• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Breeding Effects and Genetic Compositions of a Backbone Parent (Fengbazhan) of Modern indica Rice in China

    2022-08-08 09:54:34ZhaoLeiZhouShaochuanWangChongrongLiHongHuangDaoqiangWangZhidongZhouDeguiChenYiboGongRongPanYangyang
    Rice Science 2022年5期

    Zhao Lei, Zhou Shaochuan, Wang Chongrong, Li Hong, Huang Daoqiang, Wang Zhidong, Zhou Degui, Chen Yibo, Gong Rong, Pan Yangyang

    Letter

    Breeding Effects and Genetic Compositions of a Backbone Parent (Fengbazhan) of ModernRice in China

    Zhao Lei, Zhou Shaochuan, Wang Chongrong, Li Hong, Huang Daoqiang, Wang Zhidong, Zhou Degui, Chen Yibo, Gong Rong, Pan Yangyang

    ()

    Fengbazhan (FBZ) andits derived varieties have been widely cultivated in China, accounting for 22% of China’s paddyfields.Therefore, evaluating the breeding. Effectsof FBZ and elucidating its genetic compositions are effective strategies for interpreting the history of modern rice breeding.Using integrative bioinformatics analysis and population validation,we found that the expression of favorable genes on chromosome 6 was important for the breeding of FBZ-derived varieties and these favorable genes were gradually optimized during thebreeding process, which was consistent with the conjecture of the ‘Rice Core Germplasm Breeding Theory’.

    Forseveral decades, tremendous efforts have been made by Chinese scientists in rice breedingto improvegrain yield, nutritional quality and environmental performance, thereby achieving substantial progress in globalfood security.Several rice breeding technologies have been developed, includingsemi-dwarf breeding, utilization of heterosis, launching the ‘Super Rice Project’, development of green super rice and molecular design breeding(Qian et al, 2016;Bai et al, 2018; Tang and Cheng, 2018; Yu et al, 2022).In southern China, rice can be divided into the early, middle and late rice, andthe cultivationarea in southern China accounts for approximately80% of China’s rice cultivation area.Currently, severaldistinct rice varieties are widely cultivated in southern China. According to NATESC (2019), the conventionalrice variety is mainly planted in the early season,with therepresentative varieties being Zhongjiazao17, Xiangzaoxian45 and Zhongzao39. In the middle and late seasons, both conventionaland hybrid rice varieties are widely cultivated. Among them, Huanghuazhan has become the conventionalrice variety with the largest annual planting area in China, whereasJingliangyou534 (restorer: Wushansimiao) and Jingliangyou- huazhan (restorer: Huazhan) are the two-hybrid rice varieties with the largest annual promotion area.In addition, Huanghuazhan and Huazhan are actively replacing the rice varieties currently usedin China(Zhou et al, 2016; Zeng, 2018; E et al, 2019; Fang et al, 2020; Yu et al, 2022; Zhang et al, 2022).Moreover, these varieties are derived from FBZand can therefore be referred toasFBZ-derived varieties.

    FBZ was developed by crossing two key parents, Feng’aizhan1 and 28zhan (Fig. 1-A).Feng’aizhan1 is a semi-dwarf rice variety with multiple tillers, high yield and slender grains, but it exhibits poor blast resistance and has high amylose content.In contrast, 28zhan exhibits excellent blast resistance and has low amylose content, although its appearance quality and grain yield are not ideal.FBZ inherits the advantages of both parents (Zhou et al, 2007), and thus, itis a remarkable rice variety exhibiting excellent milling, appearance and cooking qualities,blast resistance, and high yield in Guangdong Province in China.Our team used FBZ as the core germplasm to breed the first certified rice variety Fenghuazhan (Fig. 1-A). The appearance and taste quality of Fenghuazhan were significantly improved compared to those of FBZ. Subsequently, our team bred another elite rice variety Huanghuazhan, by crossing Huangxinzhan and Fenghuazhan, which was released in 2005 (Fig. 1-A).Huanghuazhan is the most common inbred rice cultivar that has been cultivated in central and south China and has been widely grown across nine provinceswith semi-dwarf,super high yield,good eating qualityand wide adaptability(Zhou et al, 2016; Deng et al, 2019). Nevertheless, Huanghuazhan exhibits a significantly reducedblastresistance compared to FBZ, which may limit its application in areas with a high risk of rice blast. To overcome these limitations, we developed two intermediary varieties, Wufengzhan2 and Fengsizhan, which were directly derived from FBZ. Based on these two varieties, Wushansimiao, Huanglizhan,and Huangyuesimiao were bred by our institute and Huazhan was cooperatively bred by our institute and China National Rice Research Institute (Fig. 1-A), and thesefour varieties have proven to be elite restorer lineswith good quality, high blast resistance and excellent combining ability. The breeding and popularization of hybrid rice were mainly completed by our partners, namely the China National Rice Research Institute, Longping High-TechAgriculture Co., Ltd.,and Quanyin High-TechSeed Co., Ltd.

    Fig. 1. Breeding effects of Fengbazhan (FBZ) in China.

