• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of a helicon plasma source in a magnetoplasma rocket engine

    2022-08-01 11:33:50ZhenyuYANG楊振宇WeiFAN范威JianguoWEI魏建國(guó)andXianweiHAN韓先偉
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:魏建國(guó)

    Zhenyu YANG(楊振宇),Wei FAN(范威),Jianguo WEI(魏建國(guó))and Xianwei HAN(韓先偉)

    Shaanxi Key Laboratory of Plasma Physics and Applied Technology,Xi’an 710100,People’s Republic of China

    Abstract The helicon plasma source,which generates high thrust and high impulse,is of vital importance for magnetoplasma rocket engines.In this work,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to model the helicon discharge.The simulation results demonstrate that:(i)the discharge mode changes twice—each conversion is accompanied by a plasma density jump and an electron temperature peak in the discharge;(ii)when the input current increases,the plasma density increases,and ionization occurs faster;(iii)the background magnetic field clearly enhances the discharge;(iv)the plasma density may be smaller if the discharge has not entered the wave mode.

    Keywords:space propulsion,MPRE,helicon plasma source,discharge mode conversion

    1.Introduction

    Unlike other radio-frequency(RF)plasma sources,helicon plasma sources depend on the excitation of bounded whistle waves to generate high-density plasmas at low pressures and RF powers[1].Due to the effective absorption of RF power,the plasma density in a helicon source is as much as an order of magnitude higher than that in other plasma generators at a given power.Because of this advantage,helicon sources are widely used in semiconductor processing and space propulsion[2–4].

    The magnetoplasma rocket engine(MPRE)originates from the concept of the variable specific impulse magnetoplasma engine(VASIMR),which is a type of electromagnetic thruster.The MPRE consists of three stages,which are shown in figure 1.The helicon source is the first stage,where the working medium is ionized;the second stage uses ion cyclotron resonance heating(ICRH)to heat the ions by hundreds of eV using RF waves;and the third stage is a magnetic nozzle,where the heated plasma naturally accelerates in the expanding magnetic field and leaves the device,producing thrust[5].As a result of the use of these techniques,MPRE has the characteristics of high thrust,high specific impulse,and high efficiency and can be used in deep space exploration and other missions[6].According to the operating principles of the MPRE,the helicon plasma source is the chamber where a high-density plasma is created,so it is the basis of the thrust generated by the MPRE.

    Ever since Boswell first reported the high densities produced by helicon discharges in 1970[7],helicon plasma sources have been extensively studied,both experimentally and theoretically.Research mainly focused on the confirmation of the wave mode excited in the plasma and the mechanism responsible for the high power absorption efficiency.At first,Landau damping was thought to be the mechanism of power absorption,as proposed by F F Chen[8].However,subsequent experiments showed that Landau-accelerated electrons are too sparse to explain the ionization efficiency and the Landau damping hypothesis was ruled out by F F Chen and D D Blackwell[9,10].There are two wave branches in the solution of the helicon dispersion relation[11]:one is the helicon wave and the other is called the Trivelpiece–Gould wave(TG wave)[12].Research showed that the power absorption can be more appropriately explained by the strong damping of the TG wave[13–16].Another unique phenomenon in helicon discharges is that the plasma density jumps at a certain power,accompanied by a change of discharge mode[17,18].F F Chen thought this was due to the nonmonotonic variation of the plasma impedance[19],while S H Kin used the concept of the mode conversion surface(MCS)to explain the mode conversion[20].In the field of helicon discharge simulation,D Arnush studied the coupling of helicon waves and TG waves using the HELIC software[21],and X Yang analyzed the phenomenon of the density peak in the weak magnetic field using the COMSOL software[22].

    The characteristics of helicon discharge in MPRE determine the plasma flux,which is of vital importance to the thrust and specific impulse.Analyses of the physical processes of helicon discharge are instructive for MPRE development.However,it is impossible to make direct measurements of the plasma and electromagnetic field in the discharge chamber due to the limitation of the engine structure.Therefore,numerical simulation has become an effective method for studying helicon discharges.

