• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation of scrape-off layer blob high density transition in L-mode plasmas on EAST

    2022-08-01 11:34:30PingWANG汪平GuanghaiHU胡廣海NingYAN顏寧GuoshengXU徐國盛LingyiMENG孟令義ZhikangLU盧智康LinYU余林ManniJIA賈曼妮YifengWANG王一豐LiangCHEN陳良HengLAN蘭恒XiangLIU劉祥MingfuWU吳茗甫andLiangWANG王亮
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:顏寧

    Ping WANG(汪平),Guanghai HU(胡廣海),Ning YAN(顏寧),Guosheng XU(徐國盛),Lingyi MENG(孟令義),Zhikang LU(盧智康),Lin YU(余林),Manni JIA(賈曼妮),Yifeng WANG(王一豐),Liang CHEN(陳良),Heng LAN(蘭恒),3,4,Xiang LIU(劉祥),Mingfu WU(吳茗甫)and Liang WANG(王亮),5,?

    1 Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    4 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    5 Institute of Energy,Hefei Comprehensive National Science Centre,Hefei 230031,People’s Republic of China

    Abstract Lithium Beam Emission Spectroscopy systems in the outer midplane and divertor Langmuir probe arrays embedded in the divertor target plates,are utilized to investigate the scrape-off layer(SOL)blob transition and its relation with divertor detachment on EAST.The blob transition in the near SOL is observed during the density ramp-up phase.When the plasma density,normalized to the Greenwald density limit,exceeds a threshold of fGW~0.5,the blob size and lifetime increases by 2 – 3 times,while the blob detection rate decreases by about 2 times.In addition,a weak density shoulder is observed in the near SOL region at the same density threshold.Further analysis indicates that the divertor detachment is highly correlated with the blob transition,and the density threshold of blob transition is consistent with that of the access to the outer divertor detachment.The potential physical mechanisms are discussed.These results could be useful for the understanding of plasma-wall interaction issues in future devices that will operate under a detached divertor and high density conditions(over the blob transition threshold).

    Keywords:blobs,divertor detachment,L-mode,EAST

    1.Introduction

    Plasma-wall interaction(PWI)is a critical issue for tokamak fusion research,which involves heat and particle exhaust,and the lifetime of the plasma facing components(PFC).The heat and particle distributions between the divertor targets and the first-wall depend on the competition between the perpendicular and parallel transports in the scrape-off layer(SOL).Blobs(or filaments)in the SOL region have been widely recognized as an important channel for cross-field transport in tokamaks.Therefore,the understanding of blob physics is essential for the study of PWI issues.The blobs are coherent structures that extend along the magnetic field line,and their densities are much higher than the background plasmas[1–5].The interchange and ballooning instabilities compete with the parallel currents,which gives an increase to a poloidal polarization.AnE×Bdrift is caused by this polarization and thus propels the radial transport of blobs,which has been observed in Alcator C-Mod[6,7],ASDEX-Upgrade(AUG)[8],DIII-D[9],JET[10],JT-60U[11],and TCV[12].

    The high density transition(or modification)is one of the most important experimental features of the SOL blob,which is associated with the enhancement of cross-field transports and the broadening of the SOL density profile[7,8,13–16].The blob transition generally occurs over a density threshold ofis the plasma line-averaged density,andnGW=Ip/πa2is the Greenwald density limit[17],Ipis the plasma current andais the minor radius.It has been observed that the blob sizes increase by several times at densities above a threshold value[18–21].On AUG,the evolution of the Degree of Detachment(DoD)[22]on the outer divertor is seen to be similar to that of the blob size[19],indicating that the divertor detachment and the blob transition seem to be correlated.The simulation made by Schw?reret alshows similar results[23].Further experimental results in COMPASS,AUG and JET suggest that the blob translates from the ‘sheath limited’(SL)to ‘inertial’(IN)regime when the divertor effective collisionality[18,24],which is in line with the condition for the divertor detachment.The simulation results with the two-dimensional model HESEL are qualitatively consistent with experimental observations[25].However,the studies in JET show that the correlation between SOL profiles(which is commonly associated with the modification of blobs)and divertor collisionality does not hold when detachment is achieved with seeded impurities[26].Militelloet alfound that SOL broadening can occur in MAST in the complete absence of detachment[27].A similar result was shown in Alcator C-mod that the SOL density shoulder is observed by increasing the line-averaged density,but not observed through seeding an impurity in the region of divertor[28].These studies imply that the physical relation of the blob transition with the line-averaged density and divertor detachment is not yet clear.

    In the EAST tokamak,blob statistical characteristics[29]and blob properties in the lower hybrid wave dominant heating discharges[30]have been reported in previous work.However,the blob transition with the line-averaged density phenomenon has not yet been studied on EAST.In this work,the blob transition on EAST is investigated to identify its density threshold from the observation of SOL blobs and plasma density evolution.In addition,the relation of the blob transition to the divertor detachment is studied.The rest of this paper is organized as follows.The experimental setup,key diagnostics and EAST experiments are presented in section 2.The method for the analysis of blobs is introduced in section 3.The experimental results are presented in section 4.Finally,the discussion and conclusion are given in section 5.

