• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybridization of activated carbon fiber cloth with electrospun nanofibers for particle filtration

    2022-08-14 07:07:28YANGYunlongLIMingzheHOUShiyuLURuitaoKANGFeiyuHUANGZhenghong
    新型炭材料 2022年4期

    YANG Yun-long, LI Ming-zhe, HOU Shi-yu, LU Rui-tao, KANG Fei-yu, HUANG Zheng-hong,*

    (1. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;2. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

    Abstract:Activated carbon fibers (ACFs) have high adsorption capacities and can be used in the treatment of benzene, while electrospun nanofibers are expected to be used as a filtration material. In this work, two hybrids of electrospun nanofibers and ACF cloth were prepared by electrospinning polyvinyl alcohol and polyacrylonitrile nanofibers into a phenolic resin-based ACF cloth. The filtration performance of the two hybrids was evaluated. Results indicate that there is a positive correlation between the filtration efficiency and the amount of electrospun nanofibers in the hybrid. The filtration efficiency increases with increasing air velocity, which is attributed to a piezoelectric effect introduced by the electrospun nanofibers. The hybrids have a good adsorption capacity for benzene, which suggests that the materials are promising for treating air pollution.

    Key words: Electrospun nanofibers;Activated carbon cloths;Air particles filtration;Benzene;Adsorption

    1 Introduction

    Nowadays, haze and inhalable particulate matters have become severe air problems which further result in huge air pollution and a great threat to the public health. As the cause of haze and inhalable particulate matters, the air particles have been one of the major air pollutants, which leads to the increased risk of respiratory disease, cardiopulmonary disease and lung cancer[1-3]. Thus the removal of air particles is regarded as a necessary protection technique to human health up to now. Meanwhile, as the emission of volatile organic compounds (VOCs) increased with the developing of industry[4], benzene, one of major VOCs, leads to indoor air pollution and great cancer risk to human health. Therefore the removal technique for benzene is necessary to public health as well.

    In order to remove the air particles, several physical techniques for air particles removal have been researched and applied so far, such as filtration, electrostatic precipitator. The filtration by fibrous filter is considered as a common and effective method to remove the air particles because of the low cost and the low-pressure drop[5-8]. Early in 1936, the enhancement of materials’ filtration performance by using electrospun nanofiber has been paid attention[9]. Up to date, various studies show that it is effective to load electrospinning nanofibers onto the glass fiber[10], organic and cellulose substrates base filter materials to enhance filtration performance[11]. Several factors influenced the filtration performance of electrospun nanofibers have been reported as well[12,13]. Currently,the electrospun nanofibers are considered as promising filtration materials[14], even towards the fine air particles removal[15,16]. Furthermore, as electret filter materials[17,18], electrospun nanofibers have flexible piezoelectric, which could improve the filtration efficiency of filters[19]. Thus, the electrospun nanofibers could be widely used for face mask, medical filter and protective clothing[20-22].

    On the other hands, for benzene removal, different methods have been researched, such as adsorption,thermal oxidation, catalytic oxidation[23]. The adsorption by using porous carbon materials as the adsorbent, such as activated carbon (AC), activated carbon fiber (ACF), is seen as an effective method to remove the benzene, because of the high benzene adsorption velocity and large benzene adsorption capacity[24-28].

    However, there are few studies focused on the materials which both have a high air particle filtration performance and an excellent benzene adsorption abil-ity. In this work, two hybrids of electrospun nanofibers and activated carbon cloths were prepared by electrospinning polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) nanofibers on phenolic resin based activated carbon fiber (PRACFC). The filtration efficiency of two series of hybrids was evaluated through the filtration test under various air velocities. Benzene dynamic adsorption was also performed to evaluate adsorption performance. The hybrids of electrospun nanofibers and activated carbon cloth were proved to both have a high filtration performance and an excellent adsorption capacity, which is promising in the field of air pollution treatment.

    2 Experimental

    2.1 Raw materials

    The raw materials include d phenolic resin based activated carbon fiber clothes (PR-ACFC, kynol Inc,Japan), polyvinyl alcohol (PVA, Sigma-Aldrich, molecular weight of 13 000-23 000), polyacrylonitrile(PAN, Sigma-Aldrich, average molecular weight of 150 000), dimethyl formamide (DMF, Sigma-Aldrich,anhydrous, 99.8%), hexadecyl trimethyl ammonium bromide (CTAB, Sigma-Aldrich, BioXtra, ≥99%),polypropylene melt-blown nonwoven filter (TM-F9 ,average diameter of 0.5 μm, Jinhai group, Zhuji,China), and glass fiber nonwoven filter (FR90N-H13,average diameter of 0.35 μm, Jinhai group, zhuji, and China). The PR-ACFC (PR20) has a specific surface of 2 179 m2·g?1, pore volume of 0.862 cm3·g?1, pore width of 1.07 nm.

