• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle simulations on propagation and resonance of lower hybrid wave launched by phased array antenna in linear devices

    2022-08-01 11:34:16GuanghuiZHU朱光輝QingLI李清XuanSUN孫玄JianyuanXIAO肖建元JiangshanZHENG鄭江山andHangLI李航
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:李清光輝江山

    Guanghui ZHU(朱光輝),Qing LI(李清),Xuan SUN(孫玄),Jianyuan XIAO(肖建元),Jiangshan ZHENG(鄭江山) and Hang LI(李航)

    1 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    2 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract In this work,we performed first-principles electromagnetic-kinetic simulations to study a phased antenna array and its interaction with deuterium plasmas within the lower hybrid range of frequency.We first gave wave accessibility and resonance results,which agree well with theoretical prediction.In addition,we further investigated the antenna power spectrum with different antenna phases in the presence of the plasma and compared it with that in a vacuum,which directly indicates wave coupling and plasma absorption.Furthermore,for the case with zero phasing difference,our simulation results show that,albeit the launch is away from the accessibility region,tunneling effect and mode conversion occurred,which enhanced coupling and absorption.Moreover,consistent interactions between the injected wave and the plasma concerning various antenna phase differences are shown.We presented the inchoate response of the plasma in terms of the launching directions.Our results could be favorable for the engineering design of wave heating experiments with a tunable phased antenna array in linear devices,such as simple magnetic mirrors or tandem mirrors.

    Keywords:LHW,phased array antenna,tunneling,mode conversion,particle-in-cell simulation

    1.Introduction

    Radio-frequency(RF)waves are widely applied in magnetically confined plasmas for auxiliary heating,and current drive approaches[1–3].Within the broad range of available wave frequencies,waves in the lower hybrid range of frequency,i.e.lower hybrid waves(LHWs),have extensive applications in many devices[4–8].They involve helicon wave,lower hybrid fast and slow wave,applied for the current drive,plasma heating and plasma rotation in toroidal devices[9–11].In addition,a recent study has demonstrated the effectiveness of stochastic ion heating of LHW in magnetic mirror devices,which opens a new aspect for ion heating studies in linear devices,such as tandem mirrors[12].In addition,LHW is economical,which is very helpful for university research on fusion plasma heating.

    In many magnetic confinement devices,the launching structure of LHW is generally a tunable phased waveguide or loop antenna array[13,14].This launching system is simple and flexible.It enables us to control the initial k‖,i.e.the launching angle and polarization of the injected wave,which is necessary for wave propagation into the resonance range near the plasma core and for strong wave absorption under certain conditions.It is worth mentioning that an array antenna with fixed phasing produced by fixing the transmission line is often used in a linear device,which can keep the phasing constant with large reflection power.Meanwhile,with the development of decoupler technology and automatic matching technology,a tunable phased array antenna spectrum can easily be realized by controlling the output phase of RF sources[15–18].However,to couple tremendous external energy into the plasmas under various conditions with high efficiency,it is important to understand wave coupling and plasma response.Although loop antenna sources with a tunable antenna wavenumber spectrum have been successfully achieved in the ion cyclotron range of frequency and a helicon plasma experiment[19,20],the tunable phased array antenna has not been investigated in lower hybrid resonance heating(LHRH),in particular at simulation.

    Nowadays,numerical simulation methods are adopted to study LHWs extensively in fusion plasma.Nevertheless,most methods developed only involve one or a couple of aspects in LHW physics.For example,ray-tracing methods,such as GENRAY and C3PO,are generally applied to study the propagation and linear absorption of LHWs[21,22].Fullwave codes,such as the semi-spectral solver TORLH,finite element solver LHEAF and ALOHA can be applied for coupling LHWs,and more finite studies of wave propagation and energy deposition from the vacuum region with waveguides to the plasma core,which should also have the capability to simulate the tunneling process of evanescent wave are described in this paper[23–25].In addition,Fokker–Planck-based methods,such as LUKE and CQL3D,must be integrated to take the kinetic effect into consideration,which does not satisfy first principles[26,27].Recently,a series of research works on LHW current drive and heating,which were carried out based on the first-principles method without any additional modeling,were presented[28].Specifically,a symplectic structure-preserving electromagnetic particle-incell(PIC)scheme is implemented in the SymPIC code(https://github.com/JianyuanXiao/SymPIC)[29].These simulations use a fully kinetic model for ions and electrons,which guarantees first-principles approximations to the original system,and the preservation of non-canonical symplectic structure provides the ability for long-term simulation without inducing abominable numerical dissipation.Note that,currently,our model does not involve any collision term explicitly and we have also not included any special treatment of the wave absorption on the equation level.Energy transference between the wave and the plasma is effected through spontaneous wave-particle interaction or another kinetic collisionless process.

    The SymPIC code has tremendous advantages.It has the ability to solve the antenna-plasma coupling problem including linear and nonlinear processes.Although this work basically only involves the linear coupling and heating process,with potential nonlinear physics due to high coupled power not being included here,we can still expect that when the coupled power reaches a certain level,the ponderomotive force and background plasma turbulence can be significant and thus result in various nonlinear processes.Nevertheless,the research interests of the previous works only focus on the physics of the injected LHW inside the plasma rather than the coupling and antenna-related physics.Here,we utilize this code to investigate the detailed coupling process of LHW in linear devices with nonuniform plasmas.Note that the 2D slab configuration is adopted in our simulation,and based on the device’s known plasma parameters,our simulation results can provide practical guidance for antenna structure design.

