• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Breeding Effects and Genetic Compositions of a Backbone Parent (Fengbazhan) of Modern indica Rice in China

    2022-08-08 09:54:34ZhaoLeiZhouShaochuanWangChongrongLiHongHuangDaoqiangWangZhidongZhouDeguiChenYiboGongRongPanYangyang
    Rice Science 2022年5期

    Zhao Lei, Zhou Shaochuan, Wang Chongrong, Li Hong, Huang Daoqiang, Wang Zhidong, Zhou Degui, Chen Yibo, Gong Rong, Pan Yangyang

    Letter

    Breeding Effects and Genetic Compositions of a Backbone Parent (Fengbazhan) of ModernRice in China

    Zhao Lei, Zhou Shaochuan, Wang Chongrong, Li Hong, Huang Daoqiang, Wang Zhidong, Zhou Degui, Chen Yibo, Gong Rong, Pan Yangyang

    ()

    Fengbazhan (FBZ) andits derived varieties have been widely cultivated in China, accounting for 22% of China’s paddyfields.Therefore, evaluating the breeding. Effectsof FBZ and elucidating its genetic compositions are effective strategies for interpreting the history of modern rice breeding.Using integrative bioinformatics analysis and population validation,we found that the expression of favorable genes on chromosome 6 was important for the breeding of FBZ-derived varieties and these favorable genes were gradually optimized during thebreeding process, which was consistent with the conjecture of the ‘Rice Core Germplasm Breeding Theory’.

    Forseveral decades, tremendous efforts have been made by Chinese scientists in rice breedingto improvegrain yield, nutritional quality and environmental performance, thereby achieving substantial progress in globalfood security.Several rice breeding technologies have been developed, includingsemi-dwarf breeding, utilization of heterosis, launching the ‘Super Rice Project’, development of green super rice and molecular design breeding(Qian et al, 2016;Bai et al, 2018; Tang and Cheng, 2018; Yu et al, 2022).In southern China, rice can be divided into the early, middle and late rice, andthe cultivationarea in southern China accounts for approximately80% of China’s rice cultivation area.Currently, severaldistinct rice varieties are widely cultivated in southern China. According to NATESC (2019), the conventionalrice variety is mainly planted in the early season,with therepresentative varieties being Zhongjiazao17, Xiangzaoxian45 and Zhongzao39. In the middle and late seasons, both conventionaland hybrid rice varieties are widely cultivated. Among them, Huanghuazhan has become the conventionalrice variety with the largest annual planting area in China, whereasJingliangyou534 (restorer: Wushansimiao) and Jingliangyou- huazhan (restorer: Huazhan) are the two-hybrid rice varieties with the largest annual promotion area.In addition, Huanghuazhan and Huazhan are actively replacing the rice varieties currently usedin China(Zhou et al, 2016; Zeng, 2018; E et al, 2019; Fang et al, 2020; Yu et al, 2022; Zhang et al, 2022).Moreover, these varieties are derived from FBZand can therefore be referred toasFBZ-derived varieties.

    FBZ was developed by crossing two key parents, Feng’aizhan1 and 28zhan (Fig. 1-A).Feng’aizhan1 is a semi-dwarf rice variety with multiple tillers, high yield and slender grains, but it exhibits poor blast resistance and has high amylose content.In contrast, 28zhan exhibits excellent blast resistance and has low amylose content, although its appearance quality and grain yield are not ideal.FBZ inherits the advantages of both parents (Zhou et al, 2007), and thus, itis a remarkable rice variety exhibiting excellent milling, appearance and cooking qualities,blast resistance, and high yield in Guangdong Province in China.Our team used FBZ as the core germplasm to breed the first certified rice variety Fenghuazhan (Fig. 1-A). The appearance and taste quality of Fenghuazhan were significantly improved compared to those of FBZ. Subsequently, our team bred another elite rice variety Huanghuazhan, by crossing Huangxinzhan and Fenghuazhan, which was released in 2005 (Fig. 1-A).Huanghuazhan is the most common inbred rice cultivar that has been cultivated in central and south China and has been widely grown across nine provinceswith semi-dwarf,super high yield,good eating qualityand wide adaptability(Zhou et al, 2016; Deng et al, 2019). Nevertheless, Huanghuazhan exhibits a significantly reducedblastresistance compared to FBZ, which may limit its application in areas with a high risk of rice blast. To overcome these limitations, we developed two intermediary varieties, Wufengzhan2 and Fengsizhan, which were directly derived from FBZ. Based on these two varieties, Wushansimiao, Huanglizhan,and Huangyuesimiao were bred by our institute and Huazhan was cooperatively bred by our institute and China National Rice Research Institute (Fig. 1-A), and thesefour varieties have proven to be elite restorer lineswith good quality, high blast resistance and excellent combining ability. The breeding and popularization of hybrid rice were mainly completed by our partners, namely the China National Rice Research Institute, Longping High-TechAgriculture Co., Ltd.,and Quanyin High-TechSeed Co., Ltd.

    Fig. 1. Breeding effects of Fengbazhan (FBZ) in China.