    2.2 Preparation of hybrid materials

    The PVA precursor solution for electrospinning was prepared by dissolving 8% PVA in water with 0.05 g of CTAB, and stirred until complete dissolution under water bath of 80 °C. The precursor solution of PAN was prepared by dissolving 10% PAN in DMF, and stirred until complete dissolution under water bath of 80 °C.The PAN and PVA are consider as two stable precursors and easy to be electrospun. The average diameter of PAN and PVA electrospun nanofibers are about hundreds of nanometers. In this scale, nanofibers cannot cover the microporous structure of ACFC, which give ACFC a good adsorption performance. At the same time, the PAN and PVA electrospun nanofiber will offer a filtration performance. The hybrid samples were prepared by electrospinning the PVA or PAN nanofibers onto the square ACFC (8×8 cm2, 0.552 g), with the electrospinningc voltage of 20 kV, the distance between the nozzle and the ACFC of 20 cm, the speed of precursor solution injection of 1 mL·h?1under room temperature. 0.002-0.015 g nanofibers were electrospun onto ACFC. The two hybrid species, prepared by PVA and PAN precursor solutions, were named PRPVA and PRPAN,respectively.

    2.3 Filtration efficiency tests

    To verify the atmospheric particles filtration performance of the hybrid fiber samples, a test system was set up (Fig. 1). The system consists of an airflow generation system, an airtight metal filtration tube and an atmospheric particles detection system. The airflow generation system consists of an air velocity controller and a vacuum pump to generate stable air flow.The air velocity was detected by anemograph (KANOMAX 6006) and manometer (Shanghai Linsheng DP1000-1F). Sample was mounted in the middle of filtration tube. The atmospheric particles detection system consists of two CSJ-EⅡ laser particle counters, which could detect atmospheric particles amounts before and after filtration.

    To compare the filtration efficiency of PRPAN,PRPVA and PR20, a filtration efficiency experiment under the same air velocity of 0.1 m·s?1was carried out. Two kinds of commercial filtration materials(TM-F9, with the filtration efficiency between 90%and 99% and particle size larger than 1.0 μm; FR90NH13) the filtration efficiency higher than 99.99% for particle size larger than 0.5 μm, were also tested for comparison. Filtration tests were carried out under different air velocity in the range of 0.1-2 m·s?1. The sampling period was 1 min, and the sampling volume was 2.83 L·min?1, which means that the sampling air volume was 2.83 L.

    2.4 Benzene dynamic adsorption tests

    The benzene dynamic adsorption of the composites was measured by using a dynamic adsorption system in Fig. 2. Dynamic adsorption system consists of a controller, a thermostat (SPX-150AB), a rectangle reactor (2×2×4 cm3) coupled to a gas chromatography(SHIMADZU, GC-14c) and controlling computer.The hybrid fiber cloth was cut into square samples(2×2 cm2), which was supported by two square honeycomb ceramics (2×2×2 cm3). The benzene dynamic adsorption tests were carried out under 298 K. The concentration of mixture gas was controlled by adjusting the flow rates of nitrogen and benzene, and the flow rate of mixture gas was 200 mL·min?1. The mixture gas with 30×10?6benzene fed in the adsorption test system continuously until the benzene concentration of exhaust stream reached the set breakthrough concentration. The adsorption capacity of samples could be calculated through the following equations

    Mprepresents the total benzene adsorption amount (mol),tprepresents breakthrough time (min),c0represents the initial benzene concentration,c(t)represents the benzene concentration of exhaust stream (×10?6),vrepresents the flow rate of mixture gas (200 mL·min?1),Qprepresents the adsorption capacity of sample (mg·g?1),Mbenrepresents the molar mass of benzene (78.11 g·mol?1),mprepresents the m ass of sample (g).

    3 Results and discussion

    3.1 Morphologies of hybrid materials

    Fig. 3 shows the scanning electron microscopy(SEM) images of PRPVA and PRPAN. Both in PRPVA and PRPAN, a thin layer of smooth, continuous and dispersive electrospun nanofibers were formed on the surface of ACFC. It is difficult to find cross-linking between PVA nanofibers (Fig. 3a),however, it is easy to find some tubercle structure in PAN nanofibers layer (Fig. 3b).