    In this work,different antenna power spectra excited by different phasings from 0 to π for octuplet-loop antenna array are simulated,and good agreement of LHW propagation is found with previous work[30,31].As expected,the high phased antenna can launch a slow wave well,with it propagating into the LHR layer and heat plasma.However,there is an interesting discovery that in the low phased antenna simulation case,we observed that a large electric field is generated from the edge to the plasma core and penetrates the LHR layer.This electric field,in our opinion,behaves as a source that excites a fast wave in the inner region of the LHR layer,which consequently transforms to a slow wave through slow-fast wave mode conversion(MC)[32–34].Moreover,the simulation results also show that the absorption power of plasma in a low phased antenna is higher than that in a high phased antenna in a few wave periods.

    Based on all the observations,this work has been structured to study LHW propagation and plasma absorption through PIC simulations with a phased antenna array.Section 2 describes the experimental setup of a phased array antenna and a simulation setup in a linear device,discussion of LHWs in cold deuterium plasma,and the accessibility condition.Section 3 presents a detailed study and the simulation results of wave launching,propagation,coupling and absorption with phased antenna array for different phasing.Finally,section 4 summarizes the above results and conclusions.

    2.Description of a phased array antenna and simulation setup

    2.1.Description of a phased array antenna

    As is well known,the phased waveguide array or grill antenna has been widely used in launching high-power LHW into toroidal plasmas with a high magnetic field.However,for linear devices with a low magnetic field,the LHW should be excited by a phased multiple-loop array antenna,as shown in figure 1.In the experiment,we can fulfill the current feed of each antenna loop with a certain phase difference through a lossless phase shifter,impedance matcher and RF decoupler.The loop antenna scheme is used to excite the azimuthal mode number m=0 and the Fourier spectrum of the phased array antenna current density Jφ(m=0,kz,Δφ),where Δφ is the phase difference of the adjacent antenna andkzis the axial wavenumber.The Jφ(m=0,kz,Δφ)is defined as follows[19]:

    2.2.Simulation setup

    The linear device is a cylinder rather than a slab,so the radial profile of the LHW electric field should be a Bessel function[35].The geometry effect is important to the wave-particle resonance whenk⊥r?1 is not well satisfied,particularly in the core.However,the 2D slab geometry simulations with greatly simplified computation are a good enough approximation for the cold plasma.In the paper,the simulation domain is in thex-zplane,wherexdenotes the radial direction andzdenotes the axial direction for a linear device.The 2D slab geometry consists of the deuterium plasma with nonuniform density along thex-direction and a homogeneous magnetic field along thez-direction,as shown in figure 2.The phased array antenna is parallel placed along thez-direction with fixed phase difference Δφf(shuō)or adjacent current,and the antenna currentφJ(rèn)is now reduced to two current sheets with opposite direction ±Jyon each side of the plasma in thex-zplane.

    3.Benchmark of simulations

    4.Results and discussion

    4.1.Power spectrum of the antenna with different phasing

    absorption spectrum produced by the plasma.Note that,the power spectrum ofExonly displays a slight difference with respect to different radial positions,which indicates that the inhomogeneous plasma density has little influence on theExspectrum.Thus,only the power spectrum ofExatx=3.6 cm is given here for simplicity.The normalized power spectrum of the injected wave in the plasma is consistent with the normalized antenna spectrum,except for the cases in figures 6(a),(b)and(d).For the case in figure 6(a),Δφ=0,although the dominant value of the parallel wavenumber is smaller thank z,C,i.e.away from the accessibility region,the simulation results show that the wave can still affect the plasma core and is significantly absorbed.The tunneling and MC effects play a key role in this situation,which we discuss in the next section.For the case of Δφ=π/ 8and Δφ=3π/ 8,the part of the power spectrum withkz<k z,C,i.e.sidelobe,also shows dramatic excitation and absorption in figures 6(b)and(d).The excitation of the sidelobe is responsible for improving the heating efficiency in this specific case.

    4.2.Propagation characteristics of the LHW with different phasings

    The propagation images of LHW in plasma for Δφ=0 at different times selected by a significant change in the state are described in figure 7.As expected,there is a perpendicular propagation wave packet,or in other words,a large electric field with a long extension in the perpendicular direction,from the antenna placed in the plasma margin to the plasma center,as shown in figure 7(a).Figure 7(b)shows that the field penetrates the LHR layer and forms a spot inside the LHR region.The corresponding spot has no spatial phasing,and it can be seen as an infiniteksum and be considered a source to excite LHW.As shown in figures 7(e)–(h),the new source evolves new propagation and absorption processes from the plasma core to the exterior.It can be seen that the wave deposition range is between the MC layer and the LHR layer.

    Figure 1.Octuple-loop antenna with phased loop current in Δφ.