    A, FBZ-derived varieties bred by our team. Huazhan was cooperatively bred by our team and China National Rice Research Institute. Seven elite varieties are shown in boxes.B, Planting areas of FBZ-derivedvarieties in China. C, Main locations whereFBZ-derivedvarieties are cultivated in China.D,Percentage of the planting area of FBZ-derived hybrids with respect tothe total planting area of hybrid rice in China. The unit is × 104hm2. E, Percentage ofplanting area of FBZ-derived varieties (including hybrid rice and conventional rice) with respect tothe total rice areain China (NATESC, 2019). The unit is × 104hm2.F, Released FBZ-derived conventional rice varieties in Guangdong Province of China from2000 to 2020.

    The promotion of FBZ-derived varieties began in 2002, and theirplantingarea has increased dramatically since2009.The maximum planting area ofconventional rice derived from FBZwas recordedin 2015, whereasthe area of FBZ-derived hybrid rice has been rapidly increasing in recent years (Fig. 1-B).Geographically, therice variety is mainly distributed in the south of the Huai River-Qinling Mountain line. Fig. 1-C shows thatthe FBZ-derived varieties have been widely cultivated in all therice-growing areas of China. In 2019, 79 hybrid rice varieties derived from the FBZ-series restorer lineswere promoted for production in 3 806 000 hm2,accounting for 35% ofthe total hybrid rice planting area in China (Fig. 1-D). In addition to hybrid rice, 10 conventional FBZ-derived varieties havebeen sowed. In general, the planting area for FBZ-derivedvarietiesaccounts for 22% of the total rice planting area in China (Fig. 1-E). Shanyou63, a milestone in China’s hybrid ricedevelopment, had a large planting area from 1985 to2001, with an average area of 3.6 million hectaresand 28.3% of the national hybrid rice-growing areas annually(Xie and Zhang, 2018).The annual planting area of FBZ-derived hybridsexceeded that of Shanyou63.Additionally, more than 90% of the conventional rice varieties released in Guangdong Province in recent years are descendants of FBZ(Fig. 1-F), indicating that FBZ has become the backbone parent of conventional rice varieties and the development of FBZ can be regarded as a milestone in modernrice breeding in China.

    We collected the genomic data of 138 varieties to reveal the genetic basis of the FBZ-derived varieties (Table S1). Population structure analysis showed that the genetic distances of the iconic restorer lines were generally close, whereas the FBZ-derived varieties showed separate clustersand were closest to the elite conventional ricevarieties (Fig. 2-A). In China, the maleparents of hybrid rice varieties are either imported directly from the International Rice Research Institute (IRRI) or developedusing IRRI varieties as donor parents (Xie and Zhang, 2018), which means most of the restorer lines share more than 40% ancestry from IRRI varieties. In contrast, only 25% ancestry of FBZ is derived from IRRI varieties and is even less in FBZ-derived varieties (Fig. 1-A). We speculated that the close genetic distance between elite conventional rice and the FBZ-derived varieties is an important reason for their wide adaptability and high yield, while the ancestry from IRRI variety allows FBZ to acquire fertility restoration and rice blast resistance, which can explain why FBZ-derived varieties can be used as conventional rice and as restorer lines.

    Fig. 2. Geneticfeatures of varieties derived from Fengbazhan (FBZ).

    A, Neighbor-joining tree of138 varieties. B, Inheritance pattern of chromosome 6 in thebreeding of the latest FBZ-derived varieties. Genotypes were drawn based on penta-primer amplification refractory mutation markers. Genes contributing tomodernrice varieties are marked on the top. White (FBZ) and red (others)bars denote the parental origin of the segments. Haplotypes of,andloci were marked with arrows.C, Allelic effects oflocus on the entire growth duration. D, Effects ofallelic diversity on AC. G1,wxvarieties (= 14); G2,wxvarieties (= 26); G3,varieties (= 67). E–G, Effects oflocus on Zhong B (E), Zhong C (F), and total (G)groups of the blast fungus. G-I, +++varieties (= 67); G-II, +--varieties (= 7); G-III, ---varieties (= 19). AC, Amylose content; RF, Resistance frequencyto total rice blast fungus in GuangdongProvince, China. Different lowercase letters denote significant differences (< 0.05).

    By comparing the variant information of 222 genes that are responsible for quantitative traits (QTGs)(Wei et al, 2021), we identified 48 QTGs exhibiting allelic differences among rice varieties (Fig. S1).Among them, 10 QTGswere differentially used betweenGroup I (landraces) and Group II (landmark semi-dwarf varieties), and 33 QTGsunderwentartificial selection between Group II and Group III (iconic restorer lines / conventional rice),and 4 QTGs (,,and) wereexclusively used in Group IV (FBZ-derived varieties) (Fig. S1). These findingsindicated that 91.6%of the QTGs wereselected before FBZ was bred,whereas only a few QTGsdirectly contributed to the breeding of FBZ-derived varieties.