    In this work,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to simulate the helicon discharge.The simulation was performed using different input currents and background magnetic fields to analyze the process of discharge mode conversion and the density jump.This paper is organized as follows:in section 2,the governing equations of the model are given;the simulation model setup is described in section 3;in section 4,the results are presented and discussed;and in section 5,this study is concluded.

    2.Governing equations

    The simulation model includes the motions of electrons,ions,and atoms and the interactions of the electrostatic field and the electromagnetic field.In this section,we discuss the governing equations of the electromagnetic field,electrons,ions,neutral atoms,and the electrostatic field in the cylindrical coordinate system(r,θ,z).

    2.1.Electromagnetic field

    The electromagnetic field is obtained through the solution of the Maxwell equations(1),(2)together with current equation(3).

    where the subscript rf refers to the fields which are excited by the RF input;H is the magnetic field intensity;B is the magnetic induction intensity;E is the electric field;D is the electric displacement;J is the plasma current density;e,ne,andmeare the elementary charge,the electron density,and the electron mass,respectively;νenis the collision frequency between electrons and neutral atoms;and B0is the background magnetic field along thezaxis.In magnetized plasma,the solutions of equations(1)–(3)are divided into two independent branches:the transverse magnetic(TM)mode and the transverse electric(TE)mode,the equations of which are shown in(4)and(5).

    where the subscript rf is omitted for simplicity.After the electric field and the current density field have been obtained,the power density deposited in the plasma is calculated using equation(6).

    2.2.Electrons

    The drift–diffusion hypothesis is used to describe the electron motion[23].Equation(7)is the continuity equation and equation(8)is the energy equation.

    where Γeis the electron flux;nnis the number density of neutral atoms;KionandKexcare the ionization rate and the excitation rate,respectively;Teis the electron temperature;qeis the energy flux,εionand εexcare the threshold energies of ionization and excitation,respectively;and Esis the electrostatic field.The electron flux and energy flux are given by the following equations.

    in which μeis the electron mobility,Deis the diffusion coefficient,μe=e/meνen,andDe=kBTe/meνen.In this model,the ionization and excitation collisions of electrons are considered,and the reaction rate is calculated usingKj=vthσj,wherevthand σjare the thermal velocity of electrons and the collision section of different kinds of collision,j.In addition,νen=vthσeffnn,where σeffis the effective collision section between electrons and atoms.In the MPRE,with a working medium of Ar,the collision sections obtained from Morgan’s database are weighted by a Maxwell distribution and the reaction rates of different electron temperatures are shown in figure 2.In the simulation,σeffis set to 1.0×10-19m-2[22],andKionandKexcare set according to the local electron temperature.

    2.3.Heavy particles

    The ionic model consists of the continuity equation,the momentum equation,and the energy equation,as shown below:

    whereni,mi,vi,andTiare the ionic density,mass,drift velocity,and temperature,respectively.Here,it is assumed that the ionization only generates Ar+,and ion collisions are neglected.

    As a result of the low pressure in the discharge chamber and the low temperature of the atoms,the atomic temperature of the model is assumed to be constant and the viscosity is omitted.Therefore,the atomic model only includes the continuity equation(14)and the momentum equation(15).

    Here,mn,vn,andTnare the atomic mass,velocity,and temperature,respectively.

    2.4.Electrostatic field

    The semi-implicit Poisson equation is solved to obtain the electrostatic field[23].

    whereVis the potential,and Δtis the time step.In this equation,in contrast to the Poisson equation,the divergence of the charged particle flux is added to predict the potential of the next step,which has proven effective when the time step size is increased.The electric field is the negative gradient of the potential Es=-?V.

    3.Simulation model setup

    The numerical methods and the initialization of the computation model are introduced in this section.

