频| 国产极品精品免费视频能看的| 国产又黄又爽又无遮挡在线| 亚洲七黄色美女视频| 国产一区二区三区av在线 | 亚洲av第一区精品v没综合| 亚洲国产色片| 麻豆国产97在线/欧美| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 校园人妻丝袜中文字幕| 男女下面进入的视频免费午夜| 国产精品98久久久久久宅男小说| 亚洲不卡免费看| 夜夜爽天天搞| 色噜噜av男人的天堂激情| 在线观看舔阴道视频| 久久九九热精品免费| 国产精品国产三级国产av玫瑰| av黄色大香蕉| 免费无遮挡裸体视频| 国产精品精品国产色婷婷| 日韩人妻高清精品专区| 18+在线观看网站| 欧美丝袜亚洲另类 | 精品一区二区三区视频在线观看免费| 国产精品伦人一区二区| 日韩高清综合在线| 日韩一本色道免费dvd| 九色国产91popny在线| 免费看美女性在线毛片视频| 婷婷亚洲欧美| 中文字幕免费在线视频6| 亚洲av熟女| 亚洲av中文av极速乱 | 免费人成在线观看视频色| 久久久久久久午夜电影| 熟女电影av网| 淫妇啪啪啪对白视频| 欧美成人一区二区免费高清观看| eeuss影院久久| 小说图片视频综合网站| 国产综合懂色| 亚洲精品影视一区二区三区av| 欧美日韩精品成人综合77777| 搞女人的毛片| 精品99又大又爽又粗少妇毛片 | 欧美不卡视频在线免费观看| 久久九九热精品免费| 搡老岳熟女国产| 欧美极品一区二区三区四区| 99久久精品热视频| 少妇熟女aⅴ在线视频| 欧美日韩亚洲国产一区二区在线观看| av视频在线观看入口| 欧美日韩黄片免| 午夜精品一区二区三区免费看| 欧美色视频一区免费| 国产亚洲91精品色在线| 少妇人妻一区二区三区视频| 久久人人精品亚洲av| 尤物成人国产欧美一区二区三区| 丝袜美腿在线中文| 又粗又爽又猛毛片免费看| 18禁黄网站禁片午夜丰满| 日本色播在线视频| 又黄又爽又刺激的免费视频.| 日韩高清综合在线| 国产精品久久久久久精品电影| 国产伦在线观看视频一区| 成人二区视频| 日韩高清综合在线| 美女黄网站色视频| 亚洲 国产 在线| 国产精品乱码一区二三区的特点| 国产淫片久久久久久久久| 美女黄网站色视频| .国产精品久久| 久久久久九九精品影院| 有码 亚洲区| 一区二区三区高清视频在线| 黄色欧美视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产av不卡久久| 日韩一区二区视频免费看| 干丝袜人妻中文字幕| 69av精品久久久久久| 搡女人真爽免费视频火全软件 | 热99re8久久精品国产| 国产亚洲91精品色在线| 午夜福利18| 精品不卡国产一区二区三区| 欧美成人性av电影在线观看| 日本与韩国留学比较| 亚洲性久久影院| av在线老鸭窝| 1024手机看黄色片| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩无卡精品| 久久久久久久久久成人| 国内久久婷婷六月综合欲色啪| 美女cb高潮喷水在线观看| 欧美一区二区亚洲| 一进一出好大好爽视频| 日本-黄色视频高清免费观看| 精品久久久久久久久久久久久| 久9热在线精品视频| 国产伦人伦偷精品视频| 国产91精品成人一区二区三区| 伊人久久精品亚洲午夜| 真实男女啪啪啪动态图| 精品久久久久久久末码| 国产欧美日韩精品亚洲av| 深夜精品福利| 免费看a级黄色片| 欧美区成人在线视频| 乱码一卡2卡4卡精品| 在线看三级毛片| 男女视频在线观看网站免费| 波多野结衣高清作品| 人妻夜夜爽99麻豆av| 国产精品不卡视频一区二区| 最近最新中文字幕大全电影3| 99热6这里只有精品| 亚洲最大成人av| 日本与韩国留学比较| 亚洲成人免费电影在线观看| 可以在线观看毛片的网站| 欧美成人免费av一区二区三区| 欧美成人一区二区免费高清观看| 国产精品自产拍在线观看55亚洲| 搡老岳熟女国产| 22中文网久久字幕| 欧美日韩瑟瑟在线播放| 美女被艹到高潮喷水动态| 乱码一卡2卡4卡精品| 夜夜夜夜夜久久久久| 99久久精品国产国产毛片| 亚洲熟妇熟女久久| 黄色女人牲交| 国产女主播在线喷水免费视频网站 | 成人国产综合亚洲| 在现免费观看毛片| 久久这里只有精品中国| 日韩精品青青久久久久久| 网址你懂的国产日韩在线| 联通29元200g的流量卡| 成人亚洲精品av一区二区| 嫁个100分男人电影在线观看| 国产精品女同一区二区软件 | 俺也久久电影网| 观看美女的网站| 天堂√8在线中文| 午夜a级毛片| av天堂在线播放| 