    Remarkably, the four QTGs (,,and) weretandemly distributed on chromosome 6.Moreover, 8 of the 48 QTGs werelocated on chromosome 6, and together they accounted for 25% of the 48 QTGs(Fig. S1).Among them, several genes play an important role in rice breeding. For example,andare major genes responsible foreating and cooking quality(Tianet al, 2009), whileaffects both lodging resistance and productivity(Ookawa et al, 2010). We noticed thathas no functional variation in Group IV as compared to the other groups, while causative variantscorresponding toalso existed in the other groups. Sequence alignment analysis revealed that the FBZ-typeallele was different compared to the other widely promoted varieties, such as Minghui63 and 9311. Compared withNipponbare, Huazhan has two single nucleotide polymorphisms(SNPs) and one base deletionin the coding region (Fig. S2-A), and the FBZ haplotype was the closest to theWxallele (Fig. S2-B). By comparing the gene sequences ofthe four tandem genes, we found that thesequences ofandof Huazhan were identical to those of C101A51 (-carrying line) and Gumei2 (-carrying line)(Fig. S3-A and -B). We observed only one SNP in thegenebetween Huazhan and Digu (-carrying line) (Fig. S3-C), but this variant does not exist in both Ricevarmapand Rice RC databases (Zhao et al, 2015; Qin et al, 2021), indicating that the SNP in Digu (GenBank: FJ915121.1) is caused by sequencing errors. Hence, Huazhan also carried the resistance allele of.For, both Huanghuazhan andMinghui 63 harbored a 4-bp frameshift deletionat the 1 904bp position, while Huazhan harbored a 2-bpframeshift deletionat the 1 686 bp position(Fig. S4).Given that hundreds of conventional rice varieties have been derived from FBZ,we speculated how these 12 QTGswere inherited in the latest FBZ-derived varieties. We collected DNA samples from176rice varieties (Table S2). According toPARMS (penta-primer amplification refractory mutation) genotyping (Lu et al, 2020), the 83 FBZ-derived varieties can be divided into 13 groups. Surprisingly, 64 of the 83 varietiesshared the same genotype at locusChr6: 1.6–23.3 Mb, except for the variation in thelocus (Fig. 2-B).This finding strongly indicated that most of the beneficial QTGs on chromosome 6 were inheritedduring the breeding of FBZ-derived varieties.

    Considering the influence of,,,andon agronomic traits, we extracted data on the amylose content, whole growth period, and rice blast resistance from varietiescertification announcements. Compared to(Huanghuazhan- type), the whole growth period of(Huazhan-type, which exists in most FBZ-series varieties) showed no significant difference in the early or late seasons (Fig. 2-C), which indicated that the variation inhaplotype did not influence its gene effect in FBZ-series varieties.For, 75.9% of the FBZ-series varieties contained theallele, while varieties carrying theWxallele accounted for 22.9%.There was no significant difference inamylose content betweentheand Wxvarieties, however, their amylose content was significantly lower than that oftheWxvarieties(Fig. 2-D).This patternindicated thatwas also a favorable allele for rice quality improvement. We identifiedsix genotype combinations of,andin 176 varieties.The varieties carrying theresistance allele can significantly improvethe frequency of resistance toZhong B, Zhong C,and total group of rice blast fungus, as well as the comprehensive resistance to rice blast.Nevertheless,andhad little effect on blast resistance in this study (Fig. 2-E to -G). Taken together, the utilization of the favorable genes on chromosome 6 removed the problem of ‘highquality butlow blast resistance’, enabling the FBZ-derived varieties to achieve a high and stable yield, good quality and wide adaptability in production.

    To identify the favorable genes involved inthe breeding process of the FBZ-derived varieties, we compared the allelic differences of 222QTGs between the FBZ-derived varieties and their ancestors. A total of 16 QTGs, with beneficial functions inFBZ-series varieties, were identified as key candidate genes according to functional variation information. These 16 QTGs were included in the 48 QTGs that showed haplotype differences among different varieties, except for. The 16 QTGs arewell-known important functional genes,which allowed us to understand their genetic effects.These QTGs had distinctivecharacteristics of gradual replacement, and they were mainly selected at fourstages (Fig. S5). Firstly, five QTGs were selected during the semi-dwarf breeding period, inducingthe variety Teqing to exhibit semi-dwarf (), delayed heading (), partial fertility recovery (),and compact plant type (and) properties. Secondly, six QTGs were integrated to breedQingliuai1, including genes related to fertility restoration (and), grain protein content (), blast resistance (), and bacterial blight resistance (and). Thirdly, Feng’aizhan1 utilized three QTGs (/,and), thereby exhibiting a slender and chalk-free appearance.Lastly, two QTGs were used to breed FBZ, making it possible to breed varieties withlow amylose content () and highresistance to rice blast ().Favorable genes were gradually optimized during thebreeding of FBZ-series varieties, which was consistent with the conjecture of the ‘Rice Core Germplasm Breeding Theory’(Zhou and Ke, 1998; Zhou et al, 2021).

