• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning

    2022-08-13 02:08:06YujieWangKaiquanLiandZonghaiChenSenior
    IEEE/CAA Journal of Automatica Sinica 2022年8期

    Yujie Wang,, Kaiquan Li, and Zonghai Chen, Senior

    Dear editor,

    This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH) prediction. The features of charging data including the constant current time, constant voltage time, and the total charging time are selected as the input characteristics of the network to estimate SOH. Moreover, the empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. Experimental results show that the proposed method can provide more accurate battery SOH prediction than several state-of-the-art methods.

    Lithium-ion batteries are now widely used in the applications of electrified transportation [1], smart grid [2], and smart buildings. The degradation of lithium-ion batteries has restrictions of the energy and power capability, as well as the performance of the cost and lifetime.Therefore, battery degradation has been a critical issue in energy storage applications. The whole life cycle management and health prognosis of battery systems have become hot and difficult issues in battery management. The future battery management system should be deeply integrated with intelligent algorithms and networked services to provide more reliable prediction and diagnosis results [3].

    In the practical application, batteries will inevitably experience gradual performance fading during its lifetime and their performance degradation is influenced by the factors including battery manufacturing, operation, and environmental conditions. Specifically, the manufacturing process will first determine the initial performance of the battery. High performance batteries will then be used in a wide range of electronic applications until their capacity reach 80% of their nominal capacity and are taken out of service. During the battery full life cycle, a wide range of overcharging and over discharging, internal or external short circuits, may damage the battery and even lead to thermal runaway, combustion, and explosion[4]. Therefore, effective battery management becomes essential.

    The traditional battery management system without aging information storage function is difficult to effectively estimate the battery life. In addition, the artificial intelligence-based battery life prediction algorithms also require large computational capability.Therefore, it is necessary to expand the functions of the traditional battery management system by using cloud computing and big data storage. Fig. 1 presents a cloud-based framework for future battery management system.

    Related work: Significant studies have been devoted to solving the problem of life prediction of battery performance which can be classified into three categories: mechanism-based, feature-based, and data-driven approaches.

    Fig. 1. Cloud-based framework for battery management.

    The mechanism-based prediction approaches require the study of the effect of each aging factor on battery degradation. This approach begins with a physics-based model. Then, the law of aging process influence on state variables can be studied. The mechanism-based life prediction method is applicable to batteries in almost all state conditions and operation modes. A detailed explanation of the battery aging process is given, which can be used by battery manufacturers and designers for battery design improvement. Wanget al. [5]proposed a single-particle based degradation model for lithium-ion batteries which can predict the battery cycling capacity with less than 2% error. Compared with other methods, the analysis of battery control strategy based on this approach can be more detailed and accurate. The disadvantages of this approach are that the model requires fine parameters and has high complexity. Moreover, the tests for aging factors are complicated, and there are difficulties in establishing a perfect aging mechanism model.

    The feature-based life prediction approaches use the evolution patterns of the feature parameters exhibited during the battery aging process to establish the correspondence between the values of the feature quantities and the battery health state for life prediction. The feature-based battery life prediction mainly focuses on the characteristics of charging data and electrochemical impedance spectroscopy(EIS). Renet al. [6] presented a battery life prediction method by using impedance spectra analysis. Experimental results showed that the prediction errors are within ±5%. The EIS can give a more detailed description of the battery impedance, which can be used to estimate the battery life characteristics. However, it requires special measurement instruments. The pulse impedance measurement is another approach which is simple and can be measured quickly online. The test results can describe the impedance of the battery to a certain extent, reflecting the growth of battery impedance with the decay of life, and can also be used as battery life characteristics.

    The data-driven approaches describe the battery recession performance from the perspective of the test data, and the commonly used algorithms include support vector machine (SVM), Gaussian process regression (GPR) [7], neural networks (NN) [8], etc. Liet al.[9] proposed a machine-learning-enabled data-driven model for battery SOH prediction by using GPR. The proposed technique is promising for battery SOH prediction under various cycling cases.Wanget al. [10] proposed an on-line synthesis method to estimate the battery SOH and remaining useful life. Specifically, the fusion of partial incremental capacity and artificial neural network (ANN) are helped for the health prognosis. The data-driven prediction approach does not require mechanistic knowledge of the object system and is a more practical prediction method based on the collected data. This approach can be predicted by mining the implicit information through various data analysis and learning methods, thus avoiding the complexity of model acquisition.