    The SEM with high magnification in Fig. 3 shows that both the PAN nanofibers and PVA nanofibers have smooth surface, and the nanofibers of PAN and PVA are well dispersive. The average diameter of PVA electrospun nanofiber is about 500 nm(Fig. 3 (c)), while the average diameter of PAN electrospun nanofiber is about 300 nm (Fig. 3 (d)). The PAN nanofibers are thiner than the PVA nanofibers,which means PRPAN may have more electrospun nanofibers than PRPVA when the electrospinning nanofibers have the same mass. The difference between the PAN nanofibers and PVA nanofibers may affect the filtration and adsorption of materials.In order to discuss two series of electrospun nanofibers/ACFC hybrid, different amounts of nanofibers were electrospun on the ACFC, as listed in Table 1.

    Table 1 Features of electrospun nanofibers/phenolic resin based carbon fibers hybrid cloths.

    3.2 Filtration efficiency

    All filtration efficiencies of hybrid materials towards airborne particles were tested, as shown in Fig. 4. PR20 has the lowest filtration efficiency.However, PRPVA and PRPAN have high filtration performances. It indicates that the substrate material PR20 has little filtration against airborne particles,while the electrospun nanofibers endow the substrate material PR20 with air particle filtration ability. The filtration efficiency of PRPAN nanofiber is higher than PRPVA nanofibers when the electrospun nanofibers with the same mass are loaded, which may be due to the diameter difference between PAN nanofibers and PVA nanofibers, according to the Table 1.The PRPAN-1 and PRPVA-1 have loaded the same mass of electrospun nanofibers, as shown in Fig. 4.The PRPAN-1 has a higher filtration efficiency than PRPVA-1, and the PRPAN-2 and PRPVA-2 show the same trend. From Fig. 3(c, d), the average diameter of PAN and PVA nanofibers were obtained, and the PAN electrospun nanofibers is thinner than PVA electrospun nanofibers obviously. This difference makes the PRPAN have more nanofibers than PRPVA when the same mass nanofibers are loaded, leading to an advantage of PRPAN. The curves also illustrate a positive correlation between the filtration efficiency and electrospun nanofibers amount. The filtration efficiency of PRPAN-3 is close to the commercial filtration materials.

    The presented curves were obtained under a low air flow velocity of 0.1 m·s?1. The filtration experiments under different air velocities in the range of 0.1-2 m·s?1were carried out to obtain the filtration efficiency of PRPVA, PRPAN and commercial filter materials. The filtration efficiency increased with the increasing of electrospun nanofibers mass of hybrids(Fig. 4). Therefore, PRPVA-2 and PRPAN-3 were selected as typical samples for comparison with the commercial filtration material (FN90-H13). The filtration efficiency of three samples under different air flow velocity are shown in Fig. 5. The different color curves stand for different particle diameters (0.3, 0.5,1, 3 μm).

    Generally, the filtration efficiency of commercial filtration materials decreased with the increasing of air flow velocity[29]. Fig. 5 shows that the filtration efficiencies of PRPVA (Fig. 5a) and PRPAN (Fig. 5b)increased with the increasing of air velocity, which is contrary to the commercial high efficiency particulate air filter materials of FN90-H13 (Fig. 5c). It suggests that the PRPVA and PRPAN have an excellent filtration performance under a high air velocity. The electrostatic force between filter and particle could significantly improve the filtration performances of filter[22,30,31]. As the substrate of hybrid materials, the distance among activated carbon fibers is much lager than the particles diameter, indicating that the ACFC substrate will not affect the filtration. Therefore, the difference of hybrids with the commercial filter material could be attributed to the piezoelectric effect of electrospun nanofibers[32,33]. During the preparation of hybrid, a high voltage applied to the nanofibers makes electrospun nanofiber catch a lot of electrostatic charges, which play an important promoting role in the air particle filtration of electrospun nanofiber. In the process of filtration, a high air velocity will result in the deformation of hybrid, and the piezoelectric effect will become much stronger than that under low air velocity. Consequently, the generated charges will enhance the Coulombic force between the filter and air particles[7,30]. Therefore, the filtration efficiencies of PRPVA and PRPAN are positively correlated with air velocity, compared with the commercial filter media relied on mechanical filtration. The PRPVA and PRPAN prepared by electrospinning PVA and PAN nanofibers on ACFC cloths possess excellent filtration performance especially under high air velocity. It is promising for the hybrid materials to be used for air particles filtration under high air velocity.