    A, FBZ-derived varieties bred by our team. Huazhan was cooperatively bred by our team and China National Rice Research Institute. Seven elite varieties are shown in boxes.B, Planting areas of FBZ-derivedvarieties in China. C, Main locations whereFBZ-derivedvarieties are cultivated in China.D,Percentage of the planting area of FBZ-derived hybrids with respect tothe total planting area of hybrid rice in China. The unit is × 104hm2. E, Percentage ofplanting area of FBZ-derived varieties (including hybrid rice and conventional rice) with respect tothe total rice areain China (NATESC, 2019). The unit is × 104hm2.F, Released FBZ-derived conventional rice varieties in Guangdong Province of China from2000 to 2020.

    The promotion of FBZ-derived varieties began in 2002, and theirplantingarea has increased dramatically since2009.The maximum planting area ofconventional rice derived from FBZwas recordedin 2015, whereasthe area of FBZ-derived hybrid rice has been rapidly increasing in recent years (Fig. 1-B).Geographically, therice variety is mainly distributed in the south of the Huai River-Qinling Mountain line. Fig. 1-C shows thatthe FBZ-derived varieties have been widely cultivated in all therice-growing areas of China. In 2019, 79 hybrid rice varieties derived from the FBZ-series restorer lineswere promoted for production in 3 806 000 hm2,accounting for 35% ofthe total hybrid rice planting area in China (Fig. 1-D). In addition to hybrid rice, 10 conventional FBZ-derived varieties havebeen sowed. In general, the planting area for FBZ-derivedvarietiesaccounts for 22% of the total rice planting area in China (Fig. 1-E). Shanyou63, a milestone in China’s hybrid ricedevelopment, had a large planting area from 1985 to2001, with an average area of 3.6 million hectaresand 28.3% of the national hybrid rice-growing areas annually(Xie and Zhang, 2018).The annual planting area of FBZ-derived hybridsexceeded that of Shanyou63.Additionally, more than 90% of the conventional rice varieties released in Guangdong Province in recent years are descendants of FBZ(Fig. 1-F), indicating that FBZ has become the backbone parent of conventional rice varieties and the development of FBZ can be regarded as a milestone in modernrice breeding in China.

    We collected the genomic data of 138 varieties to reveal the genetic basis of the FBZ-derived varieties (Table S1). Population structure analysis showed that the genetic distances of the iconic restorer lines were generally close, whereas the FBZ-derived varieties showed separate clustersand were closest to the elite conventional ricevarieties (Fig. 2-A). In China, the maleparents of hybrid rice varieties are either imported directly from the International Rice Research Institute (IRRI) or developedusing IRRI varieties as donor parents (Xie and Zhang, 2018), which means most of the restorer lines share more than 40% ancestry from IRRI varieties. In contrast, only 25% ancestry of FBZ is derived from IRRI varieties and is even less in FBZ-derived varieties (Fig. 1-A). We speculated that the close genetic distance between elite conventional rice and the FBZ-derived varieties is an important reason for their wide adaptability and high yield, while the ancestry from IRRI variety allows FBZ to acquire fertility restoration and rice blast resistance, which can explain why FBZ-derived varieties can be used as conventional rice and as restorer lines.

    Fig. 2. Geneticfeatures of varieties derived from Fengbazhan (FBZ).

    A, Neighbor-joining tree of138 varieties. B, Inheritance pattern of chromosome 6 in thebreeding of the latest FBZ-derived varieties. Genotypes were drawn based on penta-primer amplification refractory mutation markers. Genes contributing tomodernrice varieties are marked on the top. White (FBZ) and red (others)bars denote the parental origin of the segments. Haplotypes of,andloci were marked with arrows.C, Allelic effects oflocus on the entire growth duration. D, Effects ofallelic diversity on AC. G1,wxvarieties (= 14); G2,wxvarieties (= 26); G3,varieties (= 67). E–G, Effects oflocus on Zhong B (E), Zhong C (F), and total (G)groups of the blast fungus. G-I, +++varieties (= 67); G-II, +--varieties (= 7); G-III, ---varieties (= 19). AC, Amylose content; RF, Resistance frequencyto total rice blast fungus in GuangdongProvince, China. Different lowercase letters denote significant differences (< 0.05).

    By comparing the variant information of 222 genes that are responsible for quantitative traits (QTGs)(Wei et al, 2021), we identified 48 QTGs exhibiting allelic differences among rice varieties (Fig. S1).Among them, 10 QTGswere differentially used betweenGroup I (landraces) and Group II (landmark semi-dwarf varieties), and 33 QTGsunderwentartificial selection between Group II and Group III (iconic restorer lines / conventional rice),and 4 QTGs (,,and) wereexclusively used in Group IV (FBZ-derived varieties) (Fig. S1). These findingsindicated that 91.6%of the QTGs wereselected before FBZ was bred,whereas only a few QTGsdirectly contributed to the breeding of FBZ-derived varieties.