    Problem statement: Conventional neural network algorithms rely on the quantity and quality of the aging data. Complicated topologies are usually required to ensure enough accuracy, which leads to complex parameter optimization. Moreover, pe-life data batches are too small to achieve accurate estimates and as the time scale lengthens, the model parameters are updated dynamically with the increase of data volume only through the time-consuming retraining process.

    Basic concepts:

    1) The definition of SOH: The ratio of the current available capacity to the nominal capacity.

    2) Multi-metric features during battery charging process: Constant current time with its corresponding proportion, constant voltage time with its corresponding proportion, and the total charging time.

    4) Data division ratio: training datasets/ testing datasets, NumEnhan: number of enhancement nodes, NumFea: number of feature window, NumWin: number of feature node in a feature window.

    Proposed prediction model: The broad learning approach is proposed for SOH prediction of lithium-ion batteries, as shown in Fig. 2. The broad learning system (BLS) is developed on the basis of the random vector function linked neural network as an alternative to deep learning (DL) network. Traditional DL networks have complex topological structures and a large number of parameters to be optimized, which will not only lead to time-consuming training process, but also require exponential efforts to achieve better accuracy.In order to alleviate the above problems, BLS uses horizontal expansion to efficiently rebuild the model in an incremental learning way, and its fast-learning characteristics can effectively shorten the long training process without causing catastrophic forgetting.

    Fig. 2. BLS-based health prognosis for lithium-ion batteries.

    wheredandbare composed of pseudo inverse ofAand new data.

    Experiments: In this work, the capacity degradation paths of different datasets are used for the comparison experiments. The corresponding testing conditions including the various C-rate at ambient temperature (25°C). The cells with 2.5 Ah rated capacity were chosen to conduct constant current (CC) discharging and constant current constant voltage (CCCV) charging with cut-off voltages of 3.0 V and 4.2 V, respectively. The different operating profiles are introduced in detail, listed in Table 1, and the experimental setup is shown in Fig. 3.

    In the practical application process, continuous and variable discharge current with fluctuation will lead to incomplete and unstable discharge process. However, it is easy to obtain regular offset charging curve through fixed charging mode, and extracthealth factors highly related to aging attenuation. To obtain effective capacity attenuation information more comprehensively, constant current time with its corresponding proportion, the constant voltage time with its corresponding proportion, and the total charging time are selected as the input characteristics of the network. In order to eliminate the influence caused by capacity regeneration in the process of battery aging, empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. By using a fixed width sliding window to carry out rolling decomposition of capacity attenuation data, the data of the test data set can be dynamically input into the estimation model trained offline to realize the real-time online estimation of battery SOH in actual application scenarios.

    Table 1.Battery Cycle Aging Experiment Profiles

    Fig. 3. The experimental setup.

    To verify the accuracy of the BLS-based estimation architecture,the aging datasets of different battery are divided into 70% training sets and 30% test sets firstly. Furthermore, three classical algorithms are widely used in the prediction of time series data, including long short-term memory (LSTM) neural network, recurrent neural network (RNN), and gate recurrent unit (GRU). The gate structure endows them with memory function, which are selected for comparison of estimation performance and to emphasize the difference between BLS and the three classical neural networks. The SOH estimation result and error curves of different neural networks for different batteries are shown in Fig. 4.

    Fig. 4. The SOH estimation process and error curves of different neural networks for three datasets: (a) and (d) are B01; (b) and (e) are B02; (c) and(f) are B03.

    From Figs. 4(a)–4(c), the catalytic effect of charging ratio on battery aging is stronger than that of discharging current by crossreferencing. The capacity regeneration in the aging process changes the capacity decay trajectory to a certain extent. All the selected classical neural networks can follow the sudden change trend with certain estimation accuracy from Figs. 4(d)–4(f).

    It is obvious that for the classical neural network algorithms, the prediction errors of both GRU and LSTM are lower than the RNN under the same working conditions, which has proved that the performance enhancing effect of the unique gate structure in GRU and LSTM. Moreover, for datasets under different working conditions, the estimation performance of BLS is not weaker than that of LSTM and GRU, and even better in B03, which corroborate the high accuracy of the proposed estimation model.

    In order to further highlight the superiority of the proposed estimation method, the four neural networks are compared from the perspective of time cost. To make sure the fairness of comparison,the corresponding time of different networks for the same amount of data are shown in Table 2.