    3.3 Dynamic adsorption

    Benzene dynamic adsorption experiment was carried out to verify benzene adsorption performance.The benzene breakthrough curves of PRPAN and PRPVA are shown in Fig. 6. For the same series of samples, the adsorption capacities of hybrid decreased with the increasing of electrospun nanofibers.Comparing two series of PRPVA and PRPAN samples, PRPAN series have better adsorption performances than PRPVA for the same electrospun nanofibers amount. The breakthrough adsorption capacities of the PRPAN and PRPVA samples were obtained by integration, as listed in Table 2. The benzene dynamic adsorption of PR20 was carried out to determine the adsorption capacity of the substrate material as 202 mg·g?1.

    Hybridizing with electrospun nanofibers, ACFC cloths are endowed with filtration ability against particles. However, their adsorption capacities towards VOC decreased. It can be seen from Table 2 that PRPAN-1 has a similar adsorption capacity to PR20, and the adsorption capacity of PRPVA-1 is 188.00 mg·g?1, which is lower than PR20. Thus, the adsorption performances were slightly affected by hybridizing tiny amount of electrospun nanofibers(0.36%). However, the adsorption capacity of hybrid materials decreased with the increasing of electrospun nanofibers. SEM image shows that the nanofibers are dense and spread randomly on the ACFC surface. Obvious pore coverage did not appear on sample surface, and the spreading of benzene molecule on the activated carbon cloth was somewhat blocked by the loaded electrospun nanofibers, leading to the decrease of adsorption capacity. When the nanofibers mass ratios reached at 2.47% (PRPAN-3) the adsorption capacity decreased by half (101 mg·g?1).The porous structure of activated carbon fiber plays an important role in the adsorption of VOC, and the surface coverage of nanofibers inevitably affected the porous structures of ACFC[26,34,35]. Because PAN nanofibers have thinner diameter, the PRPAN-series have less surface coverage and lower resistance to benzene molecular diffusion in comparison with PRPVAseries. Thus, the adsorption performances of PRPANseries are better than PRPVA-series. For the PRPAN-1 and PRPVA-1, tiny amount of electrospun nanofibers have little influence on the adsorption performances. The hybrid materials have a promising application in the simultaneous treatment of air particles and VOC.

    Table 2 Calculate adsorption capacity of samples.

    4 Conclusion

    In this work, 2 series of hybrids of electrospun nanofibers and activated carbon hybrid materials cloths (PRPVA and PRPAN) were prepared by electrospinning PVA and PAN nanofibers onto phenolic resin based ACFC. The air particles filtration efficiency of hybrid cloths increases with the increasing of air velocity, which are different from the commercial filter materials. This unique performance of hybrids of electrospun nanofibers and activated carbon cloths could be attributed to the piezoelectric effect introduced by electrospun nanofibers. Moreover, distinct from the traditional commercial filter materials,the hybridization of activated carbon cloths with electrospun nanofibers gives a high air particle filtration efficiency. In addition, the hybrids also have an excellent benzene adsorption performance. The advantages allow such hybrids of electrospun nanofibers and activated carbon cloths have a promising application in urban air purification, industrial waste gas treatment,and air pollution prevention and control.