    2.Experimental setup and key diagnostics

    EAST is a medium-size superconducting tokamak aiming for long-pulse steady-state high-performance operation with the major radiusR~1.88 m and the minor radiusa~0.45 m.An ITER-like tungsten upper divertor,a carbon lower divertor and molybdenum first wall have been equipped in the device since the 2014 experimental campaign.Note that the carbon lower divertor has been upgraded to a new tungsten divertor in the 2021 EAST campaign.The key diagnostics utilized in this work are the divertor Langmuir probe system[31]and Lithium Beam Emission Spectroscopy(Li-BES)[32,33].The poloidal layouts of the two diagnostics are shown in figure 1.Since the discharges analyzed in this work are operated in the USN(upper single null)divertor configuration,the upper outer(UO)divertor Langmuir probes are mainly used.

    The Li-BES system measures the Li-I(2s-2p)line emission intensities.According to the collisional radiative model[34],the Li-I line emission is mainly determined byneat the plasma edge region,i.e.δI / I=δne/ ne.The EAST Li-BES system[32]located in the Port D,consists of 4×32(poloidal×radial)channel arrays with a radial observation range ofR=2.03–2.38 m.The detection system of the Li-BES diagnostic consists of two branches,the CMOS branch and the APD branch.The APD branch is a 4×32 pixel APD detector matrix(APDCAM-10G-4×32 from Fusion Instruments)with a micro-lens array.The fill factor of the Hamamatsu S8550 APD matrix is increased from 50% to nearly 100% by focusing light from the microlens surface onto the sensitive detector areas.Its sampling rate is 2 MHz and radial spatial resolution is about 6–10 mm.Since there is a significant impact from photon noise at high frequencies,the Li-BES data is filtered with a low-pass Butterworth filter,and the cut-off frequency of the filter is 20 kHz.The 14 outermost channels in the third column,labeled from CH3 to CH16,are mainly used to measure blob size and velocity in this study.In addition,a divertor Langmuir probe diagnostic has been installed on EAST to measure the plasma parameters in the divertor region[35,36].In this study,the UO divertor Langmuir probe system in the Port D is utilized,which consists of 13 sets of triple Langmuir probes marked UO-LP1 to UO-LP13[31].The triple probes can obtain the floating potentialVf,the positive biased potentialVp,and the ion saturation currentIsreliably[37].The electron temperatureTetand the particle fluxΓionon the divertor target plates can be calculated fromΓion=js/e=Is/(e Apr)andTet=(Vp-Vf)/ ln 2.Here,jsis the ion saturation current density,andApris the effective area of a probe tip andeis the elementary charge.Its sampling rate is 50 kHz and spatial resolution in the poloidal direction is within 18 mm.

    Dedicated experiments with the blob transition and divertor detachment were carried out in the 2017 EAST campaign.These discharges are operated in L-mode plasmas with a similar plasma currentIp~400 kA,magnetic fieldBt~2.4 T,edge safety factorq95~7,and 4.6 GHz lower hybrid wave(LHW)heating powerPLHW~1 MW.Three typical shots #75012,#75016 and #75017 are shown here to demonstrate the repeatability of the results.Figures 2(a)–(c)show the time evolutions of,plasma stored energyWMHDand the heating powerPLHWrespectively.In these shots,the plasma density ramps up fromnˉe=2×1019m-3(fGW~0.3)tonˉe=4.3×1019m-3(fGW~0.7).Due to an uncertainty of the electron temperature measured by the divertor Langmuir probes,the roll-over of particle flux is utilized to define the detachment onset instead of the value ofTet[38,39],andΓionnear the strike points is more focused on than that in the far scrape-off layer or the whole targets[40].The time evolutions ofΓionandTetclose to the strike point on the outer divertor targets are shown in figures 2(d)and(e).With the density ramping up,Γionrolls over andTetdrops to about 5 or 10 eV simultaneously,suggesting that the outer divertor accesses the detachment.A more detailed discussion about the divertor detachment and its correlation with the blob transition will be given in section 4.2.Figure 2(f)shows the magnetic configurations of these three shots,the separatrix of shot#75012 shifts inward a little in contrast to shots#75016 and #75017,hence different Li-BES channels and divertor Langmuir probes will be utilized in the later analysis.

    Figure 1.The plasma configuration and key diagnostics involved in this work.(a)Li-Beam Emission Spectroscopy(Li-BES),Divertor Langmuir probes(DLPs),(b)the Li-BES channels layouts distinguished by the row and column numbers.

    Figure 2.The time evolutions of(a)the line-averaged density ,(b)plasma stored energy WMHD,(c)LHW heating power PLHW,(d)particle fluxΓion and(e)electron temperature Tet near the strike point on the outer divertor targets,(f)magnetic configurations for EAST discharges#75012,#75016,#75017.

    Figure 3.(a)The spatial-temporal emission intensity calculated from the conditional averaging technique,(b)the radial profile ofobtained from the Gaussian fitting at τ=0,(c)the conditionally averaged structure ofat the reference channel.