    Figure 2.Illustration of the wave launching by the phased array antenna for nonuniform deuterium plasma with a vacuum boundary.There are perfect electric conductor(PEC)layers at the boundary of the x-direction.Boundary conditions of the z-direction are periodic.

    Figure 3.Evolution of the vertical wavenumber k⊥ with range density for fixed f=50 MHz andB0=2000 G.In addition,the parallel wavenumber is k z=0.011 cm -1(a);k z=0.012 cm-1(b);k z=0.03 cm -1(c).Solid gray lines and red lines represent the propagation of slow and fast waves,respectively.

    Figure 4.Comparison of LHW propagations in plasma with(a)PIC simulation for the phasing Δφ=π at t=134 ns and(b)the theoretical ray-tracing calculation with a source having a finite length source from z=-110 cm to z=-40 cm with electric field distribution of .

    Figure 5.(a)Comparison of the radial evolution of Ex with theoretical calculation(the red solid line)at fixed kz=0.292 cm-1 and the simulation results(the black scatters)at t=134 ns;(b)comparison of ⊥k with half-wave fitting calculation of the simulation results(the blue scatters)and theoretical calculation(the red scatters)as a function of plasma density;(c)comparison of the radial evolution of plasma density with t=0 ns(the blue solid line)and t=134 ns(the red solid line).Intersection of the red dotted lines denotes the LHW resonance point.

    Figure 6.Comparison of the normalized wavenumber power spectrum with the antenna(the solid black line)andEx(the solid red line)at x=3.6 cm for different phasings.

    In addition,some relatively weak bright and dark stripes appear from the resonance layer to the plasma center in figure 7(h),which should be the evanescent wave.Figure 8 shows the radial evolution ofExatz=0 cm by a solid black line and the exponential fitting between the resonance layer and plasma center indicating that the magnitude ofExmeets the exponential attenuation in the red dashed line.The tunneling process of the evanescent wave generated proves the authenticity and superiority of the simulation code.

    Figure 7.Propagations of LHW in plasma for Δφ=0 at different times are selected by a significant change in state and marked in the upper right corner box from(a)to(h).Color map is for the Ex component.Red dashed lines denote the theoretical resonance(LHR)layers of a slow wave,and the black dashed lines denote the theoretical MC layer.

    Figure 8.Radial evolution ofEx(the solid black line)at z=0 cm and t=134 ns;blue dashed line is the LHR layer at x=-1.6 cm;red dashed line is the exponential fitting of Ex amplitude with x.

    Figure 9.Illustration of LHW propagation and mode conversion process excited by low-phase antenna.

    Figure 10.Propagations of LHW in the x -z plane for different phasings:(a) Δφ=π/ 8;(b) Δφ=π/4 ;(c) Δφ=3π / 8;(d) Δφ=π/2 at t=134 ns.Color map is for the Ez component,and the red dashed lines denote the theoretical resonance layers of the slow wave.

    Figure 11.Heating effect of the x-direction component of the ion kinetic energyin z- x plane at t=134 ns for different phasings.

    Figure 12.Heating effect of the y direction component of the electron kinetic energy

    Figure 13.Absorption power of ions(the red solid line)and electrons(the black solid line)as a function of Δφ.

    In order to understand the plasma absorption principle,a schematic diagram of LHW propagation is shown in figure 9.The antenna with a low phase excites an electric oscillation with a large radial characteristic scale,which can penetrate the plasma center through the tunneling effect and form a new source of excitation represented by the cyan ellipse labeled‘new source’ in figure 9.It is worth mentioning that the tunneling effect is important because the radial wavelength is close to the evanescent region size for our simulation parameters and the tunneling effect will become weak for a higher⊥kvalue and larger global simulation domain.There should be only a fast wave being excited at the inner region of the LHR,where the plasma density is higher than the LHR density,as shown for the dispersion relation in figures 3(a)–(c).It is clear that the absorption of the fast wave propagating to high density excited by the new source in the plasma core is weak,as indicated by the black dotted arrow in the pink area of figure 9.Furthermore,the case of fast-wave propagation to low density needs to be discussed separately.For monochromatic waves ofkz>kz,Cin the wave packet represented by the cyan ellipse labeled‘Part 1’in figure 9,the decreasing density from the plasma core to the edge yielding⊥kis smaller.In addition,these fast waves gradually disappear as they approach the low-density cut-off layer,as shown in figures 7(d)–(h).For the component withkz≤kz,Cof the wave packet spot represented by the cyan ellipse labeled‘Part 2’in figure 9,it will reach the MC layer from the inner side and convert into slow-wave propagation back to the interior.Then,the slow wave propagates to the resonant layer and achieves resonance absorption.At the same time,resonance promotes the generation of the tunneling effect and improves wave absorption by plasma.Our phenomenological explanation based on the LHW dispersion relation well describes the whole propagation of LHW in the low-phase antenna launching case.