    老司机午夜福利在线观看视频| 蜜桃亚洲精品一区二区三区| 老汉色av国产亚洲站长工具| 精品福利观看| 国产成人av教育| 免费高清视频大片| 久久精品国产亚洲av涩爱 | 亚洲av电影不卡..在线观看| 97超视频在线观看视频| 国产乱人伦免费视频| 成人欧美大片| 欧美极品一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩东京热| 精品日产1卡2卡| 高清毛片免费观看视频网站| 免费高清视频大片| av专区在线播放| 丰满乱子伦码专区| 国产午夜精品久久久久久一区二区三区 | 国产成人欧美在线观看| 黄片小视频在线播放| 小说图片视频综合网站| 啦啦啦韩国在线观看视频| 亚洲成人久久爱视频| 最近视频中文字幕2019在线8| av国产免费在线观看| 麻豆久久精品国产亚洲av| 黑人欧美特级aaaaaa片| 18禁裸乳无遮挡免费网站照片| 美女黄网站色视频| 欧美日韩黄片免| 看片在线看免费视频| 三级毛片av免费| 黄色视频,在线免费观看| 亚洲欧美日韩无卡精品| 色老头精品视频在线观看| 亚洲人成网站在线播| 日日干狠狠操夜夜爽| 最新中文字幕久久久久| 精品福利观看| 久久国产精品人妻蜜桃| 精品一区二区三区视频在线 | 免费看日本二区| 亚洲欧美日韩卡通动漫| 久久久成人免费电影| 亚洲一区二区三区色噜噜| 看免费av毛片| 国产中年淑女户外野战色| 97碰自拍视频| 国产日本99.免费观看| 欧美又色又爽又黄视频| www国产在线视频色| 99国产极品粉嫩在线观看| 国产久久久一区二区三区| 97超视频在线观看视频| 国产乱人伦免费视频| 又爽又黄无遮挡网站| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 99精品久久久久人妻精品| 色综合亚洲欧美另类图片| 国产高清三级在线| 夜夜爽天天搞| 大型黄色视频在线免费观看| 久久香蕉精品热| 成人精品一区二区免费| 51国产日韩欧美| 男女之事视频高清在线观看| 久久这里只有精品中国| 伊人久久大香线蕉亚洲五| 一个人看的www免费观看视频| 日日摸夜夜添夜夜添小说| 黄色丝袜av网址大全| 在线观看免费午夜福利视频| 亚洲aⅴ乱码一区二区在线播放| 一二三四社区在线视频社区8| 欧美日本亚洲视频在线播放| 国产精品国产高清国产av| 午夜免费男女啪啪视频观看 | www.色视频.com| 国产99白浆流出| 小蜜桃在线观看免费完整版高清| 国产精品亚洲av一区麻豆| 91在线精品国自产拍蜜月 | 最新在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲熟妇中文字幕五十中出| eeuss影院久久| 欧美又色又爽又黄视频| 我的老师免费观看完整版| 国产精品亚洲一级av第二区| 九九在线视频观看精品| 日韩大尺度精品在线看网址| 无人区码免费观看不卡| 69av精品久久久久久| 国内毛片毛片毛片毛片毛片| 久久这里只有精品中国| 亚洲欧美日韩东京热| 国产成人a区在线观看| 亚洲成a人片在线一区二区| 男插女下体视频免费在线播放| 极品教师在线免费播放| 国产精品一区二区三区四区久久| 日韩欧美精品v在线| 日本与韩国留学比较| 亚洲乱码一区二区免费版| 一区二区三区高清视频在线| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品一区二区www| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 激情在线观看视频在线高清| 日本三级黄在线观看| 最近在线观看免费完整版| av在线天堂中文字幕| av欧美777| 国产高清视频在线播放一区| 一本精品99久久精品77| 床上黄色一级片| 国产伦在线观看视频一区| 两个人视频免费观看高清| 精品国产亚洲在线| 夜夜夜夜夜久久久久| 亚洲美女视频黄频| 尤物成人国产欧美一区二区三区| 久久香蕉国产精品| 亚洲精品一卡2卡三卡4卡5卡| 狂野欧美白嫩少妇大欣赏| 天天躁日日操中文字幕| 中文字幕熟女人妻在线| 91麻豆精品激情在线观看国产| 日本五十路高清| 91在线观看av| 国产综合懂色| 人妻久久中文字幕网| 精品99又大又爽又粗少妇毛片 | 免费av不卡在线播放| АⅤ资源中文在线天堂| 国产乱人视频| 网址你懂的国产日韩在线| 日韩国内少妇激情av| 亚洲国产精品合色在线| 亚洲色图av天堂| 免费一级毛片在线播放高清视频| 国产av一区在线观看免费| 两人在一起打扑克的视频| 欧美中文日本在线观看视频| 色综合欧美亚洲国产小说| 在线看三级毛片| 成人鲁丝片一二三区免费| 国产成人欧美在线观看| 女警被强在线播放| 免费观看的影片在线观看| 狠狠狠狠99中文字幕| 国产精品精品国产色婷婷| 