国产老妇女一区| 国产精品乱码一区二三区的特点| 免费在线观看日本一区| 少妇人妻精品综合一区二区 | 亚洲人与动物交配视频| 91久久精品国产一区二区三区| 可以在线观看毛片的网站| 非洲黑人性xxxx精品又粗又长| 欧美性猛交╳xxx乱大交人| 黄色女人牲交| 国产三级在线视频| 日日摸夜夜添夜夜添av毛片 | 欧美性感艳星| 97碰自拍视频| 日韩欧美免费精品| 黄色日韩在线| 尤物成人国产欧美一区二区三区| 18禁在线播放成人免费| 亚洲综合色惰| 久久久午夜欧美精品| 特级一级黄色大片| 国产成人福利小说| 看黄色毛片网站| 伦理电影大哥的女人| 精品午夜福利视频在线观看一区| 人妻少妇偷人精品九色| 国产精品久久视频播放| 观看美女的网站| 亚洲国产欧洲综合997久久,| 日韩欧美一区二区三区在线观看| av在线观看视频网站免费| 我的老师免费观看完整版| 亚洲成av人片在线播放无| 国产成人a区在线观看| 亚洲美女搞黄在线观看 | 欧美不卡视频在线免费观看| a级一级毛片免费在线观看| 日本在线视频免费播放| 亚洲精品456在线播放app | 97人妻精品一区二区三区麻豆| 亚洲电影在线观看av| 在线播放国产精品三级| 婷婷丁香在线五月| 成人二区视频| 级片在线观看| 一级黄色大片毛片| 成人毛片a级毛片在线播放| 日韩欧美精品v在线| 久久精品国产亚洲av香蕉五月| 日日撸夜夜添| 亚洲精品粉嫩美女一区| 乱人视频在线观看| 免费人成视频x8x8入口观看| 99国产精品一区二区蜜桃av| 亚洲内射少妇av| www.色视频.com| 色在线成人网| 小说图片视频综合网站| 伦精品一区二区三区| 国产精品野战在线观看| 国产色爽女视频免费观看| 免费看日本二区| 韩国av在线不卡| 简卡轻食公司| 亚洲人成网站在线播| 国产单亲对白刺激| 天天躁日日操中文字幕| 亚洲无线在线观看| 男女边吃奶边做爰视频| 国产精品一及| 久久精品夜夜夜夜夜久久蜜豆| 色噜噜av男人的天堂激情| 国产乱人伦免费视频| 中国美白少妇内射xxxbb| 可以在线观看毛片的网站| 国内精品久久久久精免费| 美女高潮的动态| 可以在线观看的亚洲视频| 一本一本综合久久| 桃红色精品国产亚洲av| 99国产精品一区二区蜜桃av| 淫秽高清视频在线观看| 久久精品影院6| 在线免费观看的www视频| 欧美日韩精品成人综合77777| 又粗又爽又猛毛片免费看| .国产精品久久| 久久久久国产精品人妻aⅴ院| 成人精品一区二区免费| 久久国产精品人妻蜜桃| 国产精品伦人一区二区| 免费看av在线观看网站| aaaaa片日本免费| 99热6这里只有精品| 欧美成人免费av一区二区三区| 色尼玛亚洲综合影院| 精品人妻一区二区三区麻豆 | 亚洲国产日韩欧美精品在线观看| 亚洲av中文字字幕乱码综合| 国产亚洲精品av在线| 国产精品乱码一区二三区的特点| bbb黄色大片| 一级黄片播放器| 亚洲久久久久久中文字幕| 人妻久久中文字幕网| 99久国产av精品| av黄色大香蕉| 精品久久久噜噜| 校园春色视频在线观看| 久久精品国产亚洲av天美| 乱码一卡2卡4卡精品| 人妻丰满熟妇av一区二区三区| 99热这里只有是精品50| 日日摸夜夜添夜夜添小说| 亚洲久久久久久中文字幕| 人妻少妇偷人精品九色| 久久久色成人| 久久久久久久午夜电影| 一夜夜www| 欧美xxxx黑人xx丫x性爽| 麻豆国产av国片精品| 国产真实乱freesex| 欧美中文日本在线观看视频| 色av中文字幕| 亚洲在线观看片| 成人一区二区视频在线观看| 在线观看舔阴道视频| h日本视频在线播放| 永久网站在线| 在线观看av片永久免费下载| 亚洲乱码一区二区免费版| 一a级毛片在线观看| 精品乱码久久久久久99久播| 国产精品,欧美在线| 亚洲一级一片aⅴ在线观看| 亚洲av成人av| 国产黄色小视频在线观看| 天美传媒精品一区二区| 午夜老司机福利剧场| 成人性生交大片免费视频hd| 欧美中文日本在线观看视频| 两人在一起打扑克的视频| 日本三级黄在线观看| 国产色爽女视频免费观看| 亚洲午夜理论影院| 久久久久久久久中文| 亚洲,欧美,日韩| 老熟妇乱子伦视频在线观看| 免费在线观看影片大全网站| 久久久午夜欧美精品| 久久亚洲精品不卡| 男女下面进入的视频免费午夜| 长腿黑丝高跟| 国产精品日韩av在线免费观看| 露出奶头的视频| 波多野结衣高清作品| 亚洲熟妇中文字幕五十中出| 国产精品日韩av在线免费观看| 狂野欧美激情性xxxx在线观看| 国产黄色小视频在线观看| 一区二区三区免费毛片| 午夜免费激情av| 欧美另类亚洲清纯唯美| 