    Table 2.Time Consumed by Different Networks

    As can be seen from Table 2, the classical neural network algorithms have the most complex structure resulting in the longest training time. In contrast, the training time of BLS is much smaller than other neural networks under the three operating conditions,which explains that the weight matrix of BLS is updated much faster than the weight updating algorithms used in conventional neural network, such as back propagation.

    According to the above comparison results, the proposed estimation model based on BLS has good performance in the accuracy and time complexity. To further analyze the impact of data division and the number of network nodes on the performance of BLS, different division ratios are used for the same dataset and grid search is applied to find the optimal number of nodes. The prediction results of BLS and estimation error curves with different data division ratio of B03 are shown in Fig. 5. The optimal combination of the number of nodes with different division results of B03 is given in the following Table 3. The root mean-square error (RMSE), mean absolute error(MAE), maximum error, and time are chosen to portray the performance of BLS from different descriptive perspectives.

    Fig. 5. The prediction results of BLS with different data division ratio of B03:(a) 5:5; (b) 6:4; (c) 7:3; (d) 8:2; (e) 9:1; (f) error curves.

    Table 3.The Optimal Combination of the Number of Nodes With Different Division Results of B03

    The MAE and RMSE of the test set are low under different data division ratios. When the training set accounted for 90%, battery SOH estimation effect of the test set was the best, mainly due to the sufficient information contained in a large amount of training data.When the proportion of training set decreases to 50%, the proposed estimation model can still extract effective attenuation information from limited data. The estimation error MAE and RMSE are 0.5934% and 0.9957%, respectively. The maximum errors in the test data set all occurred in the capacity regeneration stage, but the error size was still maintained below 4%. The total time consumed,including training time and test time, is within 0.1s under different proportions of training sets.

    Conclusions: This letter presents a novel approach for the battery health prognosis based on BLS. Experimental results show that the proposed method can provide more accurate battery SOH prediction and faster speed than the conventional neural network algorithms for real-time online estimation. Even in the capacity regeneration stage,the proposed estimation model based on BLS has better performance.As the aging of Lithium-ion batteries deepens, when the model accuracy is insufficient due to the change of aging pattern as the capacity decay data gradually increases, the network structure of BLS can be dynamically extended based on incremental learning in short time so as to maintain high accuracy without the need for timeconsuming retraining process.

    Acknowledgments: This work was supported by the National Key Research and Development Program of China (2020YFB1712400).