    Next,the cases with phasing Δφ=π/8 to Δφ=π/2 are described in figure 10.The slow wave is no longer symmetrical like Δφ=0 or Δφ=π,and it propagates mainly to the right,which means that the phased antenna array can control the direction of the wave propagation.Thekz,maxexcited by the antenna is 0.039 cm-1at phasing Δφ=π/ 8which satisfiesk z,max>k‖,C,thus,we can see the slow wave is partially propagated from the antenna to the LHR layer in figure 10(a).Because the power spectrum also contains the part ofk z,max<k‖,C,the mode conversion process from fast wave to slow wave also occurs like the case of Δφ=0.Meanwhile,the amplitudes ofExnear the point(z=40 cm,∣x∣=3 cm)on the slow-wave trajectory,(z=115 cm,∣x∣=1.6 cm)on the place where the slowwave field and mode conversion field are superimposed,(z=?75 cm,|x|=1.0 cm)on the place that only has fastwave field and(z=?300 cm,|x|=1.6 cm)on the place where mode conversion predominates are210,300,60 and 230 V cm?1,respectively.This electric field distribution is strong evidence for the existence of two propagation processes.For Δφ=π/4 and Δφ=π/2,only the slow wave propagates and the amplitudes ofExare210 and 170 V cm-1,respectively,as shown in figure 10(b).This is because the lowkzpart of the spectrum launched by the antenna(either the main lobe or the sidelobe)just does not excite,as shown in figure 6(c).For Δφ=3π/ 8,the slow wave and mode conversion both existed in figure 10(c)which is similar to Δφ=π/ 8and the amplitudes ofExnear the point(z=10 cm,∣x∣=3 cm)on the slow-wave trajectory,(z=60 cm,∣x∣=1.6 cm)on the place where the slow-wave field and mode conversion field are superimposed,(z=75 cm,∣x∣=1.0 cm)on the place that only has a fast wave and(z=-320 cm,∣x∣=1.6 cm)on the place where mode conversion predominates are 170,210,50 and 150Vcm-1,respectively.

    4.3.Particle inchoate response under injected waves with different antenna phasing

    In order to guide the experiment better,the earlier plasma response by intense LHW needs to be considered here.Under the action of electrostatic oscillation forceE x0qcos(ωt),the influence of the magnetic field on ions can be ignored and the ions’main movement is along thexdirection with a trajectory approximately that of a straight line.The movement of electrons is mainly through electric drift movement in the electrostatic field and it is along theydirection.Certainly,the electrons also have a motion component in thexdirection.When lower hybrid resonance conditions are achieved,both electrons and ions should be affected at the inchoate stage.The particle movement associated with the coherent wave and the drift motion near the LHW resonance layer leads to an increase in the initial plasma energy,and this effect at different phasings is studied.

    Our simulation of the particle response results well agrees with above description.The plasma-averaged kinetic energy simulated by PIC also shows thatandare relatively strong and other kinetic energy components of particles are basically close to noise level.Note that the wave itself contains a certain amount of energy,where the second term in the bracket indicates the portion of the charged-particle kinetic energy that is associated with the coherent wave motion,i.e.part of the wave energy is intrinsically stored by particle,and as the wave penetrates to the interior,the portion of the electrostatic energy becomes large(the slow wave becomes more electrostatic).Therefore,the plasma energy increased notably along the wave trace.On the other hand,as the wave reached the resonance layer,the perpendicular phase velocity decreased dramatically.Therefore,the wave could interact with plasma,which produces an additional energy transfer channel.As can be seen from figures 11 and 12,the energy deposition of bothandare similar to the trajectories ofExand the kinetic energy increases more obviously near the slow-wave resonance layer att=134 ns.In addition,decreases from 4- 6 eV to about 0.05 eV anddecreases from 1- 2 eV to 0.05 eV when the antenna phasing changes Δφ=0 to Δφ=π.

    Meanwhile,the time evolutions of plasma absorption energyEabsforandwith different phasings are compared and analyzed.TheEabsincreases linearly and the power absorption of ions is greater than that of electrons.The absorption powers of ions and electrons as a function of the antenna phasing are shown in figure 13.ThePabsfor ions(electrons)decreases linearly from30 W(10 W)to 2 W(0.5 W)with the antenna phasing increasing from Δφ=0 to Δφ=π/4 and decreasing slowly from2 W(0.5 W)to about0.5W(0.06 W)with the antenna phasing increasing from Δφ=π/4 to Δφ=π.The strong heating effect of low phased antenna is due to the existence of the mode conversion mechanism,which improves the plasma resonance absorption.

    5.Conclusion

    In this work,the 2D PIC simulation framework for LHWs launched by phased array antenna in nonuniform plasma is applied to a linear device.The reliability and accuracy of the program for cold-plasma wave dispersion relation and propagation can be well verified by theoretical calculation.

    Simulation results show that the plasma absorption power spectrum is well consistent with the antenna power spectrum,which means we can use the antenna power spectrum to calculate the wave accessibility conditions and coupling effect.Meantime,in order to select a better heating method,the effect produced by the sidelobe of the antenna spectrum should also be considered in addition to the main lobe of the antenna spectrum.