尤物成人国产欧美一区二区三区| 国产成人a区在线观看| 国产精品电影一区二区三区| 色综合婷婷激情| 看免费成人av毛片| 成人欧美大片| 亚洲欧美日韩东京热| 在线天堂最新版资源| 两个人的视频大全免费| 国产三级在线视频| 97超视频在线观看视频| 亚洲成a人片在线一区二区| 欧美bdsm另类| 深爱激情五月婷婷| 别揉我奶头~嗯~啊~动态视频| 中国美白少妇内射xxxbb| 久久久午夜欧美精品| 久久久久久久午夜电影| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 国产视频一区二区在线看| 热99在线观看视频| 国产精品久久久久久av不卡| 欧美成人免费av一区二区三区| 国产精品99久久久久久久久| 亚洲精品一区av在线观看| 国产精品精品国产色婷婷| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 亚洲无线在线观看| 精品无人区乱码1区二区| 午夜日韩欧美国产| av在线观看视频网站免费| 精品久久久久久久久av| 国产精品美女特级片免费视频播放器| 99久久精品一区二区三区| 日韩欧美 国产精品| 少妇的逼好多水| 熟女人妻精品中文字幕| 国产av麻豆久久久久久久| 日韩一本色道免费dvd| 国产一区二区亚洲精品在线观看| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3| 婷婷色综合大香蕉| 亚洲七黄色美女视频| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 久久久成人免费电影| 亚洲精品久久国产高清桃花| 老女人水多毛片| 色哟哟哟哟哟哟| 成人特级av手机在线观看| 91精品国产九色| 国产乱人伦免费视频| 免费不卡的大黄色大毛片视频在线观看 | 国产成人福利小说| 能在线免费观看的黄片| 国产亚洲精品av在线| 欧美bdsm另类| 日本一二三区视频观看| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清| 如何舔出高潮| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 午夜激情欧美在线| 人妻制服诱惑在线中文字幕| 草草在线视频免费看| 毛片女人毛片| 少妇的逼水好多| 97人妻精品一区二区三区麻豆| 国产精品久久视频播放| 99热精品在线国产| av中文乱码字幕在线| 男女之事视频高清在线观看| 亚洲人成网站在线播| 欧美三级亚洲精品| 久久久久久国产a免费观看| 老司机午夜福利在线观看视频| av天堂中文字幕网| 美女高潮喷水抽搐中文字幕| 一级黄片播放器| 亚洲av五月六月丁香网| 国产精品一及| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品合色在线| 精品久久久久久久久亚洲 | 99久久无色码亚洲精品果冻| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 亚洲欧美日韩卡通动漫| 性色avwww在线观看| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 欧美成人a在线观看| 国产伦精品一区二区三区四那| 午夜免费成人在线视频| 男女视频在线观看网站免费| 国产在视频线在精品| 免费在线观看影片大全网站| 露出奶头的视频| 蜜桃久久精品国产亚洲av| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 最近在线观看免费完整版| 欧美潮喷喷水| 亚洲精品亚洲一区二区| 欧美黑人巨大hd| 亚洲人成网站高清观看| 婷婷精品国产亚洲av在线| 一夜夜www| 亚洲在线观看片| av国产免费在线观看| 国产精品嫩草影院av在线观看 | 国产女主播在线喷水免费视频网站 | 国产精品一及| 少妇人妻精品综合一区二区| 网址你懂的国产日韩在线| 久久久精品94久久精品| 在线亚洲精品国产二区图片欧美 | 欧美zozozo另类| 久久婷婷青草| 亚洲天堂av无毛| 国产精品久久久久成人av| 久久久欧美国产精品| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 色5月婷婷丁香| 免费不卡的大黄色大毛片视频在线观看| 大香蕉97超碰在线| 国产精品99久久久久久久久| 日本vs欧美在线观看视频 | 久久久色成人| 亚洲,欧美,日韩| 777米奇影视久久| 久久久久久久国产电影| 