    色吧在线观看| 免费看日本二区| 欧美黑人欧美精品刺激| 亚洲一区二区三区色噜噜| 亚洲,欧美,日韩| 窝窝影院91人妻| www.熟女人妻精品国产| 两人在一起打扑克的视频| 俺也久久电影网| 成人午夜高清在线视频| 国产一区二区亚洲精品在线观看| 国产91精品成人一区二区三区| 91av网一区二区| 亚洲第一区二区三区不卡| 久久久久国产精品人妻aⅴ院| 日韩精品中文字幕看吧| 看免费av毛片| 欧美极品一区二区三区四区| 日韩有码中文字幕| 18禁裸乳无遮挡免费网站照片| 成年女人永久免费观看视频| 深夜精品福利| 香蕉av资源在线| 国产一区二区在线av高清观看| 一级毛片久久久久久久久女| 午夜老司机福利剧场| 一本一本综合久久| 首页视频小说图片口味搜索| 在线播放国产精品三级| 麻豆一二三区av精品| 人妻制服诱惑在线中文字幕| 国产白丝娇喘喷水9色精品| 亚洲精品在线美女| 久久欧美精品欧美久久欧美| 一级a爱片免费观看的视频| 丰满的人妻完整版| 琪琪午夜伦伦电影理论片6080| 国产一区二区三区在线臀色熟女| 国产91精品成人一区二区三区| 亚洲av电影在线进入| 免费看美女性在线毛片视频| 亚洲精品影视一区二区三区av| 别揉我奶头~嗯~啊~动态视频| 成年免费大片在线观看| 国产精品亚洲av一区麻豆| 欧美国产日韩亚洲一区| 人妻丰满熟妇av一区二区三区| 韩国av一区二区三区四区| 老熟妇乱子伦视频在线观看| 不卡一级毛片| 精品人妻视频免费看| 97超视频在线观看视频| 国产精品自产拍在线观看55亚洲| 最近中文字幕高清免费大全6 | 国产精品人妻久久久久久| 一本综合久久免费| 99视频精品全部免费 在线| 此物有八面人人有两片| 99久久精品热视频| 国产精品爽爽va在线观看网站| 一个人观看的视频www高清免费观看| 久久久国产成人免费| 婷婷丁香在线五月| 人妻丰满熟妇av一区二区三区| 在线十欧美十亚洲十日本专区| 国产精品一区二区性色av| 黄片wwwwww| 一级a做视频免费观看| 大片免费播放器 马上看| 在线免费观看不下载黄p国产| 如何舔出高潮| 国产淫语在线视频| 亚洲色图av天堂| 在线观看av片永久免费下载| 亚洲国产精品专区欧美| 免费大片18禁| 好男人在线观看高清免费视频| 国产一级毛片在线| 亚洲人成网站在线播| 成人欧美大片| 成人一区二区视频在线观看| 赤兔流量卡办理| 一个人看视频在线观看www免费| av福利片在线观看| 国产av码专区亚洲av| 自拍偷自拍亚洲精品老妇| 99久久精品热视频| 国产精品三级大全| 丝袜美腿在线中文| 久久久久九九精品影院| 国产视频内射| 日韩视频在线欧美| 波野结衣二区三区在线| 亚洲真实伦在线观看| 大码成人一级视频| 超碰av人人做人人爽久久| 好男人在线观看高清免费视频| 免费黄网站久久成人精品| 免费av观看视频| 日本-黄色视频高清免费观看| 久久精品国产自在天天线| av一本久久久久| 男插女下体视频免费在线播放| 亚洲精品中文字幕在线视频 | 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影| 国产精品爽爽va在线观看网站| 欧美日韩国产mv在线观看视频 | 黄色怎么调成土黄色| 日本一二三区视频观看| 嘟嘟电影网在线观看| 亚洲人成网站高清观看| 一个人看视频在线观看www免费| 白带黄色成豆腐渣| 成人亚洲精品一区在线观看 | 国产老妇伦熟女老妇高清| 亚洲精品日本国产第一区| 国产精品国产三级国产专区5o| 国产欧美日韩一区二区三区在线 | 大又大粗又爽又黄少妇毛片口| 80岁老熟妇乱子伦牲交| 大陆偷拍与自拍| 欧美亚洲 丝袜 人妻 在线| 99热网站在线观看| 久久6这里有精品| 国产精品嫩草影院av在线观看| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久v下载方式| 欧美日本视频| av在线app专区| 亚洲三级黄色毛片| 别揉我奶头 嗯啊视频| 日韩欧美一区视频在线观看 | 大码成人一级视频| 亚洲国产欧美人成| 青春草亚洲视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 春色校园在线视频观看| 国产片特级美女逼逼视频| 水蜜桃什么品种好| 日日啪夜夜爽| 久久这里有精品视频免费| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 免费观看在线日韩| 精品人妻偷拍中文字幕| 深夜a级毛片| 菩萨蛮人人尽说江南好唐韦庄| 免费av毛片视频| 自拍欧美九色日韩亚洲蝌蚪91 | 丝袜喷水一区| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 