    Detailed analysis of wave trajectory over time for Δφ=0 shows that the wave packet radially penetrates to the plasma center as a fast wave with highkzspectrum and gradually converts into a slow wave near the LHR layer.It has been suggested that mode conversion and tunneling effect can be used to enhance the efficiency of plasma heating in fusion plasmas[38].The phenomenon reported here encourages us to develop such experiments in a linear device to systematically study the heating efficiency of the phased array antenna.As the antenna phasing gradually increases,the slow-wave propagation structure has a certain directivity.Meanwhile,the slow-wave propagation structure gradually strengthens and the mode conversion process gradually disappears.When the antenna phasing is Δφ=π,the propagation direction is symmetric and there is only the slow-wave propagation process.The energy is deposited near the LHR layers as expected in this case.Since the electric field componentExexcited in plasma is strongest,the kinetic energy components of(ions mainly accelerated byE q x)and(electrons mainly accelerated bydisplay obvious improvement,while the other kinetic energy components are still at the noise level.

    Finally,the energy coupling effect of plasma gradually decreases until saturation with the antenna phasing increases.Based on the simulation results,it is better to use the antenna with low Δφto achieve better coupling.However,this does not mean that we must use the low-phasing phased array antenna,because it can easily spark breakdown in high-power experiments.In addition,the high power can be fed into plasma quietly and reposefully for the slow wave excited by a large phasing antenna.If we need directional wave propagation,for example,heating the center plasma with the RF wave launched in the tandem mirror,the antenna phasing can be set up to Δφ=π/2 or -π/2,which can realize remote plasma heating.In general,our studies here not only fill the void of PIC simulation for LHRH with phased array antenna coupling in the linear device,but provide strong guidance for linear device experiments in the future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China(No.2017YFE0301802)and National Natural Science Foundation of China(Nos.11905220,11775219 and 12175226).