    Remarkably, the four QTGs (,,and) weretandemly distributed on chromosome 6.Moreover, 8 of the 48 QTGs werelocated on chromosome 6, and together they accounted for 25% of the 48 QTGs(Fig. S1).Among them, several genes play an important role in rice breeding. For example,andare major genes responsible foreating and cooking quality(Tianet al, 2009), whileaffects both lodging resistance and productivity(Ookawa et al, 2010). We noticed thathas no functional variation in Group IV as compared to the other groups, while causative variantscorresponding toalso existed in the other groups. Sequence alignment analysis revealed that the FBZ-typeallele was different compared to the other widely promoted varieties, such as Minghui63 and 9311. Compared withNipponbare, Huazhan has two single nucleotide polymorphisms(SNPs) and one base deletionin the coding region (Fig. S2-A), and the FBZ haplotype was the closest to theWxallele (Fig. S2-B). By comparing the gene sequences ofthe four tandem genes, we found that thesequences ofandof Huazhan were identical to those of C101A51 (-carrying line) and Gumei2 (-carrying line)(Fig. S3-A and -B). We observed only one SNP in thegenebetween Huazhan and Digu (-carrying line) (Fig. S3-C), but this variant does not exist in both Ricevarmapand Rice RC databases (Zhao et al, 2015; Qin et al, 2021), indicating that the SNP in Digu (GenBank: FJ915121.1) is caused by sequencing errors. Hence, Huazhan also carried the resistance allele of.For, both Huanghuazhan andMinghui 63 harbored a 4-bp frameshift deletionat the 1 904bp position, while Huazhan harbored a 2-bpframeshift deletionat the 1 686 bp position(Fig. S4).Given that hundreds of conventional rice varieties have been derived from FBZ,we speculated how these 12 QTGswere inherited in the latest FBZ-derived varieties. We collected DNA samples from176rice varieties (Table S2). According toPARMS (penta-primer amplification refractory mutation) genotyping (Lu et al, 2020), the 83 FBZ-derived varieties can be divided into 13 groups. Surprisingly, 64 of the 83 varietiesshared the same genotype at locusChr6: 1.6–23.3 Mb, except for the variation in thelocus (Fig. 2-B).This finding strongly indicated that most of the beneficial QTGs on chromosome 6 were inheritedduring the breeding of FBZ-derived varieties.

    Considering the influence of,,,andon agronomic traits, we extracted data on the amylose content, whole growth period, and rice blast resistance from varietiescertification announcements. Compared to(Huanghuazhan- type), the whole growth period of(Huazhan-type, which exists in most FBZ-series varieties) showed no significant difference in the early or late seasons (Fig. 2-C), which indicated that the variation inhaplotype did not influence its gene effect in FBZ-series varieties.For, 75.9% of the FBZ-series varieties contained theallele, while varieties carrying theWxallele accounted for 22.9%.There was no significant difference inamylose content betweentheand Wxvarieties, however, their amylose content was significantly lower than that oftheWxvarieties(Fig. 2-D).This patternindicated thatwas also a favorable allele for rice quality improvement. We identifiedsix genotype combinations of,andin 176 varieties.The varieties carrying theresistance allele can significantly improvethe frequency of resistance toZhong B, Zhong C,and total group of rice blast fungus, as well as the comprehensive resistance to rice blast.Nevertheless,andhad little effect on blast resistance in this study (Fig. 2-E to -G). Taken together, the utilization of the favorable genes on chromosome 6 removed the problem of ‘highquality butlow blast resistance’, enabling the FBZ-derived varieties to achieve a high and stable yield, good quality and wide adaptability in production.

    To identify the favorable genes involved inthe breeding process of the FBZ-derived varieties, we compared the allelic differences of 222QTGs between the FBZ-derived varieties and their ancestors. A total of 16 QTGs, with beneficial functions inFBZ-series varieties, were identified as key candidate genes according to functional variation information. These 16 QTGs were included in the 48 QTGs that showed haplotype differences among different varieties, except for. The 16 QTGs arewell-known important functional genes,which allowed us to understand their genetic effects.These QTGs had distinctivecharacteristics of gradual replacement, and they were mainly selected at fourstages (Fig. S5). Firstly, five QTGs were selected during the semi-dwarf breeding period, inducingthe variety Teqing to exhibit semi-dwarf (), delayed heading (), partial fertility recovery (),and compact plant type (and) properties. Secondly, six QTGs were integrated to breedQingliuai1, including genes related to fertility restoration (and), grain protein content (), blast resistance (), and bacterial blight resistance (and). Thirdly, Feng’aizhan1 utilized three QTGs (/,and), thereby exhibiting a slender and chalk-free appearance.Lastly, two QTGs were used to breed FBZ, making it possible to breed varieties withlow amylose content () and highresistance to rice blast ().Favorable genes were gradually optimized during thebreeding of FBZ-series varieties, which was consistent with the conjecture of the ‘Rice Core Germplasm Breeding Theory’(Zhou and Ke, 1998; Zhou et al, 2021).

    Our team also bred another iconic aromatic rice variety Meixiangzhan2, which is the onlyrice variety and has won three gold medals awarded by thenational committee for evaluation ofthe eating quality of high-quality rice varieties, and its taste quality has surpassed Thai Hom Mali Rice KDML105.Meixiangzhan2 was released in 2006 and has been widely planted in China, with an annual promotion area of approximately 133000 hm2(NATESC, 2019).It has also been introduced to Myanmar, Vietnam, Laos, Thailand, Mozambique, and other countries for cultivation(Li et al, 2021). In the future, we will work on breeding a variety that has highyield, disease resistance properties, and combining the ability ofthe FBZ-derived varieties with the eating quality of Meixiangzhan2.To achieve this goal, some favorable genes,such as,,,and, could be manipulatedusing molecular marker-assisted selection technology to improve breeding efficiency.In addition, it is necessary to introduce more germplasm resources, especially for theorrice variety, todiscover more favorable alleles or combinations of favorable genes, thereby creating a new balance between yield, quality and resistance.