    3.1.Numerical methods

    The alternating direction implicit finite difference time domain(ADI-FDTD)method is adopted to solve equations(3)–(5),in which the update of the electromagnetic field per time step is divided into two separate steps and the implicit direction is alternated[24].In ADI-FDTD,the time step can break through the limitation of the Courant–Friedrichs–Lewy(CFL)condition and thereby reduce the computational cost.The space discretizations of the TM mode and the TE mode are shown in figure 3,in which the components of the current density are all placed at grid points.In the time direction,discretization is implicitly performed in thezdirection in first half-step and subsequently in therdirection.

    The electron density and temperature are discretized by the central difference,and a staggered grid is adopted,as shown in figure 4.Equations(7)and(8)are time integrated by the implicit scheme.

    The equations of the heavy particles are solved by the fluxcorrected transport(FCT)algorithm[25],which has been proven to be an accurate and easy-to-use algorithm for the solution of nonlinear and time-dependent continuity equations of the type occurring in fluid dynamics,plasma dynamics,and magneto hydrodynamics.The time integration is completed with a splitstep approach,in which the integrations of thezandrdirections are alternated.The details of the FCT algorithm and the test code can be seen in[25].The Poisson equation(16)is solved by the five-point difference scheme.

    3.2.Initialization

    Figure 5 shows the computational domain.The whole domain is an axisymmetric cylinder with a radius ofrendand a length ofzend-zstart.The plasma is in a cylindrical chamber whose radius isrpand whose length iszp2-zp1;outside the plasma is vacuum.The helicon discharge antenna is a single ring which is placed at(zc1,rc1),and the ICRH antenna is placed at(zc2,rc2).The input current density is calculated using equation(17).The ICRH is beyond the scope of this work,but will be discussed in the future.

    Figure 1.Schematic of MPRE.

    Figure 2.Reaction rates of different electron temperatures:(a)ionization,(b)excitation.

    Figure 3.The space discretization of the electromagnetic field:(a)TM mode,(b)TE mode.

    Figure 4.The space discretization of the electron equations.

    Figure 5.Schematic of the computational domain.

    where Δzand Δrare the grid sizes in thezandrdirections,respectively,andfrfis the input frequency,which is set to 13.56 MHz.The geometric parameters are shown in table 1.

    For the electromagnetic field,the MUR condition[26]is adopted atrend,while the perfect conductor condition is adopted atzstartandzend.A Dirichlet boundary is adopted at the wall for the electron density,and a Neumann boundary is adopted for the electron temperature.The boundary condition given in equation(18)is adopted for the heavy particles.The potential at the boundary is set to zero.A symmetric boundary is adopted for all variables at the axis.

    Table 1.Geometric parameters of the simulation model.

    Figure 6 shows the profile of the background magnetic field,with the single-loop helicon antenna merged in a uniform magnetic field and a magnetic induction intensity of 0.1 T.At the initial moment,ne=ni=1.0×1016m-3,Te=2 eV,Ti=Tn=300 K,and the atomic density is set according to the discharge pressure.The program is coded in Fortran,the numerical data is stored for every RF cycle,and the computation time is set to 1000 RF cycles.

    4.Results and discussion

    4.1.Discharge mode conversion

    Figure 7 shows that there are three distinct modes of operation in the helicon discharge:the capacitive mode(E mode),the inductive mode(H mode),and the wave mode(W mode).The W mode can be divided into several modes of different orders,known as W1,W2,W3….The discharge undergoes conversions from E to H and from H to W1,and the conversions to the higher-order wave modes are accompanied by plasma density jumps.In the simulation,there is no capacitive mode,since the wall voltage is set to 0 V;as a result,only the H mode and the wave modes of different orders appear in the discharge process.

    First,the background pressure is set to 1.24 Pa,and the input current is 700 A.Figure 8 shows the maximum electron density and electron temperature during the discharge.It can be seen that the electron density gradually increases under the influence of the RF input and reaches 1.45×1020m-3,which is much larger than the typical values for other kinds of plasma source.In addition,the electron temperature is about 3 eV,which is consistent with the general situation in cold plasma.Second,figure 8(a)shows that there are two obvious inflection points in the electron density profile,where the electron density increases dramatically and the magnitude jumps to a higher order in a few RF cycles at the inflection points.It can be inferred that the first inflection point corresponds to the moment when the discharge mode converts from H to W1and the second occurs at the time of the conversion from W1to W2.Figure 8(b)shows that each conversion corresponds to an electron temperature peak,and the ionization rate also increases significantly with electron temperature,causing a sudden increase in density.