    3.Blob detection with Li-BES diagnostic

    The BES diagnostic system has been widely used to investigate the blobs in the SOL region[40–42].To calculate the radial size,lifetime(or self-correlation time),radial velocity and detection rate(or frequency)of blobs,the technique of conditional averaging[43]is applied to the low-pass filtered Li-BES data.Due to the fact that Li-BES noise level is low enough to study low level fluctuations for L-mode discharges in EAST and to get a larger sample population,the blob is defined as an event that the zero-mean reference channel line emissionδI exceeds a threshold of 1.5 standard deviation σ[19,44].In this work,the channel near the separatrix is referred to as the reference channel and the averaged time window of the detected blob is~200 μs.The detection rate fbis defined as the number of detected blobs per second.The normalized spatial-temporal emission intensitycalculated from the conditional averaging technique is shown in figure 3(a),where R is the beam radial coordinate andτ is the time shift relative to the peak point of the blob.Figure 3(b)shows the radial profile ofobtained from the Gaussian fitting atτ=0,the blob radial sizeδblobis evaluated as the half-width at half maximum(HWHM).Figure 3(c)shows the conditionally averaged structure ofat the reference channel,and the lifetime of blob τblobis defined as the full temporal width at half maximum(FWHM).In addition,a sensitivity study on the chosen threshold has been performed,showing that the results of the conditional average do not depend strongly on the selected threshold,and the detection rate decreases with the threshold.However,the evolutions of these blob parameters with time or density are nearly the same.

    Figure 4.(a)Conditionally averaged emission intensity fluctuation measured by Li-BES channels CH10–CH12,(b)the temporal evolution of thepeak position(asterisks)and linear fitting(solid line)for velocity estimation.

    Considering that the blobs can maintain their structure in a propagation path of several centimeters(the minimum is only 1–2 cm)and the error of the linear fitting with two radial channels is relatively large,three adjacent radial channels are used to calculate the blob radial velocityvrin this work.Figure 4(a)shows the conditionally averagedmeasured by Li-BES channels CH10 – CH12,withvrcalculated from the time delay betweenof these three channels[19,21].The detection timeτ of thepeak increases with distance from the separatrix,showing a radial propagation.Figure 4(b)shows the temporal evolution of thepeak position(asterisks)and the linear fitting for velocity estimation(solid line),and the blob velocity is estimated to be about 1.55 km s-1.

    Figure 5.(a)Blob sizeδblob,(b)detection rate fb,(c)lifetime τblob and(d)radial velocity vr versus line-averaged density nˉe at the radial position of R-Rsep~5 mm for EAST#75012(red),#75016(blue)and#75017(black).Dashed lines indicate the density threshold of the blob transition.

    Figure 6.(a)Blob related particle transportΓblob at different nˉe and(b)upstream SOL density profiles for shots#75012.The vertical dotted line indicates the radial location of last closed flux surface.

    4.Experimental results

    4.1.SOL blob and density profile modification

    To characterize the blob modification,the blob sizeδblob,lifetime τblob,detection rate fband radial velocity vr,and its evolution withnˉein the density ramp-up phases are studied in the discharges #75012,#75016 and # 75017.The blobs nearest to the last closed flux surface(LCFS)are detected and analyzed,the reference channels are 11 for shots#75017 and#75016 respectively,and 12 for shot #75012.Figure 5 shows these blob parameters in the position ofR-Rsep~5 mm.It is evident that the blob size,lifetime and detection rate remain almost constant beforeexceeds 3.3 ×1019m-3(fGW~0.5).When the density threshold is exceeded,the blob size increases by about 2 to 3 times and the lifetime increases by about 2 times,while the detection rate decreases by about 2 times.Note that the blob size for shot #75012 is larger than those for shots #75016 and#75017.A possible explanation is that the faster ramp rate of density leads to a higher edge electron density and lower electron temperature.It creates the increase in ion-electron collisionality Λ.The high collisionality yields higher Spitzer resistivity for the blob circuit in the parallel direction,thus the growth rate of the filament instability increases as γ ∝Te-3/2[4,19]and the sheath dissipation decreases,which may increase the blob size.In contrast,figure 5(d)shows that there are unnoticeable variations in the blob radial velocity,especially with unclear characteristics at less than the density threshold.In fact,the radial velocity measurements depend heavily on blob size,lifetime and the spatial resolution of diagnostics.The blob size is smaller than 2 cm in low density and the spatial resolution of the Li-BES is around 6–10 mm at the SOL region in EAST.For the smaller blobs,only three adjacent radial channels could be employed to calculate radial velocity.It plays a crucial role on the measurement error.Moreover,the blob lifetime is also smaller in low density,which results in a relatively larger measurement error.Therefore,the more significant deviation of radial velocity may be caused by the measurement error of lifetime,Li-BES system spatial resolution and the small blobs.The radial convective transport associated with blobs has been estimated for shot #75012.It is defined as Γblob=〈nblob〉〈vr〉fbτb,where〈nblob〉 is the conditional averaging blob density,〈vr〉is the blob radial velocity,fbis the blob frequency andτbis the blob lifetime.As shown in figure 6(a),Γblobincreases withne,suggesting an enhancement of the radial particle transport associated with blobs.Figure 6(b)shows the electron density profile measured by fast frequency sweeping reflectometry[45,46],a weak density shoulder forms in the near SOL region when the line-averaged density exceeds the same threshold value of 3.3 × 1019m-3.The observation suggested that the enhanced radial transport carried by blobs may lead to the formation of the density shoulder,which is in agreement with the observation in AUG[19].