日韩视频在线欧美| av天堂中文字幕网| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| 成人黄色视频免费在线看| 亚洲国产欧美在线一区| 亚洲av电影在线观看一区二区三区 | a级毛片免费高清观看在线播放| 大片电影免费在线观看免费| 青春草亚洲视频在线观看| 午夜福利视频1000在线观看| 国产精品熟女久久久久浪| 国产 精品1| 亚洲国产成人一精品久久久| 高清毛片免费看| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 国产真实伦视频高清在线观看| 亚洲自偷自拍三级| 久久久久久久精品精品| 亚洲婷婷狠狠爱综合网| 特大巨黑吊av在线直播| 99久久精品一区二区三区| 亚洲在久久综合| 国产精品一区二区性色av| 亚洲美女视频黄频| 国产精品一及| 国产亚洲最大av| 一本一本综合久久| 亚洲av不卡在线观看| 亚洲精品一区蜜桃| 亚洲av中文字字幕乱码综合| 18+在线观看网站| 精品国产露脸久久av麻豆| 日本与韩国留学比较| 精品午夜福利在线看| 久久久精品欧美日韩精品| 久久午夜福利片| 少妇熟女欧美另类| 国产爽快片一区二区三区| 午夜精品一区二区三区免费看| 色5月婷婷丁香| 寂寞人妻少妇视频99o| 午夜日本视频在线| 男人舔奶头视频| 免费播放大片免费观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 卡戴珊不雅视频在线播放| 国产美女午夜福利| 亚洲天堂国产精品一区在线| 国产又色又爽无遮挡免| 黄色一级大片看看| 99视频精品全部免费 在线| 国产免费福利视频在线观看| 街头女战士在线观看网站| 97超视频在线观看视频| 男女国产视频网站| 精品久久久久久久末码| 国产美女午夜福利| 如何舔出高潮| 精品视频人人做人人爽| 亚洲欧美日韩东京热| 欧美精品一区二区大全| 美女国产视频在线观看| 国产av不卡久久| 欧美日韩视频高清一区二区三区二| 大片免费播放器 马上看| 在线免费十八禁| 成人二区视频| 又黄又爽又刺激的免费视频.| 中国美白少妇内射xxxbb| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱码久久久久久按摩| 国产亚洲91精品色在线| 色视频在线一区二区三区| 亚洲国产色片| 直男gayav资源| 国产午夜精品一二区理论片| 在线天堂最新版资源| 自拍偷自拍亚洲精品老妇| 色哟哟·www| 少妇猛男粗大的猛烈进出视频 | 欧美日韩综合久久久久久| 亚洲精品成人久久久久久| 日韩av免费高清视频| 一区二区三区四区激情视频| 午夜免费鲁丝| 亚洲欧美中文字幕日韩二区| 亚洲国产精品成人综合色| 秋霞在线观看毛片| 中文在线观看免费www的网站| 久久久久久久久久成人| 日韩人妻高清精品专区| 色吧在线观看| 一个人观看的视频www高清免费观看| a级毛色黄片| kizo精华| 肉色欧美久久久久久久蜜桃 | 天天躁日日操中文字幕| 三级国产精品片| 精品久久久久久久人妻蜜臀av| 一级毛片黄色毛片免费观看视频| 搡女人真爽免费视频火全软件| 一区二区三区四区激情视频| 99热这里只有是精品在线观看| 国产在线一区二区三区精| 免费看光身美女| 国产高潮美女av| 国产成人91sexporn| 一区二区三区免费毛片| 精品人妻一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 美女cb高潮喷水在线观看| 三级国产精品片| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 久久精品久久久久久噜噜老黄| 69av精品久久久久久| 精品一区二区三区视频在线| 亚洲精品国产av蜜桃| 少妇的逼水好多| 高清午夜精品一区二区三区| av免费观看日本| 王馨瑶露胸无遮挡在线观看| 国产精品蜜桃在线观看| 久久精品国产亚洲av涩爱| 成人毛片a级毛片在线播放| 99久久精品热视频| av卡一久久| 国产久久久一区二区三区| 伦精品一区二区三区| 男的添女的下面高潮视频| 国产成人免费观看mmmm| 精品少妇久久久久久888优播| 亚洲欧美日韩另类电影网站 | 欧美成人一区二区免费高清观看| 亚洲图色成人| 欧美日韩综合久久久久久| 亚洲国产av新网站| 六月丁香七月| 最近最新中文字幕大全电影3| 日本免费在线观看一区| 久久久成人免费电影| 卡戴珊不雅视频在线播放| 蜜桃亚洲精品一区二区三区| 成人午夜精彩视频在线观看| av.