    Our team also bred another iconic aromatic rice variety Meixiangzhan2, which is the onlyrice variety and has won three gold medals awarded by thenational committee for evaluation ofthe eating quality of high-quality rice varieties, and its taste quality has surpassed Thai Hom Mali Rice KDML105.Meixiangzhan2 was released in 2006 and has been widely planted in China, with an annual promotion area of approximately 133000 hm2(NATESC, 2019).It has also been introduced to Myanmar, Vietnam, Laos, Thailand, Mozambique, and other countries for cultivation(Li et al, 2021). In the future, we will work on breeding a variety that has highyield, disease resistance properties, and combining the ability ofthe FBZ-derived varieties with the eating quality of Meixiangzhan2.To achieve this goal, some favorable genes,such as,,,and, could be manipulatedusing molecular marker-assisted selection technology to improve breeding efficiency.In addition, it is necessary to introduce more germplasm resources, especially for theorrice variety, todiscover more favorable alleles or combinations of favorable genes, thereby creating a new balance between yield, quality and resistance.

    In conclusion, we systematically analyzed the breeding effects and genetic characteristics of FBZ.We determinedthat the genetic composition of the FBZ-derived varieties is distinctfrom that of the other restorer lines.Our research demonstrated that the improvement in rice varieties was essentially a trajectory of gradual optimization from the original system to the ideal gene system. Notably,breakthrough varieties are often bred using only a few genes or chromosomal segments.We believe that our findings will provide important references for rice breeding.

    Acknowledgements

    This study was supported by the Laboratory of Lingnan Modern Agriculture Project (Grant No. NT2021001), Applied Science and Technology of Guangdong Province, China (Grant No. 2015B020231001), Guangdong Academy of Agricultural Sciences Agricultural Advantage Industry Discipline Team Building Project (Grant No. 202111TD): Quality Rice Core Germplasm Breeding Team (2021–2025), Special Fund for Science and Technology Innovation Strategy of Guangdong Academy of Agricultural Sciences: Dean’s Fund Key Project (Grant No. 202001), Collection and Evaluation of High-Quality Germplasm Resources of ‘Guangdong Simiao Rice’ (Grant No. 2021KJ382-02) and Operating Fees for Key Laboratory of Guangdong Province (Grant No. 2020B1212060047). We thank Mr. Gu Minghong from Yangzhou University for his valuable comments and suggestions and Professor Liang Wanqi from Shanghai Jiaotong University for providing seeds of several ancestral varieties of Fengbazhan.

    Supplemental data

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Allele types of causatice variants involved in Chinese modernrice breeding.

    Fig. S2. Sequence features of FBZ-type allele in coding regions ofgene.

    Fig. S3. Sequence analysis of,andin Huazhan.

    Fig. S4. Sequence features ofin Huazhan and Huanghuazhan.

    Fig. S5. Genes flow of key candidate genes involved in breeding of FBZ-derived varieties.

    Table S1. List of rice accessions used for variant information extraction in this study.

    Table S2. Genotyping of 10 loci in 176 rice varieties using penta-primer amplification refractory mutation markers.

    Bai S W, Yu H, Wang B, Li J Y. 2018. Retrospective and perspective of rice breeding in China., 45(11): 603–612.

    Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. 2019. Closing yield gaps for rice self-sufficiency in China., 10(1): 1725.

    E Z G, Cheng B Y, Sun H W, Wang Y J, Zhu L F, Lin H, Wang L, Tong H H, Chen H Q. 2019. Analysis on Chinese improved rice varieties in recent four decades., 33(6): 523–531. (in Chinese with English abstract)

    Fang Y W, Zhang W, Chen Y Y, Hou F, Xu L F, Tang C H, Li R D. 2020. State quo of utilization of high-quality hybrid rice varieties in China during 2001–2017., 32(1): 1–14. (in Chinese with English abstract)

    Li H, Zhou S C, Huang D Q, Wang Z D, Wang C R, Zhou D G, Chen Y B, Gong R, Zhao L, Pan Y Y. 2021. The breeding and enlightenment of Meixiangzhan 2, a aromatic rice variety with good eating quality., 39(2): 1–6. (in Chinese with English abstract)

    Lu J, Hou J, Ouyang Y D, Luo H, Zhao J H, Mao C, Han M, Wang L, Xiao J H, Yang Y Y, Li X. 2020. A direct PCR-based SNP marker-assisted selection system (D-MAS) for different crops., 40(1): 1–10.

    National Agricultural Technology Extension Service Center (NATESC). 2019. Statistics on the Promotion of the Main Varieties of Crops in 2019. Beijing. (in Chinese)

    Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles E R, Hirasawa T, Matsuoka M. 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield., 1: 132.

    Qian Q, Guo L B, Smith S M, Li J Y. 2016. Breeding high-yield superior quality hybrid super rice by rational design., 3(3): 283–294.

    Qin P, Lu H W, Du H L, Wang H, Chen W L, Chen Z, He Q, Ou S J, Zhang H Y, Li X Z, Li X X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B T, Wang Y P, Qian Y W, Fan S J, Li W T, Wang J, He M, Yin J J, Li T, Jiang N, Chen X W, Liang C Z, Li S G. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations., 184(13): 3542–3558.

    Tang D, Cheng Z K. 2018. From basic research to molecular breeding: Chinese scientists play a central role in boosting world rice production., 16(6): 389–392.

    Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities., 106(51): 21760–21765.