    In the study of helicon discharges,the deposited wave power is the main research interest.Figure 9 shows the distribution of deposited power density in the plasma at different moments,whereTis the number of RF cycles in the simulation.At the 20th cycle,with the discharge in H mode,the deposited power is concentrated at a point close to the antenna and is similar to that of an inductively coupled plasma(ICP).At the 32nd cycle,with the discharge in the W1mode,the deposited power is concentrated in a thin layer near the periphery.In figure 9(c),the deposited power appears to detach from the periphery,and it gradually moves inward in figure 9(d).At the 47th cycle,the deposited power is mainly concentrated near the axis and the magnitude reaches 108W m-3.The penetration of the deposited power during mode conversion makes the electron temperature increase dramatically;the ionization rate then increases,and the plasma density jumps to a higher order of magnitude.

    Figure 6.The profile of the background magnetic field along the axis.

    Figure 7.Mode conversion of the helicon discharge[27].

    The concept of the MCS can explain the jump in the deposited power during mode conversion[20].There are two wave branches in the solution of the helicon dispersion relation:one is the helicon wave and the other is the TG wave.The helicon wave is fast and weakly damped while the TG wave is slow and strongly damped.Thus,the helicon wave can enter the plasma column and heat the plasma core,but the TG wave is concentrated in a thin layer near the plasma edge,and the wave energy is deposited in this layer,which can be seen in figure 9(b).When the plasma density is low,these two branches are separated from each other.When the plasma density increases to the MCS,these two kinds of wave couple with each other,which means the wave can penetrate the plasma and be strongly damped,so the deposited power penetrates the plasma core,as shown in figures 9(c)–(d).In figure 9(e),the waves are able to heat the plasma core,causing the electron temperature to peak.

    To show the conversion of the electromagnetic wave,the electric field amplitudes of three components in therdirection atz=zc1are shown in figure 10;the results are processed using spline interpolation.The figure indicates thatEzis basically zero at three moments,Eθchanges a little,reaching a maximum at the plasma edge and becoming zero at the axis,and it is the change ofErthat causes the mode conversion.At the 20th cycle,Eris almost 0,onlyEθis present in the plasma column,and the external magnetic field has little influence on the electromagnetic field structure,which is basically same as that of an ICP.In figure 10(b),Eroscillates strongly near the edge and decays to zero at one or two wavelengths,matching the characteristics of a TG wave[13],and the TG wave plays the major role in the W1mode.WhenT=43,multiple wave nodes and antinodes are present in the radial direction,which implies that the wave number becomes smaller and the wave becomes faster.In addition,the amplitude increases by an order of magnitude.These two features confirm that the wave has penetrated the plasma,and that helicon wave heating accounts for the main part of the deposited power in the W2mode.In figure 10(d),Erreaches its maximum near the axis,and the electromagnetic field is able to heat the plasma core.

    4.2.Discharges at different input currents

    Keeping the other input parameters unchanged,the input current was set to 300 A,500 A,700 A,and 900 A.Figure 11 shows the maximum electron density during discharges at different input currents.In general,the plasma density increases with the input current.When the input current increases from 300 to 900 A,the density increases from 3.09×1019to 1.72×1020m-3,which can meet the requirement for the engine to generate high thrust.

    Figure 12 shows the evolution of the maximum electron density and the temperature during discharges at input currents of 300 A and 700 A.The figure shows that the plasma evolutions are similar during discharges at different input currents.There are two obvious inflection points in the density profile and two peaks in the temperature profile,corresponding to the inflection points in the profiles at different input currents.However,the discharge is much slower with an input current of 300 A.When the input current is 700 A,the discharge mode converts from H to W1at about the 30th RF cycle and converts from W1to W2at about the 45th RF cycle.When the input current is 300 A,there is a long process of electron multiplication;the discharge mode does not change until the 300th RF cycle,and it converts to the W2mode at about the 500th RF cycle.In addition,the temperature peaks are also smaller.