久久综合国产亚洲精品| 嫩草影院入口| 国产淫语在线视频| 深夜a级毛片| a 毛片基地| 久久久久久久久久久免费av| 精品久久久久久久久av| 欧美成人午夜免费资源| av在线观看视频网站免费| 99久久精品国产国产毛片| 日韩国内少妇激情av| 蜜桃久久精品国产亚洲av| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 久热这里只有精品99| 久久精品久久久久久噜噜老黄| 国产美女午夜福利| 国产黄片美女视频| 成人漫画全彩无遮挡| 黄色欧美视频在线观看| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 美女脱内裤让男人舔精品视频| 日韩成人av中文字幕在线观看| h视频一区二区三区| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 99视频精品全部免费 在线| 美女xxoo啪啪120秒动态图| 亚洲第一av免费看| 亚洲怡红院男人天堂| 欧美3d第一页| 国产永久视频网站| 一本久久精品| 色综合色国产| 噜噜噜噜噜久久久久久91| 精品亚洲成国产av| 日本色播在线视频| 久久精品夜色国产| 高清午夜精品一区二区三区| 嫩草影院新地址| 久久久精品免费免费高清| 久久久久久久久大av| 久热久热在线精品观看| 制服丝袜香蕉在线| 日韩成人av中文字幕在线观看| 亚洲丝袜综合中文字幕| 日日撸夜夜添| 久久久久久久大尺度免费视频| 午夜福利在线在线| 热99国产精品久久久久久7| 免费av不卡在线播放| 校园人妻丝袜中文字幕| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品456在线播放app| 亚洲精品自拍成人| 五月天丁香电影| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 国产在线免费精品| 在线观看美女被高潮喷水网站| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 简卡轻食公司| 欧美xxⅹ黑人| 美女cb高潮喷水在线观看| 国产白丝娇喘喷水9色精品| 国产精品一区二区在线不卡| 久久这里有精品视频免费| 五月玫瑰六月丁香| 伊人久久国产一区二区| 免费播放大片免费观看视频在线观看| 成年免费大片在线观看| 一区二区三区精品91| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 91精品伊人久久大香线蕉| 亚洲三级黄色毛片| 大码成人一级视频| 观看免费一级毛片| 亚洲av.av天堂| 99久久人妻综合| 亚洲欧洲国产日韩| 极品教师在线视频| 免费观看a级毛片全部| 国产 精品1| 精品熟女少妇av免费看| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 中文字幕久久专区| 草草在线视频免费看| 欧美成人精品欧美一级黄| 日本av免费视频播放| 妹子高潮喷水视频| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 国产av码专区亚洲av| 国产av国产精品国产| a级一级毛片免费在线观看| 一级片'在线观看视频| 久久精品国产鲁丝片午夜精品| 美女主播在线视频| 如何舔出高潮| 看非洲黑人一级黄片| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 干丝袜人妻中文字幕| 自拍偷自拍亚洲精品老妇| 色视频www国产| 少妇人妻一区二区三区视频| 成人二区视频| 精品久久久久久久久亚洲| 成年av动漫网址| 色婷婷av一区二区三区视频| 国产乱人偷精品视频| 亚洲怡红院男人天堂| 中文在线观看免费www的网站| 国产成人91sexporn| 涩涩av久久男人的天堂| 亚洲自偷自拍三级| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 亚洲欧美成人精品一区二区| 18禁在线播放成人免费| 在线精品无人区一区二区三 | 观看免费一级毛片| 各种免费的搞黄视频| av专区在线播放| 亚洲精品国产色婷婷电影| 伦精品一区二区三区| 啦啦啦中文免费视频观看日本| 亚洲中文av在线| 97热精品久久久久久| 精品国产露脸久久av麻豆| 日韩亚洲欧美综合| 亚洲精品aⅴ在线观看| 少妇人妻精品综合一区二区| 一区二区三区精品91| 欧美 日韩 精品 国产| 欧美bdsm另类|