    In conclusion, we systematically analyzed the breeding effects and genetic characteristics of FBZ.We determinedthat the genetic composition of the FBZ-derived varieties is distinctfrom that of the other restorer lines.Our research demonstrated that the improvement in rice varieties was essentially a trajectory of gradual optimization from the original system to the ideal gene system. Notably,breakthrough varieties are often bred using only a few genes or chromosomal segments.We believe that our findings will provide important references for rice breeding.

    Acknowledgements

    This study was supported by the Laboratory of Lingnan Modern Agriculture Project (Grant No. NT2021001), Applied Science and Technology of Guangdong Province, China (Grant No. 2015B020231001), Guangdong Academy of Agricultural Sciences Agricultural Advantage Industry Discipline Team Building Project (Grant No. 202111TD): Quality Rice Core Germplasm Breeding Team (2021–2025), Special Fund for Science and Technology Innovation Strategy of Guangdong Academy of Agricultural Sciences: Dean’s Fund Key Project (Grant No. 202001), Collection and Evaluation of High-Quality Germplasm Resources of ‘Guangdong Simiao Rice’ (Grant No. 2021KJ382-02) and Operating Fees for Key Laboratory of Guangdong Province (Grant No. 2020B1212060047). We thank Mr. Gu Minghong from Yangzhou University for his valuable comments and suggestions and Professor Liang Wanqi from Shanghai Jiaotong University for providing seeds of several ancestral varieties of Fengbazhan.

    Supplemental data

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Allele types of causatice variants involved in Chinese modernrice breeding.

    Fig. S2. Sequence features of FBZ-type allele in coding regions ofgene.

    Fig. S3. Sequence analysis of,andin Huazhan.

    Fig. S4. Sequence features ofin Huazhan and Huanghuazhan.

    Fig. S5. Genes flow of key candidate genes involved in breeding of FBZ-derived varieties.

    Table S1. List of rice accessions used for variant information extraction in this study.

    Table S2. Genotyping of 10 loci in 176 rice varieties using penta-primer amplification refractory mutation markers.

    Bai S W, Yu H, Wang B, Li J Y. 2018. Retrospective and perspective of rice breeding in China., 45(11): 603–612.

    Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. 2019. Closing yield gaps for rice self-sufficiency in China., 10(1): 1725.

    E Z G, Cheng B Y, Sun H W, Wang Y J, Zhu L F, Lin H, Wang L, Tong H H, Chen H Q. 2019. Analysis on Chinese improved rice varieties in recent four decades., 33(6): 523–531. (in Chinese with English abstract)

    Fang Y W, Zhang W, Chen Y Y, Hou F, Xu L F, Tang C H, Li R D. 2020. State quo of utilization of high-quality hybrid rice varieties in China during 2001–2017., 32(1): 1–14. (in Chinese with English abstract)

    Li H, Zhou S C, Huang D Q, Wang Z D, Wang C R, Zhou D G, Chen Y B, Gong R, Zhao L, Pan Y Y. 2021. The breeding and enlightenment of Meixiangzhan 2, a aromatic rice variety with good eating quality., 39(2): 1–6. (in Chinese with English abstract)

    Lu J, Hou J, Ouyang Y D, Luo H, Zhao J H, Mao C, Han M, Wang L, Xiao J H, Yang Y Y, Li X. 2020. A direct PCR-based SNP marker-assisted selection system (D-MAS) for different crops., 40(1): 1–10.

    National Agricultural Technology Extension Service Center (NATESC). 2019. Statistics on the Promotion of the Main Varieties of Crops in 2019. Beijing. (in Chinese)

    Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles E R, Hirasawa T, Matsuoka M. 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield., 1: 132.

    Qian Q, Guo L B, Smith S M, Li J Y. 2016. Breeding high-yield superior quality hybrid super rice by rational design., 3(3): 283–294.

    Qin P, Lu H W, Du H L, Wang H, Chen W L, Chen Z, He Q, Ou S J, Zhang H Y, Li X Z, Li X X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B T, Wang Y P, Qian Y W, Fan S J, Li W T, Wang J, He M, Yin J J, Li T, Jiang N, Chen X W, Liang C Z, Li S G. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations., 184(13): 3542–3558.

    Tang D, Cheng Z K. 2018. From basic research to molecular breeding: Chinese scientists play a central role in boosting world rice production., 16(6): 389–392.

    Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities., 106(51): 21760–21765.

    Wei X, Qiu J, Yong K C, Fan J J, Zhang Q, Hua H, Liu J, Wang Q, Olsen K M, Han B, Huang X H. 2021. A quantitative genomics map of rice provides genetic insights and guides breeding., 53(2): 243–253.

    Xie F M, Zhang J F. 2018. Shanyou 63: An elite mega rice hybrid in China., 11(1): 17.