    Wei X, Qiu J, Yong K C, Fan J J, Zhang Q, Hua H, Liu J, Wang Q, Olsen K M, Han B, Huang X H. 2021. A quantitative genomics map of rice provides genetic insights and guides breeding., 53(2): 243–253.

    Xie F M, Zhang J F. 2018. Shanyou 63: An elite mega rice hybrid in China., 11(1): 17.

    Yu S B, Ali J, Zhou S C, Ren G J, Xie H A, Xu J L, Yu X Q, Zhou F S, Peng S B, Ma L Y, Yuan D Y, Li Z F, Chen D Z, Zheng R F, Zhao Z G, Chu C C, You A Q, Wei Y, Zhu S S, Gu Q Y, He G C, Li S G, Liu G F, Liu C H, Zhang C P, Xiao J H, Luo L J, Li Z K, Zhang Q F. 2022. From green super rice to green agriculture: Reaping the promise of functional genomics research., 15(1): 9–26.

    Zeng B. 2018. Renovation of main cultivated rice varieties in China in the past 30 years., 34: 1–7.

    Zhang H, Wang Y X, Deng C, Zhao S, Zhang P, Feng J, Huang W, Kang S J, Qian Q, Xiong G S, Chang Y X. 2022. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan., 65(2): 398–411.

    Zhao H, Yao W, Ouyang Y D, Yang W N, Wang G W, Lian X M, Xing Y Z, Chen L L, Xie W B. 2015. RiceVarMap: A comprehensive database of rice genomic variations., 43: D1018–D1022.

    Zhou D G, Chen W, Lin Z C, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K H, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W. 2016. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding., 14(2): 638–648.

    Zhou S C, Ke W. 1998. Talking about the excellent germplasm and its derivative system in breeding., (Suppl): 1–5. (in Chinese)

    Zhou S C, Li H, Zhu X Y, Miao R W, Lu D C, Zeng L X, Huang D Q, Lai S C, Li K H. 2007. Breeding of Fengbazhan and its derivative varieties and comprehensive analyses of the breeding achievement: The case of rice core germplasm breeding., (5): 5–11. (in Chinese with English abstract)

    Zhou S C, Ke W, Miao R W, Li H, Huang D Q, Wang C R. 2021. Creation and application of the breeding theory based on rice core germplasm., 35(6): 529–534. (in Chinese with English abstract)

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/

    Zhou Shaochuan (xxs123@163.com)