国产精品免费一区二区三区在线| 亚洲熟妇中文字幕五十中出| 久久精品综合一区二区三区| 3wmmmm亚洲av在线观看| 国产爱豆传媒在线观看| 在线a可以看的网站| 日韩国内少妇激情av| 18+在线观看网站| 欧美国产日韩亚洲一区| 国产亚洲欧美98| 国产美女午夜福利| 日韩亚洲欧美综合| 日本一二三区视频观看| 精品久久久久久久末码| 天美传媒精品一区二区| 亚洲无线在线观看| 亚洲av成人av| 久久中文看片网| 国产蜜桃级精品一区二区三区| av国产免费在线观看| 午夜影院日韩av| 日韩精品青青久久久久久| 国产高潮美女av| 国产午夜福利久久久久久| 欧美日韩综合久久久久久 | 亚洲国产日韩欧美精品在线观看 | 亚洲真实伦在线观看| 村上凉子中文字幕在线| 18禁黄网站禁片免费观看直播| 久久99热这里只有精品18| 欧美av亚洲av综合av国产av| 亚洲成人久久性| 日本免费一区二区三区高清不卡| 成人三级黄色视频| 欧美又色又爽又黄视频| 欧美在线黄色| 精品乱码久久久久久99久播| 九色成人免费人妻av| 黄片小视频在线播放| 日韩欧美三级三区| 亚洲av美国av| 久久久久久久午夜电影| 亚洲av日韩精品久久久久久密| 久久婷婷人人爽人人干人人爱| 岛国视频午夜一区免费看| 久久香蕉国产精品| 国产精品日韩av在线免费观看| 18禁在线播放成人免费| 久久亚洲真实| 欧美激情在线99| 亚洲最大成人手机在线| 日韩有码中文字幕| 国产单亲对白刺激| 淫妇啪啪啪对白视频| 中文字幕人妻熟人妻熟丝袜美 | 免费av不卡在线播放| 亚洲av二区三区四区| 亚洲专区国产一区二区| 久久国产精品影院| 中文亚洲av片在线观看爽| 全区人妻精品视频| 欧美三级亚洲精品| 亚洲国产精品久久男人天堂| 五月伊人婷婷丁香| 亚洲电影在线观看av| 亚洲人成网站在线播放欧美日韩| 网址你懂的国产日韩在线| h日本视频在线播放| 波野结衣二区三区在线 | 丰满的人妻完整版| 国产国拍精品亚洲av在线观看 | 国产伦人伦偷精品视频| 亚洲aⅴ乱码一区二区在线播放| 1024手机看黄色片| xxxwww97欧美| 精品久久久久久久久久久久久| av黄色大香蕉| 免费一级毛片在线播放高清视频| 熟妇人妻久久中文字幕3abv| 日本熟妇午夜| 999久久久精品免费观看国产| 男人舔奶头视频| 一区福利在线观看| 宅男免费午夜| 免费高清视频大片| 国产黄色小视频在线观看| 最近最新免费中文字幕在线| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看| 久久久国产成人精品二区| 国产在视频线在精品| 99久久精品一区二区三区| av福利片在线观看| 日韩欧美 国产精品| 日韩成人在线观看一区二区三区| 亚洲美女视频黄频| 国产私拍福利视频在线观看| 亚洲国产欧洲综合997久久,| 成人特级av手机在线观看| 亚洲精华国产精华精| 女警被强在线播放| 99热6这里只有精品| 免费看十八禁软件| 综合色av麻豆| 18禁美女被吸乳视频| 日日干狠狠操夜夜爽| 亚洲精品久久国产高清桃花| 国模一区二区三区四区视频| 国产欧美日韩一区二区精品| 很黄的视频免费| 成熟少妇高潮喷水视频| 欧美中文综合在线视频| 男女那种视频在线观看| 日韩大尺度精品在线看网址| 欧美高清成人免费视频www| 天天一区二区日本电影三级| 三级男女做爰猛烈吃奶摸视频| 三级国产精品欧美在线观看| 精品电影一区二区在线| 亚洲乱码一区二区免费版| 国产国拍精品亚洲av在线观看 | 90打野战视频偷拍视频| 叶爱在线成人免费视频播放| 99久久无色码亚洲精品果冻| 嫁个100分男人电影在线观看| 18禁黄网站禁片午夜丰满| 校园春色视频在线观看| 中文字幕av在线有码专区| 亚洲专区国产一区二区| 全区人妻精品视频| 热99在线观看视频| 叶爱在线成人免费视频播放| 麻豆国产av国片精品| 国产久久久一区二区三区| 熟妇人妻久久中文字幕3abv| 欧美日韩综合久久久久久 | 亚洲中文字幕一区二区三区有码在线看| 国产三级中文精品| 无遮挡黄片免费观看| 久久久久久久久久黄片| 国产精品精品国产色婷婷| 亚洲国产精品成人综合色| 少妇人妻精品综合一区二区 | 国产在视频线在精品| 国产精品一区二区免费欧美| a级一级毛片免费在线观看| 激情在线观看视频在线高清| 国产高潮美女av| 成人av一区二区三区在线看| 日韩欧美精品v在线| 琪琪午夜伦伦电影理论片6080| 国模一区二区三区四区视频| 国产97色在线日韩免费| 欧美国产日韩亚洲一区| 小蜜桃在线观看免费完整版高清| 亚洲av五月六月丁香网| 国内少妇人妻偷人精品xxx网站| 亚洲美女黄片视频| 深夜精品福利| 叶爱在线成人免费视频播放| 亚洲精品久久国产高清桃花| 成熟少妇高潮喷水视频| 看片在线看免费视频| 国产精品一区二区三区四区免费观看 | 亚洲国产精品久久男人天堂| 在线观看舔阴道视频| 一区二区三区高清视频在线| 久久久久久久久大av| 天堂√8在线中文| 午夜福利视频1000在线观看| 淫妇啪啪啪对白视频| 日韩中文字幕欧美一区二区| 亚洲乱码一区二区免费版| 亚洲av日韩精品久久久久久密| tocl精华| 欧美大码av| 一个人看视频在线观看www免费 | or卡值多少钱| 1024手机看黄色片| 成人亚洲精品av一区二区| 久久精品国产综合久久久| 一区二区三区高清视频在线| 97人妻精品一区二区三区麻豆| 久久久久久大精品| 国产成人影院久久av| 尤物成人国产欧美一区二区三区| 国产精品乱码一区二三区的特点| 2021天堂中文幕一二区在线观| 一进一出好大好爽视频| 国模一区二区三区四区视频| 成年女人毛片免费观看观看9| 亚洲人成网站高清观看| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 国产三级黄色录像| 99国产精品一区二区蜜桃av| 欧美日韩福利视频一区二区| 亚洲第一电影网av| 18+在线观看网站| 精品国产亚洲在线| 男人舔女人下体高潮全视频| 国产黄a三级三级三级人| 久久亚洲真实| 最新在线观看一区二区三区| 欧美最黄视频在线播放免费| 又紧又爽又黄一区二区| www日本黄色视频网| 国产精品自产拍在线观看55亚洲| tocl精华| 日韩欧美在线二视频| 久久久久久久久中文| 精品不卡国产一区二区三区| 18禁黄网站禁片免费观看直播| 久久久国产精品麻豆| 午夜精品在线福利| 国内久久婷婷六月综合欲色啪| 中文资源天堂在线| 麻豆久久精品国产亚洲av| 丰满的人妻完整版| 欧美激情在线99| 性欧美人与动物交配| 99久久精品一区二区三区| 国产午夜福利久久久久久| 黄色女人牲交| 欧美日韩乱码在线| 给我免费播放毛片高清在线观看| 久久伊人香网站| 亚洲专区国产一区二区| 久久99热这里只有精品18| 精品久久久久久久末码| www.熟女人妻精品国产| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 久久精品国产自在天天线| 岛国在线免费视频观看| 最新在线观看一区二区三区| 国产欧美日韩一区二区精品| 啦啦啦韩国在线观看视频| 日本黄大片高清| 国产成人福利小说| 男人和女人高潮做爰伦理| 精品一区二区三区av网在线观看| 女同久久另类99精品国产91| 热99在线观看视频| 亚洲五月天丁香| 欧美大码av| 免费av不卡在线播放| 国产精品久久久久久精品电影| 日韩欧美精品免费久久 | www.www免费av| 色视频www国产| 搞女人的毛片| www日本黄色视频网| av视频在线观看入口| 在线看三级毛片| 又黄又粗又硬又大视频| 国产主播在线观看一区二区| a在线观看视频网站| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| www日本黄色视频网| 狠狠狠狠99中文字幕| 91麻豆av在线| 岛国在线观看网站| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 熟妇人妻久久中文字幕3abv| 久久国产乱子伦精品免费另类| 免费大片18禁| 国产中年淑女户外野战色| netflix在线观看网站| 此物有八面人人有两片| 中文字幕熟女人妻在线| xxxwww97欧美| 熟妇人妻久久中文字幕3abv| 美女大奶头视频| 欧美成人一区二区免费高清观看| 亚洲不卡免费看| 国语自产精品视频在线第100页| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 日韩欧美国产在线观看| 全区人妻精品视频| 一二三四社区在线视频社区8| 麻豆成人午夜福利视频| 国产精品久久视频播放| 黄色丝袜av网址大全| 午夜福利在线观看免费完整高清在 | 久久亚洲精品不卡| 午夜老司机福利剧场| 99热精品在线国产| av天堂在线播放| 色精品久久人妻99蜜桃| xxx96com| 男人舔奶头视频| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 精品国产亚洲在线| 一个人免费在线观看的高清视频| 欧美丝袜亚洲另类 | 一级a爱片免费观看的视频| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| 精品人妻偷拍中文字幕| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦观看免费观看视频高清| 色在线成人网| 岛国在线免费视频观看| 一本精品99久久精品77| av在线蜜桃| 亚洲av一区综合| www.