    Figure 7.Connection length Lc to different divertor target plates as a function of R-Rsep.Black,blue and red symbols represent Lc to the upper inner(UI),low outer(LO)and upper outer(UO)divertor target plates,respectively.

    Figure 8.The particle fluxΓion profiles on the upper outer divertor target projected onto the outer midplane at different for(a)shots#75012,(b)#75016 and(c)#75017.

    4.2.Relation between blob modification and divertor detachment

    The blob behaviours and propagation are associated with the ion polarization current,the sheath current and the ion current caused by neutral friction[47].One hypothesis is that the blob extends along the field line to the target plates in the SOL and the blob current loop can be closed at the sheath[48].Figure 7 shows the connection lengthLcat the outer midplane as a function ofR-Rsepin USN configurations.Here,Lcis calculated by the magnetic field line tracing code.SinceLcto the UO divertor targets is shorter than that to the UI and LO targets,and the UO divertor is the last to detach,it can be considered as the main electrical interface between the blobs and the divertor targets[19].Therefore,the blob behaviors are compared with the evolution of plasma parameters on the UO divertor targets to illustrate their relation.As shown in figure 8,Γionon the UO divertor target plates in different densities are projected onto the outer midplane.The divertor target strike point is located near the Langmuir probe 9 in discharge#75012,and near probe 13 in discharges #75016 and#75017.It is found that the divertor begins to detach at the density threshold of blob transition,i.e..

    Figure 9.(a)Blob sizeδb,(b)particle fluxΓion and(c)electron temperature and on the outer divertor targets,(d)DoD versus lineaveraged density at R-Rsep~5 mm.

    A more detailed comparison is carried out to clarify the correlation between the blob transition and the UO divertor detachment.The UO-LP 9(strike point,R-Rsep~5 mm)is projected onto the corresponding coordinates within the Li-BES field of view,enabling the direct comparison between the blob properties and divertor conditions for shot #75012.The UO-LP 9 corresponds to Li-BES channel CH12.Figures 9(b)and(c)showΓionandTetmeasured by UO-LP 9 versus,respectively.Γionrolls over andTetreduces to 5 eV,suggesting the beginning of the divertor detachment.The blob sizes remain at about 2 cm before the divertor detachment,and then increase up to~6 cm nearly at the beginning of(or slightly before)the detachment.Taking into account the measurement errors caused by the differences in spatial resolution between the Li-BES and the divertor Langmuir probe system,it is found that the onset of the divertor detachment and the blob transition occur nearly at the same density.The Degree of Detachmentis calculated as shown in figure 9(d),wherecis a normalization constant and obtained experimentally from the low density phase of the density ramp-up discharge.The dramatic increase in DoD seems to act as an indicator of the blob sharp modification.These results suggest that the blob transition is highly correlated with the divertor detachment.

    Figure 10.Divertor collisionality Λdiv versus the line-averaged density at R-Rsep~5 mm.

    As mentioned in the introduction,the blob behaviors are closely related to the divertor effective collisionality Λdiv.To examine the validity of the mechanisms proposed in[18,24],Λdivas a function offor discharge #75012 is shown in figure 10.Here,Tetandnemeasured by the divertor Langmuir probes are used to calculate Λdiv.It is shown that Λdivin the positions ofR-Rsep~5 mm increases by up to two orders of magnitude whenand stays nearly constant whenwhich is consistent with the blob transition and divertor detachment density threshold value.This result is qualitatively consistent with the model developed by Myraet al[49],i.e.that the blobs become disconnected from the divertor for large collisionalities.However,the threshold of Λdivis different to AUG[18,24],which is nearly 80 instead of 1,and this may be associated with different blob sizes in the two devices according to Myra’s model.

    5.Discussion and conclusion

    The modification of SOL blob behaviours is studied in L-mode plasmas with density ramp-up on EAST:the blob size and lifetime increase by 2–3 times while the blob detection rate decreases by about 2 times when the density exceeds the threshold value ofThe formation of a weak density shoulder is observed in the near SOL region above the same density threshold.The evolutions of the blob size in the outer midplane and the divertor plasma parameters show that the access to partial outer divertor detachment and the blob transition occur at almost the same density.It is suggested that the blob transition is highly correlated with the divertor detachment.However,the direction of causality is not yet clear.A possible mechanism is that the increase of density in the SOL leads to a rise in the global collisionality Λ(∝neTe-3/2)along field lines,disconnecting the blobs from the divertor.As a result,the sheath dissipation decreases,which increases the blob size and leads to an enhanced convective radial transports caused by blobs.This would increase or spread the particle loads to the divertor targets,which would trigger or at least contribute to the divertor detachment.Another explanation may also exist,i.e.the higher density leads to divertor detachment,which reduces the electron temperature in front of the targets and thus dramatically increases the divertor collisionality Λdiv.The high collisionality Λdivdisconnects the blobs from the divertor target and results in the blob transition[18].However,figure 8 shows that the outer divertor detachment only appeared in the first 5 mm from the strike points,which seems unlikely to affect about 2 – 4 cm wide blobs;the former direction seems more likely.This conclusion should be taken with caution,due to lack of measurements of collisionality upstream.