    11 March 2022;

    22 May 2022

    欧美亚洲 丝袜 人妻 在线| 久久中文看片网| 精品国产国语对白av| 成人影院久久| 色婷婷av一区二区三区视频| 国产色视频综合| 免费女性裸体啪啪无遮挡网站| 宅男免费午夜| 美女午夜性视频免费| 嫩草影视91久久| 精品福利观看| 人妻丰满熟妇av一区二区三区 | 交换朋友夫妻互换小说| 91精品三级在线观看| 大型黄色视频在线免费观看| 一二三四在线观看免费中文在| 亚洲国产欧美网| 成人18禁高潮啪啪吃奶动态图| av片东京热男人的天堂| 国内久久婷婷六月综合欲色啪| 校园春色视频在线观看| 91麻豆av在线| 欧美黄色淫秽网站| a在线观看视频网站| 在线观看午夜福利视频| 久久中文字幕一级| 成人亚洲精品一区在线观看| 女性生殖器流出的白浆| 热re99久久精品国产66热6| 久热爱精品视频在线9| 精品国产国语对白av| 一级毛片女人18水好多| 国内久久婷婷六月综合欲色啪| 夜夜夜夜夜久久久久| 欧美日韩一级在线毛片| 在线观看午夜福利视频| 亚洲七黄色美女视频| 国产免费现黄频在线看| 亚洲视频免费观看视频| 国产成人系列免费观看| 欧美日韩亚洲高清精品| 国产精品98久久久久久宅男小说| 国产亚洲精品一区二区www | 他把我摸到了高潮在线观看| 久久精品熟女亚洲av麻豆精品| 99久久人妻综合| 一进一出抽搐gif免费好疼 | 99热国产这里只有精品6| 久久精品亚洲av国产电影网| 深夜精品福利| 成人国产一区最新在线观看| 少妇粗大呻吟视频| 亚洲国产欧美网| 一级毛片精品| 一级毛片女人18水好多| 国产精品一区二区在线不卡| 人人妻人人澡人人看| 国产成人免费观看mmmm| 亚洲一区二区三区欧美精品| 精品乱码久久久久久99久播| 一区二区日韩欧美中文字幕| 亚洲成人免费av在线播放| 变态另类成人亚洲欧美熟女 | 精品人妻1区二区| 日韩免费av在线播放| 纯流量卡能插随身wifi吗| 在线观看免费高清a一片| 亚洲色图 男人天堂 中文字幕| 中文字幕人妻丝袜制服| 18禁国产床啪视频网站| 男人舔女人的私密视频| 国产精品亚洲一级av第二区| 午夜福利影视在线免费观看| 亚洲avbb在线观看| 啪啪无遮挡十八禁网站| 亚洲熟妇熟女久久| 国产精品亚洲一级av第二区| 一级毛片高清免费大全| 成人影院久久| 国产区一区二久久| 99热网站在线观看| 制服诱惑二区| 欧美日韩中文字幕国产精品一区二区三区 | 天堂动漫精品| 午夜福利欧美成人| 午夜影院日韩av| 老司机靠b影院| 中文亚洲av片在线观看爽 | 久久精品国产亚洲av高清一级| 一本一本久久a久久精品综合妖精| 搡老岳熟女国产| 亚洲国产欧美日韩在线播放| 欧美 亚洲 国产 日韩一| 免费观看精品视频网站| 国产高清videossex| 成人三级做爰电影| 日本一区二区免费在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲人成电影观看| 69精品国产乱码久久久| 国产精品偷伦视频观看了| 人成视频在线观看免费观看| 视频区欧美日本亚洲| 亚洲中文av在线| 亚洲中文av在线| 久久久久久久午夜电影 | 久久精品aⅴ一区二区三区四区| 国产野战对白在线观看| 老熟女久久久| av线在线观看网站| 国产在线一区二区三区精| 三上悠亚av全集在线观看| 热re99久久精品国产66热6| 麻豆乱淫一区二区| 国产精品一区二区精品视频观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产视频一区二区在线看| 激情在线观看视频在线高清 | 亚洲中文av在线| 高清视频免费观看一区二区| 午夜福利一区二区在线看| 久久久精品免费免费高清| 国产高清激情床上av| 久久亚洲精品不卡| av在线播放免费不卡| 国产真人三级小视频在线观看| 色在线成人网| 免费黄频网站在线观看国产| videos熟女内射| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻1区二区| 午夜免费成人在线视频| 日韩欧美国产一区二区入口| 国产精品影院久久| 成人国产一区最新在线观看| 精品电影一区二区在线| 丝袜在线中文字幕| 亚洲三区欧美一区| 热re99久久精品国产66热6| 在线观看www视频免费| 在线观看www视频免费| 超碰97精品在线观看| 亚洲专区中文字幕在线| 日韩欧美一区视频在线观看| 久久精品熟女亚洲av麻豆精品| 丁香欧美五月| 极品少妇高潮喷水抽搐| 手机成人av网站| 亚洲专区国产一区二区| 亚洲五月色婷婷综合| 不卡一级毛片| 美女视频免费永久观看网站| 亚洲精品国产区一区二| 嫩草影视91久久| 亚洲美女黄片视频| 成年动漫av网址| 亚洲第一青青草原| 国产男女超爽视频在线观看| 久久人妻熟女aⅴ| 一区二区三区精品91| 最新在线观看一区二区三区| 伦理电影免费视频| 欧美一级毛片孕妇| e午夜精品久久久久久久| 国产成人欧美在线观看 | 99国产极品粉嫩在线观看| 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 欧美亚洲 丝袜 人妻 在线| 欧美日韩一级在线毛片| x7x7x7水蜜桃| 亚洲avbb在线观看| 国产精品永久免费网站| 怎么达到女性高潮| 99久久99久久久精品蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 999精品在线视频| 大型黄色视频在线免费观看| 人人妻,人人澡人人爽秒播| 一区福利在线观看| 亚洲成人国产一区在线观看| 亚洲精品美女久久久久99蜜臀| 人人妻人人澡人人爽人人夜夜| 大型av网站在线播放| 99riav亚洲国产免费| 在线观看日韩欧美| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产色婷婷电影| 黑人欧美特级aaaaaa片| 精品高清国产在线一区| 欧美 亚洲 国产 日韩一| 久热爱精品视频在线9| 飞空精品影院首页| 免费少妇av软件| 天堂动漫精品| 国产精品美女特级片免费视频播放器 | 久久精品成人免费网站| 搡老乐熟女国产| 一区二区三区激情视频| 久久精品aⅴ一区二区三区四区| 久久中文看片网| 90打野战视频偷拍视频| 交换朋友夫妻互换小说| 一级作爱视频免费观看| 婷婷丁香在线五月| 多毛熟女@视频| av国产精品久久久久影院| 一级毛片精品| 欧美 亚洲 国产 日韩一| 亚洲精品成人av观看孕妇| 老熟妇仑乱视频hdxx| 一级a爱片免费观看的视频| 