    Yu S B, Ali J, Zhou S C, Ren G J, Xie H A, Xu J L, Yu X Q, Zhou F S, Peng S B, Ma L Y, Yuan D Y, Li Z F, Chen D Z, Zheng R F, Zhao Z G, Chu C C, You A Q, Wei Y, Zhu S S, Gu Q Y, He G C, Li S G, Liu G F, Liu C H, Zhang C P, Xiao J H, Luo L J, Li Z K, Zhang Q F. 2022. From green super rice to green agriculture: Reaping the promise of functional genomics research., 15(1): 9–26.

    Zeng B. 2018. Renovation of main cultivated rice varieties in China in the past 30 years., 34: 1–7.

    Zhang H, Wang Y X, Deng C, Zhao S, Zhang P, Feng J, Huang W, Kang S J, Qian Q, Xiong G S, Chang Y X. 2022. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan., 65(2): 398–411.

    Zhao H, Yao W, Ouyang Y D, Yang W N, Wang G W, Lian X M, Xing Y Z, Chen L L, Xie W B. 2015. RiceVarMap: A comprehensive database of rice genomic variations., 43: D1018–D1022.

    Zhou D G, Chen W, Lin Z C, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K H, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W. 2016. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding., 14(2): 638–648.

    Zhou S C, Ke W. 1998. Talking about the excellent germplasm and its derivative system in breeding., (Suppl): 1–5. (in Chinese)

    Zhou S C, Li H, Zhu X Y, Miao R W, Lu D C, Zeng L X, Huang D Q, Lai S C, Li K H. 2007. Breeding of Fengbazhan and its derivative varieties and comprehensive analyses of the breeding achievement: The case of rice core germplasm breeding., (5): 5–11. (in Chinese with English abstract)

    Zhou S C, Ke W, Miao R W, Li H, Huang D Q, Wang C R. 2021. Creation and application of the breeding theory based on rice core germplasm., 35(6): 529–534. (in Chinese with English abstract)

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/

    Zhou Shaochuan (xxs123@163.com)