    猜你喜歡
    李清光輝江山
    發(fā)光的招牌
    如詩(shī)如畫(huà)的江山
    醉了江山醉了我
    青年歌聲(2020年10期)2020-10-23 09:55:56
    春在飛
    火烈鳥(niǎo)
    童話世界(2019年26期)2019-09-24 10:57:36
    就在家門(mén)口
    世界家苑(2018年11期)2018-11-20 10:50:58
    黨的光輝
    繪一紙江山,醉一場(chǎng)迷夢(mèng)
    江山明月在,我發(fā)我的呆
    光輝的七月
    一区二区三区精品91| 日本欧美国产在线视频| xxx大片免费视频| 中文天堂在线官网| 久久天堂一区二区三区四区| 国产亚洲一区二区精品| 久久热在线av| 最黄视频免费看| 国产av精品麻豆| 亚洲国产看品久久| 亚洲精品成人av观看孕妇| 天堂8中文在线网| 亚洲欧洲国产日韩| av.在线天堂| av视频免费观看在线观看| 啦啦啦啦在线视频资源| 久久 成人 亚洲| 一本—道久久a久久精品蜜桃钙片| 国产成人精品久久二区二区91 | 叶爱在线成人免费视频播放| 一级爰片在线观看| 在线免费观看不下载黄p国产| 我的亚洲天堂| 少妇人妻久久综合中文| 国产成人精品久久久久久| 久久毛片免费看一区二区三区| 热re99久久精品国产66热6| 搡老岳熟女国产| 国产精品久久久久久精品电影小说| 夫妻午夜视频| 午夜av观看不卡| 成人亚洲欧美一区二区av| 男人添女人高潮全过程视频| 欧美成人午夜精品| 啦啦啦视频在线资源免费观看| 久久久精品国产亚洲av高清涩受| 亚洲第一区二区三区不卡| 赤兔流量卡办理| 女的被弄到高潮叫床怎么办| 9191精品国产免费久久| 美女扒开内裤让男人捅视频| 国产黄频视频在线观看| 免费高清在线观看日韩| 日韩精品免费视频一区二区三区| 国产乱来视频区| 最近中文字幕高清免费大全6| 少妇人妻 视频| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 亚洲欧洲国产日韩| av网站免费在线观看视频| 精品人妻熟女毛片av久久网站| 涩涩av久久男人的天堂| 免费黄色在线免费观看| av国产精品久久久久影院| 久久久久视频综合| 亚洲免费av在线视频| 日韩av免费高清视频| 日日爽夜夜爽网站| 欧美日韩av久久| 日本猛色少妇xxxxx猛交久久| 51午夜福利影视在线观看| 国产毛片在线视频| 熟妇人妻不卡中文字幕| 亚洲欧美日韩另类电影网站| 黄网站色视频无遮挡免费观看| 精品少妇一区二区三区视频日本电影 | 亚洲精品国产区一区二| 大片免费播放器 马上看| 久久午夜综合久久蜜桃| 免费不卡黄色视频| 国产极品天堂在线| 夫妻性生交免费视频一级片| 免费看不卡的av| 高清在线视频一区二区三区| 国产乱来视频区| 人妻人人澡人人爽人人| 精品一区二区三区av网在线观看 | 午夜日本视频在线| 国产精品av久久久久免费| 中文字幕人妻丝袜一区二区 | 国产一区二区在线观看av| 亚洲一区二区三区欧美精品| 肉色欧美久久久久久久蜜桃| 国产精品二区激情视频| 久久狼人影院| 伊人久久大香线蕉亚洲五| 久热爱精品视频在线9| 久久精品国产综合久久久| 亚洲情色 制服丝袜| 又粗又硬又长又爽又黄的视频| 国产极品粉嫩免费观看在线| 一级片免费观看大全| 美女脱内裤让男人舔精品视频| 黄片小视频在线播放| avwww免费| 91成人精品电影| 亚洲成人一二三区av| 丝袜脚勾引网站| 一本久久精品| 亚洲,一卡二卡三卡| av天堂久久9| 可以免费在线观看a视频的电影网站 | 亚洲精品乱久久久久久| 最黄视频免费看| 免费高清在线观看视频在线观看| 国产免费福利视频在线观看| 国产高清不卡午夜福利| 久久精品国产亚洲av涩爱| 两个人免费观看高清视频| 欧美av亚洲av综合av国产av | 成人亚洲欧美一区二区av| 午夜影院在线不卡| av线在线观看网站| 老汉色∧v一级毛片| 最近的中文字幕免费完整| 高清欧美精品videossex| 日本爱情动作片www.在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产成人欧美在线观看 | 免费黄频网站在线观看国产| av在线老鸭窝| 超碰97精品在线观看| 国语对白做爰xxxⅹ性视频网站| 熟女少妇亚洲综合色aaa.| 国产国语露脸激情在线看| 十八禁人妻一区二区| 久久国产精品大桥未久av| 久久精品人人爽人人爽视色| 亚洲欧美成人精品一区二区| 丝袜喷水一区| 久久久久久人妻| 九色亚洲精品在线播放| av卡一久久| 国产精品三级大全| 日本av免费视频播放| 久久99一区二区三区| 亚洲国产精品一区二区三区在线| 热99久久久久精品小说推荐| 国产精品久久久久久精品古装| 狂野欧美激情性bbbbbb| 国产老妇伦熟女老妇高清| 午夜91福利影院| 亚洲 欧美一区二区三区| 亚洲精品国产色婷婷电影| 国产精品亚洲av一区麻豆 | 免费黄色在线免费观看| 国产精品嫩草影院av在线观看| 日韩成人av中文字幕在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩一级在线毛片| 国产精品秋霞免费鲁丝片| 国产伦人伦偷精品视频| 欧美人与善性xxx| 日本欧美视频一区| www.自偷自拍.com| 亚洲精品中文字幕在线视频| 日韩 亚洲 欧美在线| av国产久精品久网站免费入址| 亚洲 欧美一区二区三区| 伦理电影免费视频| 中文精品一卡2卡3卡4更新| 国产精品秋霞免费鲁丝片| 大香蕉久久成人网| 老鸭窝网址在线观看| 久久女婷五月综合色啪小说| 久久精品国产亚洲av涩爱| 新久久久久国产一级毛片| 另类精品久久| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 91精品国产国语对白视频| svipshipincom国产片| 99久久精品国产亚洲精品| 91aial.com中文字幕在线观看| 又大又爽又粗| 一级,二级,三级黄色视频| 亚洲av日韩在线播放| 香蕉丝袜av| 大陆偷拍与自拍| 国产男女超爽视频在线观看| 岛国毛片在线播放| 国产一区二区三区综合在线观看| 黄片小视频在线播放| 久久久欧美国产精品| 在线观看免费视频网站a站| 波多野结衣av一区二区av| av线在线观看网站| 蜜桃国产av成人99| 在线观看www视频免费| 日韩一区二区三区影片| 侵犯人妻中文字幕一二三四区| 久热爱精品视频在线9| 久热爱精品视频在线9| 久热爱精品视频在线9| 亚洲欧美激情在线| 免费看av在线观看网站| 欧美 日韩 精品 国产| tube8黄色片| 亚洲在久久综合| 