午夜福利,免费看| 99国产综合亚洲精品| 免费看十八禁软件| 很黄的视频免费| 久久国产精品人妻蜜桃| 在线观看舔阴道视频| 精品少妇一区二区三区视频日本电影| 精品亚洲成国产av| 日本精品一区二区三区蜜桃| 免费人成视频x8x8入口观看| 日韩一卡2卡3卡4卡2021年| 国产在线精品亚洲第一网站| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 1024视频免费在线观看| 狂野欧美激情性xxxx| 精品国内亚洲2022精品成人 | 免费少妇av软件| 人人妻人人爽人人添夜夜欢视频| 成人免费观看视频高清| 久久天躁狠狠躁夜夜2o2o| 18禁黄网站禁片午夜丰满| 亚洲国产中文字幕在线视频| 久久青草综合色| 手机成人av网站| 嫩草影视91久久| 午夜免费观看网址| 在线观看午夜福利视频| 午夜成年电影在线免费观看| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久,| 91麻豆精品激情在线观看国产 | 黄片小视频在线播放| 在线天堂中文资源库| 大型av网站在线播放| 亚洲人成电影免费在线| 国产精品免费大片| 成人永久免费在线观看视频| 欧美 日韩 精品 国产| 久久精品熟女亚洲av麻豆精品| 女性生殖器流出的白浆| 欧美日韩成人在线一区二区| 成人三级做爰电影| 看片在线看免费视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久国产电影| 亚洲第一青青草原| 叶爱在线成人免费视频播放| 精品福利永久在线观看| 热99re8久久精品国产| 搡老乐熟女国产| 国产免费男女视频| 国产精品综合久久久久久久免费 | 黄色视频,在线免费观看| 一区二区三区精品91| 久久草成人影院| 91精品国产国语对白视频| 亚洲精品一卡2卡三卡4卡5卡| 乱人伦中国视频| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品一区二区三区在线| 后天国语完整版免费观看| 人妻久久中文字幕网| 中文字幕高清在线视频| 黄网站色视频无遮挡免费观看| 久久久国产欧美日韩av| 一二三四社区在线视频社区8| 国产成人精品久久二区二区91| 国产欧美日韩综合在线一区二区| www.精华液| 国产亚洲精品一区二区www | 亚洲黑人精品在线| 很黄的视频免费| 免费在线观看日本一区| av免费在线观看网站| 人人妻,人人澡人人爽秒播| 一本一本久久a久久精品综合妖精| 少妇裸体淫交视频免费看高清 | 国产1区2区3区精品| av免费在线观看网站| 免费黄频网站在线观看国产| 国产欧美亚洲国产| 久久久久国内视频| 一级片'在线观看视频| 韩国av一区二区三区四区| 国产高清视频在线播放一区| 国产不卡av网站在线观看| 天堂中文最新版在线下载| 国产成人一区二区三区免费视频网站| 亚洲成人手机| 国产日韩欧美亚洲二区| 久久99一区二区三区| av网站在线播放免费| 757午夜福利合集在线观看| 久久狼人影院| 久久亚洲真实| 法律面前人人平等表现在哪些方面| 丝袜美足系列| 亚洲专区中文字幕在线| 99国产精品免费福利视频| 高清毛片免费观看视频网站 | 亚洲九九香蕉| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 国产又爽黄色视频| 国产成人精品无人区| 免费av中文字幕在线| 一级黄色大片毛片| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 日本欧美视频一区| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| av免费在线观看网站| 欧美在线黄色| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 精品国产亚洲在线| 亚洲熟妇中文字幕五十中出 | 18禁美女被吸乳视频| 国产成人免费观看mmmm| 欧美日韩国产mv在线观看视频| 亚洲av成人不卡在线观看播放网| 99re6热这里在线精品视频| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区 | 国产蜜桃级精品一区二区三区 | 亚洲欧美日韩另类电影网站| 91麻豆精品激情在线观看国产 | 国产精华一区二区三区| 国产男女内射视频| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 很黄的视频免费| 亚洲欧美激情在线| 国产精品一区二区在线观看99| 国产成人啪精品午夜网站| 亚洲精品中文字幕在线视频| 亚洲国产精品一区二区三区在线| 久久久久精品国产欧美久久久| 色婷婷久久久亚洲欧美| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 欧美最黄视频在线播放免费 | 国产精品久久电影中文字幕 | 亚洲成人免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品91无色码中文字幕| 91大片在线观看| 亚洲中文字幕日韩| 人人妻人人澡人人爽人人夜夜| 91麻豆av在线| 国产无遮挡羞羞视频在线观看| 国产精品.久久久| 久久久久久亚洲精品国产蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区日韩欧美中文字幕| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| a级片在线免费高清观看视频| 亚洲人成电影免费在线| 在线十欧美十亚洲十日本专区| 久久中文看片网| 日本vs欧美在线观看视频| 国产精品99久久99久久久不卡| 国产精品二区激情视频| 夜夜夜夜夜久久久久| 一级毛片高清免费大全| 日韩欧美国产一区二区入口| 叶爱在线成人免费视频播放| 99久久综合精品五月天人人| 午夜激情av网站| 国产欧美亚洲国产| 18禁黄网站禁片午夜丰满| 精品久久久精品久久久| 国产野战对白在线观看| 久久亚洲真实| 搡老乐熟女国产| 国产亚洲av高清不卡| 五月开心婷婷网| 久久久国产一区二区| 岛国在线观看网站| 亚洲国产看品久久| 亚洲精品自拍成人| 亚洲欧美日韩高清在线视频| 91字幕亚洲| av超薄肉色丝袜交足视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产区一区二| 久久中文字幕人妻熟女| 亚洲精品国产一区二区精华液| 手机成人av网站| 