    11 March 2022;

    22 May 2022

    1000部很黄的大片| 国产三级中文精品| 如何舔出高潮| 中文乱码字字幕精品一区二区三区| 午夜福利视频精品| 成人特级av手机在线观看| 一级片'在线观看视频| 国产男女内射视频| 精品久久国产蜜桃| 夫妻午夜视频| 青春草亚洲视频在线观看| 精品久久久久久久久av| 亚洲一区二区三区欧美精品 | 日韩国内少妇激情av| 在线免费观看不下载黄p国产| 18禁在线播放成人免费| 男女国产视频网站| av在线天堂中文字幕| 日本猛色少妇xxxxx猛交久久| av免费在线看不卡| 菩萨蛮人人尽说江南好唐韦庄| 深夜a级毛片| 免费av不卡在线播放| 欧美高清性xxxxhd video| 欧美日韩国产mv在线观看视频 | 免费观看在线日韩| 成人美女网站在线观看视频| 精品人妻熟女av久视频| 亚洲av一区综合| 少妇丰满av| 欧美区成人在线视频| 观看免费一级毛片| 国产精品嫩草影院av在线观看| 一级a做视频免费观看| 日韩av在线免费看完整版不卡| 欧美老熟妇乱子伦牲交| 免费看日本二区| 午夜免费鲁丝| 亚洲欧美成人综合另类久久久| 最近中文字幕2019免费版| 在线观看一区二区三区激情| 毛片一级片免费看久久久久| 大片电影免费在线观看免费| 免费av毛片视频| 日韩中字成人| eeuss影院久久| 国产免费福利视频在线观看| 亚洲三级黄色毛片| 国产 精品1| 少妇裸体淫交视频免费看高清| 亚洲欧美成人综合另类久久久| 身体一侧抽搐| 亚洲精华国产精华液的使用体验| 晚上一个人看的免费电影| 在线 av 中文字幕| av免费在线看不卡| 九九久久精品国产亚洲av麻豆| 99热国产这里只有精品6| 在线观看一区二区三区| 在线观看一区二区三区| 九色成人免费人妻av| 色吧在线观看| 1000部很黄的大片| av福利片在线观看| av福利片在线观看| av网站免费在线观看视频| 精品少妇黑人巨大在线播放| 丝袜喷水一区| 韩国高清视频一区二区三区| 亚洲高清免费不卡视频| 69av精品久久久久久| 成人特级av手机在线观看| 亚洲一级一片aⅴ在线观看| 亚洲精品乱久久久久久| 99久久中文字幕三级久久日本| 免费观看在线日韩| 亚洲av欧美aⅴ国产| 两个人的视频大全免费| 久久精品人妻少妇| 精华霜和精华液先用哪个| 狂野欧美白嫩少妇大欣赏| 少妇的逼好多水| 免费观看在线日韩| 免费看不卡的av| 高清毛片免费看| 麻豆成人午夜福利视频| 日韩成人av中文字幕在线观看| 2018国产大陆天天弄谢| 婷婷色综合大香蕉| 亚洲欧美精品专区久久| 婷婷色麻豆天堂久久| 亚洲精品,欧美精品| 菩萨蛮人人尽说江南好唐韦庄| 18禁裸乳无遮挡动漫免费视频 | 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久久久按摩| .国产精品久久| 国产老妇女一区| 天堂中文最新版在线下载 | av免费在线看不卡| 国产 一区精品| 国产有黄有色有爽视频| 看黄色毛片网站| 国产久久久一区二区三区| 亚洲精品久久午夜乱码| 高清av免费在线| 黑人高潮一二区| 看非洲黑人一级黄片| 免费观看av网站的网址| 少妇高潮的动态图| 身体一侧抽搐| 亚洲欧美一区二区三区黑人 | 日韩视频在线欧美| 尾随美女入室| 亚洲性久久影院| 97精品久久久久久久久久精品| 最近中文字幕高清免费大全6| 一边亲一边摸免费视频| 视频区图区小说| 男女啪啪激烈高潮av片| 插逼视频在线观看| 国产伦理片在线播放av一区| 免费少妇av软件| 毛片女人毛片| av在线天堂中文字幕| av在线天堂中文字幕| 偷拍熟女少妇极品色| 观看美女的网站| 国产免费视频播放在线视频| 男人和女人高潮做爰伦理| 欧美国产精品一级二级三级 | 人妻少妇偷人精品九色| 丝袜脚勾引网站| 人妻系列 视频| 99热这里只有精品一区| 男人添女人高潮全过程视频| av线在线观看网站| 极品少妇高潮喷水抽搐| 夜夜爽夜夜爽视频| av专区在线播放| 晚上一个人看的免费电影| 欧美成人午夜免费资源| 欧美97在线视频| 欧美激情久久久久久爽电影| 久久久精品免费免费高清| 国产精品国产av在线观看| 精品少妇黑人巨大在线播放| 日韩在线高清观看一区二区三区| 亚洲三级黄色毛片| 久久亚洲国产成人精品v| 精品国产一区二区三区久久久樱花 | 久久久久久久久久久免费av| 在线观看人妻少妇| 欧美成人精品欧美一级黄| videossex国产| 在线观看美女被高潮喷水网站| 丰满乱子伦码专区| 黑人高潮一二区| 我的女老师完整版在线观看| 少妇人妻 视频| 亚洲自拍偷在线| freevideosex欧美| 国产免费一级a男人的天堂| 老司机影院毛片| 欧美+日韩+精品| 91狼人影院| 日日摸夜夜添夜夜添av毛片| 精品一区二区三卡| 国产精品伦人一区二区| 国产乱来视频区| 狂野欧美白嫩少妇大欣赏| 麻豆乱淫一区二区| 人妻少妇偷人精品九色| 男人和女人高潮做爰伦理| 97精品久久久久久久久久精品| 国产乱人偷精品视频| 国产成人freesex在线| 色网站视频免费| 久久久午夜欧美精品| 26uuu在线亚洲综合色| 久久精品人妻少妇| 日本黄大片高清| 大话2 男鬼变身卡| 视频区图区小说| 激情 狠狠 欧美| 欧美xxxx黑人xx丫x性爽| 深爱激情五月婷婷| 最近手机中文字幕大全| 久久韩国三级中文字幕| videossex国产| 精品少妇久久久久久888优播| 国产黄片视频在线免费观看| 在现免费观看毛片| 麻豆精品久久久久久蜜桃| 免费在线观看成人毛片| 麻豆精品久久久久久蜜桃| 国产一级毛片在线| 亚洲欧美中文字幕日韩二区| 国产精品伦人一区二区| 久久久精品免费免费高清| 国产熟女欧美一区二区| 精品熟女少妇av免费看| 日产精品乱码卡一卡2卡三| 亚洲精品成人久久久久久| 日韩av免费高清视频| 卡戴珊不雅视频在线播放| 国产 精品1| 国产综合懂色| 午夜免费男女啪啪视频观看| 成年女人在线观看亚洲视频 | 国产成年人精品一区二区| 美女国产视频在线观看| 一本色道久久久久久精品综合| 亚洲,一卡二卡三卡| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 91狼人影院| 