日韩制服骚丝袜av| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜爱| 久久久久网色| 男人舔女人的私密视频| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| 啦啦啦中文免费视频观看日本| 日日摸夜夜添夜夜爱| 午夜福利影视在线免费观看| 午夜激情av网站| 国产精品久久久久久久久免| 波多野结衣av一区二区av| 亚洲视频免费观看视频| 不卡视频在线观看欧美| 精品国产一区二区三区久久久樱花| 男女免费视频国产| 大香蕉久久成人网| 亚洲欧美成人综合另类久久久| 国产男女内射视频| 91老司机精品| 王馨瑶露胸无遮挡在线观看| 成年人午夜在线观看视频| 在线观看www视频免费| 新久久久久国产一级毛片| 国产成人午夜福利电影在线观看| 亚洲av电影在线进入| 久久99精品国语久久久| 国产男人的电影天堂91| 最近手机中文字幕大全| 午夜福利影视在线免费观看| 久久精品国产综合久久久| av电影中文网址| 性色av一级| 伊人久久国产一区二区| h视频一区二区三区| 亚洲精品美女久久av网站| 黑丝袜美女国产一区| 久久婷婷青草| 中文字幕人妻丝袜一区二区 | 久久久国产一区二区| 青春草亚洲视频在线观看| 国产成人免费无遮挡视频| 欧美人与性动交α欧美软件| 最近2019中文字幕mv第一页| 久久久久久久大尺度免费视频| 久久久久久久国产电影| 国产精品久久久av美女十八| 亚洲欧美成人精品一区二区| 久久久久久久久久久免费av| 国产成人精品无人区| 欧美精品一区二区免费开放| 久久久久精品久久久久真实原创| 最新在线观看一区二区三区 | 国产成人精品在线电影| 十八禁人妻一区二区| 午夜老司机福利片| 精品久久久精品久久久| 国产精品香港三级国产av潘金莲 | 叶爱在线成人免费视频播放| 国产精品国产三级专区第一集| 男女边吃奶边做爰视频| 丝袜美足系列| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 国产欧美日韩一区二区三区在线| 亚洲国产精品国产精品| 悠悠久久av| 91成人精品电影| 久久久国产欧美日韩av| 高清视频免费观看一区二区| 看免费成人av毛片| 99re6热这里在线精品视频| 黄色视频不卡| 在线天堂中文资源库| 亚洲精品自拍成人| 国产黄频视频在线观看| 欧美日韩视频精品一区| 多毛熟女@视频| 人人澡人人妻人| 欧美乱码精品一区二区三区| 久久精品亚洲熟妇少妇任你| av国产久精品久网站免费入址| 热re99久久国产66热| 亚洲自偷自拍图片 自拍| 亚洲精品成人av观看孕妇| 老熟女久久久| 男人添女人高潮全过程视频| 成年人免费黄色播放视频| 在线观看免费日韩欧美大片| av卡一久久| 亚洲熟女毛片儿| 亚洲专区中文字幕在线 | 中国三级夫妇交换| 一级毛片电影观看| 亚洲欧美精品综合一区二区三区| 日韩中文字幕欧美一区二区 | 亚洲七黄色美女视频| 日韩不卡一区二区三区视频在线| 五月天丁香电影| 丰满饥渴人妻一区二区三| 亚洲美女搞黄在线观看| 国产淫语在线视频| 夜夜骑夜夜射夜夜干| 777久久人妻少妇嫩草av网站| 成年av动漫网址| 亚洲第一青青草原| 亚洲中文av在线| 成人国语在线视频| 久久人人爽人人片av| 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 欧美 日韩 精品 国产| 叶爱在线成人免费视频播放| 日韩一卡2卡3卡4卡2021年| av.在线天堂| 国产精品欧美亚洲77777| 欧美国产精品va在线观看不卡| 男女无遮挡免费网站观看| 欧美日韩成人在线一区二区| 久久97久久精品| 亚洲精品国产av蜜桃| 大香蕉久久网| 日本vs欧美在线观看视频| 国产片特级美女逼逼视频| 丝瓜视频免费看黄片| 亚洲人成77777在线视频| 十分钟在线观看高清视频www| 中文乱码字字幕精品一区二区三区| 日韩精品免费视频一区二区三区| 久久久久精品人妻al黑| 永久免费av网站大全| 久久精品国产亚洲av高清一级| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品美女久久久久99蜜臀 | 在线观看人妻少妇| 国产在线视频一区二区| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 女的被弄到高潮叫床怎么办| 亚洲熟妇熟女久久| 欧美日韩一级在线毛片| 国内精品久久久久精免费| 777久久人妻少妇嫩草av网站| 亚洲少妇的诱惑av| 岛国视频午夜一区免费看| 日本a在线网址| 色精品久久人妻99蜜桃| 黄片大片在线免费观看| 亚洲人成电影免费在线| 午夜免费激情av| 在线观看免费午夜福利视频| 十分钟在线观看高清视频www| 99国产精品一区二区三区| 一区二区三区激情视频| 大型黄色视频在线免费观看| 精品一品国产午夜福利视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av成人一区二区三| 久久精品亚洲熟妇少妇任你| 在线观看66精品国产| 天天躁夜夜躁狠狠躁躁| 午夜a级毛片| 欧美成人一区二区免费高清观看 | 51午夜福利影视在线观看| tocl精华| 久久午夜综合久久蜜桃| 精品国产国语对白av| 久久婷婷成人综合色麻豆| 国产精品一区二区三区四区久久 | 国产91精品成人一区二区三区| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产毛片av蜜桃av| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 精品人妻1区二区| 国产av又大| 99久久99久久久精品蜜桃| 美女免费视频网站| 免费看十八禁软件| 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 天堂影院成人在线观看| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 国内精品久久久久久久电影| 在线观看舔阴道视频| 少妇 在线观看| 欧美乱码精品一区二区三区| 男人舔女人下体高潮全视频| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久二区二区免费| 啦啦啦免费观看视频1| 日韩高清综合在线| 一级毛片高清免费大全| 纯流量卡能插随身wifi吗| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| av免费在线观看网站| 天堂√8在线中文| 国产区一区二久久| 