在线天堂| 亚洲一级一片aⅴ在线观看| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 久久亚洲国产成人精品v| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩无卡精品| 久久人人爽av亚洲精品天堂 | 亚洲精品日本国产第一区| 亚洲人成网站高清观看| 身体一侧抽搐| xxx大片免费视频| 国产成人a∨麻豆精品| 亚洲成人一二三区av| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 男女国产视频网站| 欧美xxxx性猛交bbbb| 波多野结衣巨乳人妻| 欧美xxⅹ黑人| 久久久久久伊人网av| 人妻少妇偷人精品九色| 欧美一级a爱片免费观看看| 色网站视频免费| 美女主播在线视频| 69av精品久久久久久| 美女高潮的动态| 亚洲精华国产精华液的使用体验| 亚洲精品日韩在线中文字幕| 听说在线观看完整版免费高清| 免费黄色在线免费观看| 亚洲无线观看免费| 国产精品偷伦视频观看了| 一级二级三级毛片免费看| 三级国产精品片| 久久亚洲国产成人精品v| eeuss影院久久| 观看美女的网站| 国产精品蜜桃在线观看| 在线精品无人区一区二区三 | 精品国产一区二区三区久久久樱花 | 日日撸夜夜添| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| 精品熟女少妇av免费看| 久久久国产一区二区| 51国产日韩欧美| 18+在线观看网站| 精品久久久久久久久亚洲| 好男人视频免费观看在线| 97在线人人人人妻| 最近中文字幕2019免费版| 日本午夜av视频| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 少妇高潮的动态图| 亚洲自拍偷在线| 欧美性感艳星| 成人鲁丝片一二三区免费| 特级一级黄色大片| 亚洲精品日韩av片在线观看| 免费观看无遮挡的男女| 久久久久久久国产电影| 欧美日韩综合久久久久久| 亚洲自偷自拍三级| 成年免费大片在线观看| 精品少妇黑人巨大在线播放| 欧美bdsm另类| 一区二区三区乱码不卡18| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 黄色怎么调成土黄色| 男女那种视频在线观看| 欧美日韩在线观看h| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 在线观看美女被高潮喷水网站| 欧美xxxx性猛交bbbb| 成年女人在线观看亚洲视频 | 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 在线a可以看的网站| 中国三级夫妇交换| 日韩亚洲欧美综合| 80岁老熟妇乱子伦牲交| 欧美bdsm另类| 毛片一级片免费看久久久久| tube8黄色片| 国产成人a区在线观看| 成年女人看的毛片在线观看| 一级片'在线观看视频| 少妇 在线观看| av福利片在线观看| 亚洲欧洲日产国产| 亚洲av不卡在线观看| 亚洲av二区三区四区| av免费在线看不卡| 五月天丁香电影| 欧美高清成人免费视频www| 亚洲av.av天堂| 热re99久久精品国产66热6| 看十八女毛片水多多多| 日韩大片免费观看网站| 黄色视频在线播放观看不卡| 中国美白少妇内射xxxbb| 日韩中字成人| 久久久久网色| av福利片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美最新免费一区二区三区| 国产精品国产三级国产av玫瑰| 少妇 在线观看| 精品国产一区二区三区久久久樱花 | av卡一久久| 新久久久久国产一级毛片| 身体一侧抽搐| av国产精品久久久久影院| 免费黄网站久久成人精品| 制服丝袜香蕉在线| 亚洲av一区综合| 国产综合懂色| 日韩av在线免费看完整版不卡| 超碰av人人做人人爽久久| 国产高清三级在线| 看非洲黑人一级黄片| 一区二区三区免费毛片| 国产色婷婷99| 2021天堂中文幕一二区在线观| 一个人观看的视频www高清免费观看| 男女无遮挡免费网站观看| 亚洲成人中文字幕在线播放| 插阴视频在线观看视频| 人妻 亚洲 视频| 99热国产这里只有精品6| 精品一区二区三区视频在线| 黄色一级大片看看| 国国产精品蜜臀av免费| av黄色大香蕉| 亚洲成人中文字幕在线播放| 中文乱码字字幕精品一区二区三区| 色5月婷婷丁香| 成人国产av品久久久| 性色av一级| 大陆偷拍与自拍| 国产精品女同一区二区软件| 高清在线视频一区二区三区| 中文字幕av成人在线电影| 97热精品久久久久久| 91狼人影院| 丰满人妻一区二区三区视频av| 久久久久性生活片| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 男女那种视频在线观看| av免费观看日本| 久久精品久久久久久久性| 色婷婷久久久亚洲欧美| 国产成人a区在线观看| 亚洲精品亚洲一区二区| 久久午夜福利片| 中文资源天堂在线| 97超视频在线观看视频| 精品亚洲乱码少妇综合久久| 欧美日韩在线观看h| 男人爽女人下面视频在线观看| 国产白丝娇喘喷水9色精品| 久久人人爽av亚洲精品天堂 | 九九爱精品视频在线观看| 国产免费福利视频在线观看| 亚洲,一卡二卡三卡| 亚洲天堂国产精品一区在线| 91午夜精品亚洲一区二区三区| 一级毛片我不卡| 国产精品.