    The modification of the blob detection rate indicates that other mechanisms may also exist,e.g.the poloidalEr×Bflow shear(Er×Bshear can tilt and split the blobs,which would narrow their radial extent and increase their detection rate[50]),or changes of turbulence and instabilities in the blob generation region.The Li-BES data shows ?VP(which is proportional to the localEr×Bshearing rate)increases withnˉein the near SOL.It may suppress the turbulence or blob amplitude,suggesting that the blob transition is not correlated with the change of localErin our case.

    Acknowledgments

    The authors would like to acknowledge the support and contributions of the EAST team.The work is supported by the National Key R&D Program of China(Nos.2017YFE0301300,2017YFA0402500,2019YFE03030000),Institute of Energy,Hefei Comprehensive National Science Center(Nos.GXXT2020004,12105187),National Natural Science Foundation of China(Nos.11922513,U19A20113,11905255,12005004),Anhui Provincial Natural Science Foundation(No.2008085QA38),and China Postdoctoral Science Foundation(No.2021M702245).

    ORCID iDs

    猜你喜歡
    顏寧
    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST
    “清華學(xué)術(shù)女神”在線打假
    東西南北(2019年19期)2019-12-12 06:10:24
    陽關(guān)故人
    飛魔幻A(2019年11期)2019-02-06 03:58:09
    征服世界的人不分男女
    一段苦澀又奇特的成長經(jīng)歷
    科研是最美的童話
    黨員文摘(2015年2期)2015-05-30 15:10:57
    科學(xué)家顏寧:科研是最美的童話
    新青年(2014年11期)2014-12-02 09:48:38
    科研是最美的童話
    美女教授顏寧:科研是最美的童話
    女性天地(2014年8期)2014-04-29 15:05:20
    最美科學(xué)家的最美事業(yè)
    做人與處世(2013年6期)2013-06-24 09:38:20
    久久人妻av系列| 99久久综合精品五月天人人| 国产成人一区二区三区免费视频网站| 精品第一国产精品| 美女国产高潮福利片在线看| 动漫黄色视频在线观看| 少妇被粗大的猛进出69影院| 国产亚洲精品久久久久5区| 黄频高清免费视频| 熟女少妇亚洲综合色aaa.| 国产熟女xx| 日本成人三级电影网站| 黄色女人牲交| 成人午夜高清在线视频 | 欧美成人午夜精品| 国产欧美日韩一区二区三| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩一区二区精品| 成人一区二区视频在线观看| 国产精品1区2区在线观看.| 国产成人系列免费观看| 欧美zozozo另类| 首页视频小说图片口味搜索| 精品卡一卡二卡四卡免费| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 69av精品久久久久久| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 欧美一区二区精品小视频在线| 一级a爱片免费观看的视频| 美女高潮喷水抽搐中文字幕| 日韩视频一区二区在线观看| 嫩草影院精品99| 欧美日韩乱码在线| 啪啪无遮挡十八禁网站| 亚洲五月婷婷丁香| 欧美日韩福利视频一区二区| 国产单亲对白刺激| 欧美国产日韩亚洲一区| 中文字幕久久专区| 香蕉久久夜色| 又紧又爽又黄一区二区| 久久精品人妻少妇| av在线播放免费不卡| 黄色女人牲交| 日本免费a在线| 久久亚洲真实| 最近在线观看免费完整版| 亚洲人成伊人成综合网2020| svipshipincom国产片| 久久久久九九精品影院| tocl精华| 中文字幕精品亚洲无线码一区 | 黄色a级毛片大全视频| 香蕉久久夜色| 老司机靠b影院| 国产一区在线观看成人免费| 午夜福利欧美成人| 一区福利在线观看| 视频区欧美日本亚洲| 亚洲激情在线av| 国产午夜精品久久久久久| 午夜免费观看网址| 啦啦啦 在线观看视频| 国产av不卡久久| 90打野战视频偷拍视频| 国产精品久久久久久人妻精品电影| 精品久久久久久久毛片微露脸| 亚洲一码二码三码区别大吗| 校园春色视频在线观看| 99国产精品一区二区三区| 久久久国产欧美日韩av| 日韩欧美免费精品| 成人三级做爰电影| 欧美日韩黄片免| 欧美黑人欧美精品刺激| 黄色片一级片一级黄色片| 窝窝影院91人妻| ponron亚洲| 十八禁网站免费在线| 大香蕉久久成人网| 丰满人妻熟妇乱又伦精品不卡| 久热爱精品视频在线9| 国产精品香港三级国产av潘金莲| 中国美女看黄片| www.