熟女人妻精品国产| 人妻夜夜爽99麻豆av| 国产精品自产拍在线观看55亚洲| 精品午夜福利视频在线观看一区| 国语自产精品视频在线第100页| 欧美黑人欧美精品刺激| 国产精品嫩草影院av在线观看 | 一个人看视频在线观看www免费 | 美女高潮的动态| 成人av一区二区三区在线看| 日本 欧美在线| 特级一级黄色大片| 亚洲精品国产精品久久久不卡| av片东京热男人的天堂| h日本视频在线播放| 亚洲内射少妇av| 欧美丝袜亚洲另类 | 亚洲精品美女久久久久99蜜臀| 99久久精品国产亚洲精品| 一个人看的www免费观看视频| 国产国拍精品亚洲av在线观看 | 天堂网av新在线| 人人妻,人人澡人人爽秒播| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 12—13女人毛片做爰片一| 香蕉丝袜av| 国产高清三级在线| 一级a爱片免费观看的视频| 久9热在线精品视频| 757午夜福利合集在线观看| 哪里可以看免费的av片| 欧美中文综合在线视频| 国产三级中文精品| 嫁个100分男人电影在线观看| 一个人看视频在线观看www免费 | 亚洲avbb在线观看| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 欧美不卡视频在线免费观看| 哪里可以看免费的av片| 欧美中文综合在线视频| 亚洲自拍偷在线| 久久久国产成人免费| 亚洲精品一卡2卡三卡4卡5卡| 乱人视频在线观看| 淫妇啪啪啪对白视频| av欧美777| 免费在线观看亚洲国产| 一区二区三区激情视频| 免费观看人在逋| 成人一区二区视频在线观看| 草草在线视频免费看| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看 | 午夜激情福利司机影院| 中文亚洲av片在线观看爽| 免费看美女性在线毛片视频| 日本一本二区三区精品| 美女大奶头视频| 欧美成人性av电影在线观看| 国产成人a区在线观看| 午夜福利成人在线免费观看| 在线观看免费视频日本深夜| 欧美又色又爽又黄视频| 午夜福利免费观看在线| 精品99又大又爽又粗少妇毛片 | 黄色日韩在线| 精品乱码久久久久久99久播| 日本黄色片子视频| 亚洲中文字幕一区二区三区有码在线看| 97人妻精品一区二区三区麻豆| 亚洲黑人精品在线| 免费人成视频x8x8入口观看| 国产成人啪精品午夜网站| 97碰自拍视频| 性色av乱码一区二区三区2| 观看免费一级毛片| 午夜福利高清视频| 97超视频在线观看视频| 国产三级黄色录像| 很黄的视频免费| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 中文在线观看免费www的网站| 在线视频色国产色| 午夜老司机福利剧场| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| 女警被强在线播放| netflix在线观看网站| 有码 亚洲区| 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 一个人看的www免费观看视频| 国产黄色小视频在线观看| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 51国产日韩欧美| 黑人欧美特级aaaaaa片| ponron亚洲| 禁无遮挡网站| 精品国内亚洲2022精品成人| 国产精品一及| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线观看免费完整高清在 | 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 欧美激情在线99| 在线观看舔阴道视频| www.色视频.com| 老司机福利观看| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| 十八禁网站免费在线| 中文在线观看免费www的网站| 国内精品美女久久久久久| 俄罗斯特黄特色一大片| 中文字幕av在线有码专区| 国内揄拍国产精品人妻在线| 99久久精品国产亚洲精品| 国语自产精品视频在线第100页| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 好男人在线观看高清免费视频| 成人精品一区二区免费| 国产不卡一卡二| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| 久久久久久久精品吃奶| www国产在线视频色| 三级国产精品欧美在线观看| 欧美性感艳星| 精品一区二区三区av网在线观看| 久久精品国产清高在天天线| 国产成人aa在线观看| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频|