久久久| 欧美另类一区| 亚洲精品乱码久久久v下载方式| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 欧美激情国产日韩精品一区| 亚洲自偷自拍三级| 麻豆精品久久久久久蜜桃| 欧美xxⅹ黑人| 一区二区三区四区激情视频| 99久久精品一区二区三区| 草草在线视频免费看| 韩国av在线不卡| 肉色欧美久久久久久久蜜桃 | 国产日韩欧美在线精品| 亚洲天堂av无毛| 水蜜桃什么品种好| 最近中文字幕2019免费版| 中国国产av一级| 免费人成在线观看视频色| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 免费观看在线日韩| 亚洲高清免费不卡视频| 久久久国产一区二区| 午夜视频国产福利| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区| 亚洲人成网站高清观看| 交换朋友夫妻互换小说| 18禁在线无遮挡免费观看视频| 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕2019免费版| 天天躁夜夜躁狠狠久久av| 成人免费观看视频高清| av.在线天堂| 日韩欧美精品v在线| av国产精品久久久久影院| 99久久精品国产国产毛片| 99九九线精品视频在线观看视频| 亚洲精品成人av观看孕妇| 国产在线一区二区三区精| 亚洲欧美精品自产自拍| a级毛片免费高清观看在线播放| 国产精品蜜桃在线观看| 99视频精品全部免费 在线| 色哟哟·www| 99热全是精品| 不卡视频在线观看欧美| 国产成人91sexporn| 嘟嘟电影网在线观看| 免费看a级黄色片| 在线免费观看不下载黄p国产| 亚洲av欧美aⅴ国产| 亚洲精品日本国产第一区| 免费观看av网站的网址| 国模一区二区三区四区视频| 三级经典国产精品| 97热精品久久久久久| 肉色欧美久久久久久久蜜桃 | 1000部很黄的大片| 欧美xxxx性猛交bbbb| 精品国产乱码久久久久久小说| 日韩视频在线欧美| 视频中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线 | 毛片女人毛片| 22中文网久久字幕| 国产欧美日韩一区二区三区在线 | 搞女人的毛片| 美女cb高潮喷水在线观看| 日产精品乱码卡一卡2卡三| 伊人久久国产一区二区| 久久久亚洲精品成人影院| 下体分泌物呈黄色| 日本色播在线视频| 精品一区二区三卡| av国产精品久久久久影院| 国产免费一级a男人的天堂| 美女高潮的动态| 一本色道久久久久久精品综合| 亚洲无线观看免费| 禁无遮挡网站| 黄片无遮挡物在线观看| 亚洲av成人精品一区久久| 午夜免费鲁丝| 我的老师免费观看完整版| 欧美 日韩 精品 国产| 国产亚洲91精品色在线| 亚洲最大成人中文| 国产精品一区www在线观看| 精品国产三级普通话版| 另类亚洲欧美激情| 日韩欧美精品免费久久| 免费看a级黄色片| 国产成人精品一,二区| 91久久精品国产一区二区三区| 久久久久久久久久久免费av| 午夜激情福利司机影院| 亚洲av.av天堂| 尾随美女入室| 一本一本综合久久| 26uuu在线亚洲综合色| 久久久精品免费免费高清| 亚洲高清免费不卡视频| 欧美亚洲 丝袜 人妻 在线| 观看免费一级毛片| 最近中文字幕高清免费大全6| 永久免费av网站大全| 午夜精品国产一区二区电影 | 真实男女啪啪啪动态图| 天美传媒精品一区二区| 亚洲精品aⅴ在线观看| 国产91av在线免费观看| 91久久精品国产一区二区三区| 熟女电影av网| 香蕉精品网在线| 九色成人免费人妻av| 人人妻人人澡人人爽人人夜夜| 韩国av在线不卡| 中国三级夫妇交换| 国产探花极品一区二区| 丝袜脚勾引网站| 日韩制服骚丝袜av| av在线亚洲专区| 成年人午夜在线观看视频| 最新中文字幕久久久久| 赤兔流量卡办理| 最近手机中文字幕大全| 少妇人妻一区二区三区视频| 精品视频人人做人人爽| 男男h啪啪无遮挡| 2021天堂中文幕一二区在线观| 99热这里只有是精品50| 亚洲aⅴ乱码一区二区在线播放| 男女边摸边吃奶| 国产乱人偷精品视频| 视频中文字幕在线观看| 日韩一本色道免费dvd| 观看免费一级毛片| 在线观看免费高清a一片|