熟女人妻精品国产| 老司机靠b影院| 在线天堂中文资源库| 国产精品久久视频播放| 久久久久久亚洲精品国产蜜桃av| svipshipincom国产片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲久久久国产精品| 在线天堂中文资源库| 最近最新中文字幕大全免费视频| 给我免费播放毛片高清在线观看| av片东京热男人的天堂| 精品欧美一区二区三区在线| 国产在线精品亚洲第一网站| 色综合婷婷激情| 色尼玛亚洲综合影院| 久久久久免费精品人妻一区二区 | 国产精品一区二区三区四区久久 | 久久国产精品人妻蜜桃| 黄色 视频免费看| 亚洲精品美女久久av网站| 99在线视频只有这里精品首页| 99国产精品99久久久久| 男女下面进入的视频免费午夜 | 欧美乱色亚洲激情| 久久狼人影院| 制服诱惑二区| 黑人操中国人逼视频| 男女午夜视频在线观看| 久久精品91无色码中文字幕| 一级毛片精品| 97人妻精品一区二区三区麻豆 | 女人爽到高潮嗷嗷叫在线视频| av中文乱码字幕在线| 免费观看人在逋| 亚洲欧美精品综合久久99| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 亚洲欧美激情综合另类| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 黄色片一级片一级黄色片| 国产亚洲精品一区二区www| 美女大奶头视频| 亚洲国产精品成人综合色| 国产aⅴ精品一区二区三区波| 动漫黄色视频在线观看| 日本免费a在线| 久久伊人香网站| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| x7x7x7水蜜桃| 国产成+人综合+亚洲专区| 国产一区在线观看成人免费| 欧美人与性动交α欧美精品济南到| netflix在线观看网站| 在线视频色国产色| 大香蕉久久成人网| 欧美乱色亚洲激情| 久久天堂一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩国内少妇激情av| 国产精品久久久久久精品电影 | 男女午夜视频在线观看| 国产亚洲av嫩草精品影院| 国产在线精品亚洲第一网站| 97人妻精品一区二区三区麻豆 | 女性被躁到高潮视频| 色综合亚洲欧美另类图片| 日韩大码丰满熟妇| 国产亚洲精品av在线| 国产又色又爽无遮挡免费看| 精品熟女少妇八av免费久了| 国产熟女xx| 精华霜和精华液先用哪个| 亚洲性夜色夜夜综合| 别揉我奶头~嗯~啊~动态视频| 国产日本99.免费观看| 国产又黄又爽又无遮挡在线| 国产免费男女视频| netflix在线观看网站| 久久精品人妻少妇| 久久久国产精品麻豆| 脱女人内裤的视频| 黄色成人免费大全| www日本黄色视频网| 久久久久久久午夜电影| 欧美色视频一区免费| 日韩欧美国产在线观看| 侵犯人妻中文字幕一二三四区| 丁香欧美五月| 免费女性裸体啪啪无遮挡网站| 国产成人av教育| 中文字幕久久专区| 亚洲一区二区三区色噜噜| 国产一卡二卡三卡精品| 免费看十八禁软件| svipshipincom国产片| 国产黄片美女视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久久水蜜桃国产精品网| 亚洲成国产人片在线观看| 夜夜看夜夜爽夜夜摸| 国产一区二区激情短视频| 老司机福利观看| 老汉色∧v一级毛片| 亚洲人成77777在线视频| 女人被狂操c到高潮| 国产精品免费视频内射| 久久中文字幕一级| 精品国产乱子伦一区二区三区| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 人人澡人人妻人| 午夜福利在线在线| 欧美乱妇无乱码| 久久国产亚洲av麻豆专区| 久久亚洲精品不卡| 最新在线观看一区二区三区| 久久久久久人人人人人| 99国产精品一区二区蜜桃av| 黄色a级毛片大全视频| 欧美av亚洲av综合av国产av| 给我免费播放毛片高清在线观看| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 少妇的丰满在线观看| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 午夜久久久在线观看| 悠悠久久av| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 不卡av一区二区三区| 精品乱码久久久久久99久播| 午夜久久久在线观看| www.