美女国产高潮福利片在线看| 亚洲国产看品久久| 欧美色视频一区免费| 色播在线永久视频| 丁香欧美五月| 国产精品久久视频播放| 午夜免费鲁丝| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 黄片播放在线免费| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 成人18禁在线播放| 女人被躁到高潮嗷嗷叫费观| 叶爱在线成人免费视频播放| 国产激情久久老熟女| 国语自产精品视频在线第100页| 国产精品久久久av美女十八| 精品国内亚洲2022精品成人| 国产三级在线视频| 老鸭窝网址在线观看| 九色国产91popny在线| 大型黄色视频在线免费观看| 亚洲av熟女| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区免费| av有码第一页| 日日夜夜操网爽| 亚洲人成77777在线视频| 亚洲人成伊人成综合网2020| 欧美亚洲日本最大视频资源| 99在线视频只有这里精品首页| 成人国产一区最新在线观看| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| www国产在线视频色| 女人高潮潮喷娇喘18禁视频| 女人被狂操c到高潮| 欧美国产精品va在线观看不卡| 精品国产国语对白av| 国产高清视频在线播放一区| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 1024香蕉在线观看| 欧美成人一区二区免费高清观看 | 亚洲国产毛片av蜜桃av| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 99国产综合亚洲精品| 色尼玛亚洲综合影院| 午夜精品国产一区二区电影| 日本精品一区二区三区蜜桃| 国产在线观看jvid| 中国美女看黄片| 国产成人啪精品午夜网站| www日本在线高清视频| 午夜福利18| 久久人妻福利社区极品人妻图片| 日韩一卡2卡3卡4卡2021年| 久久青草综合色| 女同久久另类99精品国产91| 日韩 欧美 亚洲 中文字幕| 制服丝袜大香蕉在线| 大码成人一级视频| 国产亚洲精品一区二区www| 精品久久久久久,| 丝袜美腿诱惑在线| 97超级碰碰碰精品色视频在线观看| 久久精品国产综合久久久| 国产av在哪里看| 精品免费久久久久久久清纯| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 免费av毛片视频| 桃色一区二区三区在线观看| 不卡一级毛片| 亚洲国产精品成人综合色| 国产成人免费无遮挡视频| 精品一品国产午夜福利视频| 99riav亚洲国产免费| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 可以在线观看的亚洲视频| 天天一区二区日本电影三级 | 变态另类丝袜制服| 国产精品美女特级片免费视频播放器 | 性欧美人与动物交配| 搞女人的毛片| 男女下面进入的视频免费午夜 | 国产精品电影一区二区三区| 麻豆久久精品国产亚洲av| 国产午夜精品久久久久久| 精品熟女少妇八av免费久了| 一级毛片女人18水好多| 91字幕亚洲| 精品免费久久久久久久清纯| 日本在线视频免费播放| 成人特级黄色片久久久久久久| 亚洲男人天堂网一区| 一区在线观看完整版| 国产熟女xx| 国产主播在线观看一区二区| 母亲3免费完整高清在线观看| 中文字幕高清在线视频| 日韩欧美三级三区| 免费久久久久久久精品成人欧美视频| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 午夜激情av网站| av视频免费观看在线观看| 香蕉国产在线看| 国产亚洲精品一区二区www| 巨乳人妻的诱惑在线观看| 午夜精品在线福利| 在线观看舔阴道视频| 日韩 欧美 亚洲 中文字幕| 好男人在线观看高清免费视频 | 久久久久久久精品吃奶| 久久午夜综合久久蜜桃| 日韩免费av在线播放| 亚洲七黄色美女视频| 国产日韩一区二区三区精品不卡| 精品电影一区二区在线| 最近最新免费中文字幕在线| 一本综合久久免费| 啦啦啦 在线观看视频| 久久人妻av系列| 亚洲久久久国产精品| 午夜久久久在线观看| 精品久久久久久,| 国产亚洲欧美98| 亚洲自拍偷在线| 国产成人一区二区三区免费视频网站| 亚洲午夜精品一区,二区,三区| www.999成人在线观看| 欧美黄色淫秽网站| 激情视频va一区二区三区| 国产成人精品无人区| 国内精品久久久久精免费| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美| 久久婷婷人人爽人人干人人爱 | 精品一品国产午夜福利视频| 国内精品久久久久久久电影| 女人被躁到高潮嗷嗷叫费观| 香蕉国产在线看| 亚洲人成网站在线播放欧美日韩| 桃红色精品国产亚洲av| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出| 国产精品亚洲av一区麻豆| 亚洲精品国产区一区二| 18禁美女被吸乳视频| 免费在线观看日本一区| av欧美777| aaaaa片日本免费| 久热爱精品视频在线9| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 午夜免费观看网址| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 欧美 日韩 在线 免费| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 久久国产乱子伦精品免费另类| tocl精华| 精品福利观看| 免费高清在线观看日韩| 国产精品久久电影中文字幕| 欧美一区二区精品小视频在线| a级毛片在线看网站| 黑人操中国人逼视频| 叶爱在线成人免费视频播放| 无限看片的www在线观看| 51午夜福利影视在线观看| 一边摸一边抽搐一进一出视频| 母亲3免费完整高清在线观看| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 丝袜人妻中文字幕| 一级a爱视频在线免费观看| 视频区欧美日本亚洲| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 中文字幕久久专区| 国产高清激情床上av| 国产区一区二久久| 午夜福利高清视频| 男人的好看免费观看在线视频 | 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 国产精品爽爽va在线观看网站 | 黄色女人牲交| 老司机福利观看|