国产精品国产三级专区第一集| 搡女人真爽免费视频火全软件| 永久免费av网站大全| 中文天堂在线官网| 亚洲精品日韩在线中文字幕| 国产黄色免费在线视频| 久久久午夜欧美精品| 国产伦精品一区二区三区视频9| av播播在线观看一区| 草草在线视频免费看| 亚洲最大成人av| 午夜老司机福利剧场| 国产精品久久久久久久久免| 熟妇人妻不卡中文字幕| 99热全是精品| 少妇人妻精品综合一区二区| 晚上一个人看的免费电影| 国产欧美日韩精品一区二区| 国产免费福利视频在线观看| 黄片无遮挡物在线观看| 91久久精品电影网| 1000部很黄的大片| 国产免费一级a男人的天堂| 国内少妇人妻偷人精品xxx网站| 国产有黄有色有爽视频| 永久网站在线| 亚洲精品日韩在线中文字幕| 日本色播在线视频| 又大又黄又爽视频免费| 亚洲av男天堂| 色哟哟·www| 国产一区二区亚洲精品在线观看| 男女边吃奶边做爰视频| 国产国拍精品亚洲av在线观看| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 国产日韩欧美在线精品| 老司机影院毛片| 亚洲精品日韩av片在线观看| 国产成人免费观看mmmm| 亚洲精品色激情综合| 国产精品精品国产色婷婷| 国产精品久久久久久精品电影| 欧美成人一区二区免费高清观看| 国产v大片淫在线免费观看| 国产精品国产av在线观看| 1000部很黄的大片| 又粗又硬又长又爽又黄的视频| 青春草亚洲视频在线观看| 激情五月婷婷亚洲| 麻豆成人午夜福利视频| 国产免费又黄又爽又色| .国产精品久久| 亚洲怡红院男人天堂| 国产亚洲午夜精品一区二区久久 | 久热久热在线精品观看| 免费黄网站久久成人精品| 欧美成人a在线观看| 日韩成人av中文字幕在线观看| 九色成人免费人妻av| 亚洲最大成人av| 午夜福利视频精品| 国产淫片久久久久久久久| 乱系列少妇在线播放| 婷婷色av中文字幕| 一级av片app| 国产乱来视频区| 高清在线视频一区二区三区| 久久久精品免费免费高清| 黄色一级大片看看| 亚洲成人av在线免费| 亚洲精品,欧美精品| 亚洲av.av天堂| 大码成人一级视频| 国产成人一区二区在线| 亚洲精品亚洲一区二区| 欧美国产精品一级二级三级 | 在线免费十八禁| 欧美人与善性xxx| 男的添女的下面高潮视频| 精品国产三级普通话版| 丝袜美腿在线中文| 国产视频内射| 成人综合一区亚洲| 成人亚洲欧美一区二区av| 欧美亚洲 丝袜 人妻 在线| 成人国产麻豆网| 日韩三级伦理在线观看| 久久人人爽av亚洲精品天堂 | 久久久亚洲精品成人影院| 成人黄色视频免费在线看| 亚洲av.av天堂| 激情 狠狠 欧美| 毛片一级片免费看久久久久| 亚洲最大成人手机在线| 精品一区二区三区视频在线| 欧美丝袜亚洲另类| 国产精品久久久久久久久免| 久久精品国产鲁丝片午夜精品| 80岁老熟妇乱子伦牲交| 一个人看视频在线观看www免费| 日本黄大片高清| 日韩av在线免费看完整版不卡| 最新中文字幕久久久久| 丰满乱子伦码专区| 热re99久久精品国产66热6| 小蜜桃在线观看免费完整版高清| 亚洲精品aⅴ在线观看| 国产成人福利小说| 亚洲av免费高清在线观看| 老女人水多毛片| 国产成人午夜福利电影在线观看| 午夜免费观看性视频| 女人久久www免费人成看片| 亚洲自拍偷在线| 视频中文字幕在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产精品.久久久| 国内精品美女久久久久久| 中国三级夫妇交换| 老司机影院成人| 国产伦精品一区二区三区四那| 欧美日韩综合久久久久久| 哪个播放器可以免费观看大片| 综合色丁香网| 日本黄色片子视频| 免费看光身美女| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 国产日韩欧美亚洲二区| 欧美xxⅹ黑人| 国产精品一及| 久久6这里有精品| 成人无遮挡网站| 在线免费观看不下载黄p国产| 中文在线观看免费www的网站| 赤兔流量卡办理| 国产精品.久久久| 亚洲av国产av综合av卡| 一级毛片 在线播放| 青春草亚洲视频在线观看| 久久久久国产精品人妻一区二区| 久久精品国产a三级三级三级| 色5月婷婷丁香| 男人舔奶头视频| 青春草亚洲视频在线观看| 啦啦啦啦在线视频资源| 特级一级黄色大片| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 午夜视频国产福利| 91午夜精品亚洲一区二区三区| 婷婷色麻豆天堂久久| 视频区图区小说| 一级毛片久久久久久久久女| 久久精品久久精品一区二区三区| 别揉我奶头 嗯啊视频| 在线a可以看的网站| 精品久久国产蜜桃| 国产亚洲一区二区精品| 国产乱人偷精品视频| 国产女主播在线喷水免费视频网站| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 久久精品国产a三级三级三级| av在线app专区| 99热全是精品| 日韩视频在线欧美| 免费观看av网站的网址| 国产成人精品婷婷| 国产黄片视频在线免费观看| 蜜桃亚洲精品一区二区三区| 欧美潮喷喷水| 亚洲欧美精品自产自拍| 少妇的逼好多水| 久久人人爽人人片av| 国产毛片在线视频| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 亚洲在久久综合| 亚洲精品一区蜜桃| 亚洲无线观看免费| 国产免费一级a男人的天堂| 麻豆国产97在线/欧美| 99热这里只有是精品50| 亚洲av二区三区四区| 久久99热这里只有精品18| 天天躁日日操中文字幕| 丝袜喷水一区| 制服丝袜香蕉在线| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| 亚洲aⅴ乱码一区二区在线播放| 高清在线视频一区二区三区| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 亚洲,一卡二卡三卡| 国产欧美日韩一区二区三区在线 | 少妇人妻 视频| 亚洲成色77777| 日产精品乱码卡一卡2卡三| 亚洲精品乱久久久久久| 久久久久精品性色| 欧美人与善性xxx| 