一本一本久久a久久精品综合妖精| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 国产淫语在线视频| 男人的好看免费观看在线视频 | 国产精品二区激情视频| bbb黄色大片| 欧美性长视频在线观看| 国产精品国产av在线观看| 99热国产这里只有精品6| 女人爽到高潮嗷嗷叫在线视频| avwww免费| 久久性视频一级片| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 国产在线观看jvid| 99riav亚洲国产免费| 99国产精品99久久久久| 久久国产精品男人的天堂亚洲| 亚洲一区二区三区欧美精品| 一级毛片精品| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 成人永久免费在线观看视频| 欧美黑人欧美精品刺激| 精品无人区乱码1区二区| 涩涩av久久男人的天堂| 999久久久精品免费观看国产| 黄色视频不卡| av片东京热男人的天堂| 色老头精品视频在线观看| 欧美老熟妇乱子伦牲交| 久久久国产成人免费| 不卡av一区二区三区| 午夜福利,免费看| 老司机午夜福利在线观看视频| 成人av一区二区三区在线看| 久久久久久久久久久久大奶| 成人精品一区二区免费| avwww免费| 免费在线观看黄色视频的| 精品福利观看| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看 | 国产片内射在线| 丝瓜视频免费看黄片| 在线观看午夜福利视频| 亚洲午夜理论影院| 99热只有精品国产| 中文字幕色久视频| 纯流量卡能插随身wifi吗| 99国产综合亚洲精品| 亚洲精品乱久久久久久| 国产高清视频在线播放一区| 女人久久www免费人成看片| 午夜老司机福利片| 亚洲成人免费电影在线观看| 久久国产精品大桥未久av| 欧美一级毛片孕妇| 在线观看www视频免费| 中文字幕人妻丝袜制服| 高潮久久久久久久久久久不卡| 久久国产精品男人的天堂亚洲| 男人操女人黄网站| 欧美性长视频在线观看| 欧美黑人欧美精品刺激| 亚洲综合色网址| 飞空精品影院首页| 久久久久久久久久久久大奶| 美国免费a级毛片| 十八禁网站免费在线| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 大型av网站在线播放| 夜夜躁狠狠躁天天躁| av欧美777| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 岛国毛片在线播放| 久久久久精品国产欧美久久久| 成人国产一区最新在线观看| 免费人成视频x8x8入口观看| 一级毛片精品| 久久久精品免费免费高清| 午夜老司机福利片| 午夜两性在线视频| www.自偷自拍.com| 电影成人av| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 欧洲精品卡2卡3卡4卡5卡区| 免费黄频网站在线观看国产| 性少妇av在线| 老熟女久久久| 午夜精品在线福利| 天堂俺去俺来也www色官网| 最近最新免费中文字幕在线| 中文字幕精品免费在线观看视频| 国产一区二区激情短视频| 高潮久久久久久久久久久不卡| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 国产淫语在线视频| 成人三级做爰电影| 久久精品国产a三级三级三级| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 人妻一区二区av| 午夜久久久在线观看| 色在线成人网| 无人区码免费观看不卡| 丝袜在线中文字幕| 欧美日韩成人在线一区二区| 9热在线视频观看99| 精品免费久久久久久久清纯 | 在线观看免费视频网站a站| av片东京热男人的天堂| 亚洲 国产 在线| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美日韩在线播放| 国产精品久久久久久人妻精品电影| 亚洲成人手机| 99在线人妻在线中文字幕 | 一区福利在线观看| 精品欧美一区二区三区在线| 亚洲美女黄片视频| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 18在线观看网站| 97人妻天天添夜夜摸| 久久久久久久精品吃奶| 国产免费男女视频| 精品国产一区二区三区久久久樱花| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出 | 国产成人啪精品午夜网站| 国产一区有黄有色的免费视频| 99久久精品国产亚洲精品| 亚洲全国av大片| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费 | 一级毛片高清免费大全| 99国产精品免费福利视频| 制服人妻中文乱码| 两个人免费观看高清视频| www.精华液| 精品视频人人做人人爽| av网站在线播放免费| 一级a爱片免费观看的视频| 精品国产一区二区久久| 久久久久久人人人人人| 一区在线观看完整版| 激情视频va一区二区三区| 交换朋友夫妻互换小说| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久5区| 色综合婷婷激情| 一个人免费在线观看的高清视频| 美女福利国产在线| 国产精品.久久久| 99国产精品99久久久久| 国产精品九九99| 啦啦啦视频在线资源免费观看| 黄色视频不卡| 久久 成人 亚洲| av有码第一页| 真人做人爱边吃奶动态| 女人久久www免费人成看片| 日日摸夜夜添夜夜添小说| 视频区欧美日本亚洲| 王馨瑶露胸无遮挡在线观看| 国产成人精品在线电影| 亚洲午夜理论影院| 亚洲九九香蕉| 两性午夜刺激爽爽歪歪视频在线观看 | 日本撒尿小便嘘嘘汇集6| 日韩成人在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产精品香港三级国产av潘金莲| 多毛熟女@视频| 欧美午夜高清在线| 欧美大码av| 高清视频免费观看一区二区| 看免费av毛片| 美女高潮到喷水免费观看| 精品高清国产在线一区| 露出奶头的视频| 亚洲av片天天在线观看| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| 一级,二级,三级黄色视频| 麻豆成人av在线观看| 亚洲一区二区三区欧美精品| 动漫黄色视频在线观看| 18禁黄网站禁片午夜丰满| 午夜福利视频在线观看免费|