自偷自拍.com| 精品欧美国产一区二区三| 岛国在线观看网站| 亚洲无线在线观看| 午夜久久久久精精品| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| 制服人妻中文乱码| 搡老岳熟女国产| 男人操女人黄网站| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 国产免费av片在线观看野外av| 国产成人av教育| 午夜两性在线视频| 精品久久久久久久末码| 亚洲一区中文字幕在线| 嫩草影院精品99| 91老司机精品| 亚洲成人国产一区在线观看| 日本在线视频免费播放| 国产野战对白在线观看| 日本一区二区免费在线视频| 老司机靠b影院| av超薄肉色丝袜交足视频| 亚洲中文日韩欧美视频| 19禁男女啪啪无遮挡网站| 亚洲第一电影网av| 国内揄拍国产精品人妻在线 | 久久久久久免费高清国产稀缺| 午夜亚洲福利在线播放| 男男h啪啪无遮挡| 日韩欧美三级三区| 午夜成年电影在线免费观看| 丁香欧美五月| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 久久九九热精品免费| 成年版毛片免费区| 搡老妇女老女人老熟妇| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| 国产亚洲精品第一综合不卡| bbb黄色大片| 国产亚洲精品久久久久久毛片| 午夜福利免费观看在线| 国产精品电影一区二区三区| 亚洲激情在线av| 午夜福利成人在线免费观看| 18禁黄网站禁片免费观看直播| 亚洲人成电影免费在线| 国产午夜福利久久久久久| 国产成人精品久久二区二区91| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 99国产精品99久久久久| 国产精品一区二区三区四区久久 | 丁香欧美五月| www国产在线视频色| 日韩免费av在线播放| 麻豆av在线久日| 天天一区二区日本电影三级| 国产黄色小视频在线观看| 久久 成人 亚洲| 婷婷六月久久综合丁香| 亚洲国产精品久久男人天堂| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 一边摸一边做爽爽视频免费| 免费观看人在逋| 在线国产一区二区在线| 国产欧美日韩精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产麻豆成人av免费视频| 身体一侧抽搐| 日本三级黄在线观看| 亚洲av成人不卡在线观看播放网| 操出白浆在线播放| 成人av一区二区三区在线看| 这个男人来自地球电影免费观看| 777久久人妻少妇嫩草av网站| 日本免费a在线| 亚洲国产日韩欧美精品在线观看 | 国产亚洲精品一区二区www| 美女高潮到喷水免费观看| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 久久这里只有精品19| 妹子高潮喷水视频| 国产精品久久久av美女十八| 十分钟在线观看高清视频www| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 成人午夜高清在线视频 | a在线观看视频网站| 成人国产综合亚洲| 老鸭窝网址在线观看| 女性被躁到高潮视频| 一个人免费在线观看的高清视频| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲狠狠婷婷综合久久图片| 一边摸一边抽搐一进一小说| 我的亚洲天堂| av中文乱码字幕在线| 在线观看午夜福利视频| 9191精品国产免费久久| 美女午夜性视频免费| 91麻豆精品激情在线观看国产| 精品熟女少妇八av免费久了| 欧美日韩瑟瑟在线播放| 亚洲精品美女久久久久99蜜臀| 成年免费大片在线观看| 一边摸一边做爽爽视频免费| 久久久久久大精品| 午夜福利成人在线免费观看| 亚洲成人久久性| 国产伦人伦偷精品视频| 最近最新中文字幕大全电影3 | av在线天堂中文字幕| 成人18禁在线播放| 国产精品久久久久久亚洲av鲁大| 麻豆av在线久日| netflix在线观看网站| 免费电影在线观看免费观看| 欧美中文日本在线观看视频| 国产午夜福利久久久久久| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 国产av在哪里看| 可以在线观看的亚洲视频| 老汉色∧v一级毛片| 好男人在线观看高清免费视频 | 十分钟在线观看高清视频www| av中文乱码字幕在线| 免费在线观看成人毛片| 午夜免费成人在线视频| 国产区一区二久久| 亚洲国产精品sss在线观看| 成年女人毛片免费观看观看9| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 亚洲真实伦在线观看| 精品无人区乱码1区二区| 亚洲 国产 在线| 午夜老司机福利片| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 日韩精品免费视频一区二区三区| 国产人伦9x9x在线观看| 岛国视频午夜一区免费看| 我的亚洲天堂| 视频区欧美日本亚洲| 亚洲av成人一区二区三| 51午夜福利影视在线观看| 亚洲国产精品合色在线| 免费搜索国产男女视频| 黑人巨大精品欧美一区二区mp4| 国产精品 国内视频| 亚洲五月色婷婷综合| 俺也久久电影网| 熟女电影av网| 香蕉国产在线看| 国产99白浆流出| 中文字幕人妻熟女乱码| 成人国产一区最新在线观看| xxxwww97欧美| 亚洲美女黄片视频| www.精华液| 久久精品国产清高在天天线| 成人18禁高潮啪啪吃奶动态图| 男女床上黄色一级片免费看| 波多野结衣巨乳人妻| 听说在线观看完整版免费高清| 无限看片的www在线观看| 两个人视频免费观看高清| 久久久久国产精品人妻aⅴ院| 老鸭窝网址在线观看| 精品不卡国产一区二区三区| 欧美乱妇无乱码| 日韩免费av在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 久久草成人影院| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| 黑丝袜美女国产一区| 国产亚洲精品av在线| 搡老妇女老女人老熟妇| 亚洲五月色婷婷综合| 国产av又大| 97碰自拍视频| 老司机福利观看| 日韩欧美一区视频在线观看| 伦理电影免费视频| 亚洲精品粉嫩美女一区| 欧美乱色亚洲激情| 免费看十八禁软件| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| 最好的美女福利视频网| 国产日本99.