看非洲黑人一级黄片| 欧美成人a在线观看| 一级爰片在线观看| 在线观看av片永久免费下载| 久久久精品94久久精品| 最近的中文字幕免费完整| 亚洲精品一二三| 看非洲黑人一级黄片| 婷婷色综合www| 高清在线视频一区二区三区| 麻豆久久精品国产亚洲av| 国产精品爽爽va在线观看网站| 欧美 日韩 精品 国产| 日本黄大片高清| 一级二级三级毛片免费看| 99久久人妻综合| 欧美激情久久久久久爽电影| 亚州av有码| 久久久久性生活片| 国产精品99久久久久久久久| 草草在线视频免费看| 一本一本综合久久| 免费av观看视频| 日本午夜av视频| 亚洲va在线va天堂va国产| 伦精品一区二区三区| av免费在线看不卡| 久久精品夜色国产| 亚洲性久久影院| 亚洲欧洲国产日韩| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 一个人看的www免费观看视频| 日韩制服骚丝袜av| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久久久久婷婷小说| 丰满人妻一区二区三区视频av| 国产一区二区亚洲精品在线观看| 91在线精品国自产拍蜜月| 最近手机中文字幕大全| 女人被狂操c到高潮| 精品人妻一区二区三区麻豆| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 最近2019中文字幕mv第一页| 欧美激情久久久久久爽电影| 男女国产视频网站| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 男女边吃奶边做爰视频| 丰满少妇做爰视频| 国产成人午夜福利电影在线观看| 亚洲综合色惰| 日本黄色片子视频| 看十八女毛片水多多多| 97在线视频观看| 狠狠精品人妻久久久久久综合| 寂寞人妻少妇视频99o| av国产精品久久久久影院| 亚洲av成人精品一区久久| 国产精品一区二区性色av| 亚洲最大成人av| 欧美成人午夜免费资源| 色网站视频免费| 成人漫画全彩无遮挡| 国产大屁股一区二区在线视频| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 亚洲精品国产av成人精品| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 国产午夜精品一二区理论片| 日韩精品有码人妻一区| 精品久久久久久久末码| 久久久欧美国产精品| 国产精品人妻久久久影院| 免费看日本二区| 黄片无遮挡物在线观看| 亚洲精品影视一区二区三区av| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| 国产成人精品一,二区| 国产精品一区二区性色av| 2022亚洲国产成人精品| 狂野欧美激情性bbbbbb| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 三级国产精品片| 日韩av在线免费看完整版不卡| 久久人人爽人人片av| 日韩一本色道免费dvd| 免费大片18禁| 亚洲国产精品国产精品| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 一区二区三区精品91| 午夜爱爱视频在线播放| 日韩av在线免费看完整版不卡| 少妇 在线观看| 国产成人精品久久久久久| 亚洲精品国产av成人精品| 亚洲色图av天堂| 在线观看免费高清a一片| 高清在线视频一区二区三区| 国产成人91sexporn| 国产成人精品一,二区| 大片电影免费在线观看免费| videos熟女内射| 国产黄a三级三级三级人| 高清毛片免费看| 少妇人妻一区二区三区视频| 超碰97精品在线观看| av在线观看视频网站免费| 美女视频免费永久观看网站| 精品国产三级普通话版| 国产v大片淫在线免费观看| 午夜日本视频在线| 久久久久网色| 男人舔奶头视频| 亚洲欧美日韩另类电影网站 | 少妇的逼水好多| 国产视频首页在线观看| 欧美一级a爱片免费观看看| 国产av国产精品国产| 午夜激情福利司机影院| 天堂中文最新版在线下载 | 国产免费一区二区三区四区乱码| 亚洲经典国产精华液单| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 亚洲欧洲日产国产| 久热这里只有精品99| 97在线视频观看| 国产又色又爽无遮挡免| 搡老乐熟女国产| 免费看不卡的av| 一级毛片电影观看| 免费看不卡的av| 国产精品精品国产色婷婷| 高清在线视频一区二区三区| 亚洲成人精品中文字幕电影| 色视频www国产| 精品人妻视频免费看| 欧美 日韩 精品 国产| 看非洲黑人一级黄片| 尤物成人国产欧美一区二区三区| 亚洲综合色惰| 精品一区二区三卡| 一本色道久久久久久精品综合| 精品一区二区三卡| 免费观看无遮挡的男女| 男的添女的下面高潮视频| 成年av动漫网址| 噜噜噜噜噜久久久久久91| 三级男女做爰猛烈吃奶摸视频| 乱系列少妇在线播放| 国产成人91sexporn| 日韩成人伦理影院| 婷婷色综合www| 少妇人妻一区二区三区视频| 精品一区二区三卡| 六月丁香七月| 日韩人妻高清精品专区| 亚洲图色成人| a级毛片免费高清观看在线播放| av天堂中文字幕网| 免费看av在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 国产又色又爽无遮挡免| 亚洲国产最新在线播放| 中文字幕av成人在线电影| 久久精品国产a三级三级三级| 激情 狠狠 欧美| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av免费高清在线观看| 黄片无遮挡物在线观看| 国产淫语在线视频| 在线观看免费高清a一片| 亚洲精品日韩在线中文字幕| 久久精品国产a三级三级三级| 超碰av人人做人人爽久久| 欧美精品一区二区大全| 欧美成人午夜免费资源| 欧美一区二区亚洲| 九九在线视频观看精品| 国产精品久久久久久久久免| 成人特级av手机在线观看| 国产av码专区亚洲av| 热re99久久精品国产66热6| 黑人高潮一二区| 亚洲成色77777| 久久精品久久久久久久性|