免费观看| 啦啦啦免费观看视频1| 亚洲精品粉嫩美女一区| 久久 成人 亚洲| 欧美激情高清一区二区三区| 一级a爱视频在线免费观看| 日韩高清综合在线| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人妻丝袜一区二区| 韩国av一区二区三区四区| or卡值多少钱| 国产熟女xx| 日日干狠狠操夜夜爽| 国产视频一区二区在线看| 99在线视频只有这里精品首页| 国产精品影院久久| www.精华液| 亚洲国产欧洲综合997久久, | 日韩欧美免费精品| 变态另类成人亚洲欧美熟女| 在线观看日韩欧美| 男人舔女人的私密视频| 欧美黄色淫秽网站| 香蕉av资源在线| 日本一本二区三区精品| 丰满的人妻完整版| 日日夜夜操网爽| 国产黄a三级三级三级人| av电影中文网址| 亚洲国产精品成人综合色| 精品国产超薄肉色丝袜足j| 热99re8久久精品国产| 亚洲自拍偷在线| 欧美中文综合在线视频| 国产精品二区激情视频| av电影中文网址| 中国美女看黄片| ponron亚洲| 亚洲第一欧美日韩一区二区三区| 两个人免费观看高清视频| 精品国产乱子伦一区二区三区| 欧美性猛交╳xxx乱大交人| 国产乱人伦免费视频| 1024手机看黄色片| 在线视频色国产色| 两个人看的免费小视频| 亚洲av日韩精品久久久久久密| 搞女人的毛片| 青草久久国产| 欧美又色又爽又黄视频| 午夜久久久在线观看| 一二三四社区在线视频社区8| 亚洲av成人一区二区三| 午夜福利在线观看吧| 999精品在线视频| 欧美黄色淫秽网站| 国产精品免费一区二区三区在线| 波多野结衣巨乳人妻| 日韩av在线大香蕉| 身体一侧抽搐| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图 男人天堂 中文字幕| 欧美又色又爽又黄视频| www.熟女人妻精品国产| 91成年电影在线观看| 久久久久国产精品人妻aⅴ院| 香蕉国产在线看| 亚洲自拍偷在线| 国产aⅴ精品一区二区三区波| a级毛片a级免费在线| 日韩精品中文字幕看吧| 香蕉国产在线看| 日韩欧美国产一区二区入口| 国内久久婷婷六月综合欲色啪| 女生性感内裤真人,穿戴方法视频| 欧美日韩瑟瑟在线播放| 国产av又大| 亚洲国产精品sss在线观看| xxx96com| 99国产综合亚洲精品| 国产精品1区2区在线观看.| 一进一出抽搐动态| av在线播放免费不卡| 99精品在免费线老司机午夜| 欧美zozozo另类| 成人av一区二区三区在线看| 成人亚洲精品av一区二区| 亚洲精品色激情综合| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| 男人舔奶头视频| 在线播放国产精品三级| 成在线人永久免费视频| 亚洲成人免费电影在线观看| 在线av久久热| 亚洲激情在线av| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 夜夜看夜夜爽夜夜摸| 国产精品亚洲av一区麻豆| 亚洲精品色激情综合| 欧美绝顶高潮抽搐喷水| 久久九九热精品免费| 搡老岳熟女国产| 一级毛片女人18水好多| 免费人成视频x8x8入口观看| 日韩欧美 国产精品| 欧美一级毛片孕妇| 亚洲精品国产精品久久久不卡| www日本在线高清视频| 亚洲人成电影免费在线| 两个人免费观看高清视频| 亚洲国产欧美网| 午夜免费激情av| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| 黑丝袜美女国产一区| 精品国产亚洲在线| 成人三级做爰电影| 色综合站精品国产| 亚洲精品一卡2卡三卡4卡5卡| 非洲黑人性xxxx精品又粗又长| 男女做爰动态图高潮gif福利片| 午夜日韩欧美国产| 亚洲五月婷婷丁香| 啦啦啦免费观看视频1| 丁香六月欧美| 在线观看午夜福利视频| 波多野结衣av一区二区av| 看免费av毛片| 亚洲国产精品成人综合色| 亚洲av成人不卡在线观看播放网| 国产又黄又爽又无遮挡在线| 国产黄色小视频在线观看| 一进一出抽搐gif免费好疼| 国产精品永久免费网站| 亚洲九九香蕉| 麻豆成人av在线观看| 性欧美人与动物交配| 国产av不卡久久| 亚洲最大成人中文| 国产国语露脸激情在线看| 国产在线观看jvid| 黄色毛片三级朝国网站| 又大又爽又粗| 久久久国产欧美日韩av| 成人一区二区视频在线观看| 国产精品久久视频播放| 无遮挡黄片免费观看| 高潮久久久久久久久久久不卡| 99久久无色码亚洲精品果冻| 日本五十路高清| 高潮久久久久久久久久久不卡| 99久久无色码亚洲精品果冻| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区免费欧美| cao死你这个sao货| 亚洲精品一区av在线观看| 欧美久久黑人一区二区| 大型av网站在线播放| av天堂在线播放| 日韩大尺度精品在线看网址| 亚洲黑人精品在线| 欧美日本亚洲视频在线播放| 啦啦啦韩国在线观看视频| 久久精品成人免费网站| 午夜福利18| 国产1区2区3区精品| 久久精品成人免费网站| 巨乳人妻的诱惑在线观看| 免费一级毛片在线播放高清视频|