    Figure 8.Maximum electron density and electron temperature during discharge:(a)maximum electron density,(b)maximum electron temperature.

    Figure 9.Distribution of deposited power density at different moments.(a) T=20,(b) T=32,(c) T=43,(d) T=44,and(e) T=47.

    It is worth noting that the electron density is basically the same when the mode converts,even at different input currents.The discharge mode first converts when the density is about 2×1016m-3and it converts for the second time when the density is about(2–3)×1018m-3.If the background magnetic field of the helicon discharge remains constant,the plasma density at the MCS remains unchanged.The power deposited in the plasma increases with the input current,so the ionization rate of Ar also becomes larger,which means that the plasma can reach the MCS earlier.This is why the discharge mode converts earlier for a higher input current.

    4.3.Discharges in different magnetic fields

    We discuss the results of using different magnetic fields with a series of input currents by taking magnetic field values of 0.01 T and 0 T(ICP).The electron densities for different magnetic fields and input currents are shown in figure 13.If the input current is too small,it is found that the ionization is extremely slow.This is due to the restriction of radial transport by the magnetic field when the magnetic induction strength is 0.1 T,and it takes a very long time for the discharge to reach a steady state;therefore cases involving small input currents were not examined.

    In helicon discharge experiments,as the input power generally increases,the mode of operation changes,and the luminous intensity of the plasma increases significantly,which indicates that the plasma density has jumped to a higher order of magnitude[28].Density jumps also appear in the simulation.Figure 13 shows that the electron density jumps twice as the input current increases forB=0.01 T,first at about 20 A and then at about 40 A.The evolutions of electron density and temperature at different input currents whenB=0.01 T are plotted in figure 14.In figure 14(b),the electron temperatures are 2.58 eV and 3.23 eV at the 1000th cycle,whenIrf=20 A and 50 A,respectively.It was seen in many completed simulations that the electron temperature peaks only appear when the electron temperature is relatively high.At the 1000th cycle,the electron temperature is very close to that of the steady state;however,the electron peak has not appeared.The discharge mode does not change,even if the simulation continues,so a simulation time of 1000 RF cycles is sufficient.

    Figure 10.Amplitudes of the electric field components in the r direction at z=zc1.(a) T=20,(b) T=32,(c) T=43,and(d) T=47.

    Figure 11.Maximum electron densities of different input currents.

    Figure 12.Maximum electron density and electron temperature during discharge:(a)electron density,(b)electron temperature.

    Figure 13.Electron densities for different magnetic fields and input currents.

    Figure 14.Electron density and temperature evolutions at different input currents when B=0.01 T:(a)electron density,(b)electron temperature.

    The evolution of the plasma when the input current is 50 A is similar to that shown in figure 7.The second temperature peak is followed by a series of small peaks,indicating that the helicon mode is fluctuating,but in general,the electron temperature decreases over time and finally becomes steady.However,the other two cases in figure 14 are very different.When the input current is 20 A,there is only one wide temperature peak and the density profile has only one inflection point.When the input current is decreased to 10 A,the profiles are approximately convex and the plasma density gradually decreases with time.These results show that the mode conversion is accompanied by a density jump and a temperature peak,which can be signs that prove the discharge mode has changed.The above results show that the unique phenomena of mode conversions and density jumps in helicon plasma sources can be seen in simulations,which verifies that the model is an effective tool for the study of helicon discharges.

    The enhancement of the magnetic field due to helicon discharge is also shown in figure 13.For example,if the input current is 700 A,the plasma densities are 1.45×1020m-3,4.09×1019m-3,and 8.56×1018m-3for discharges ofB=0.1 T,B=0.01 T,and an ICP,respectively.The plasma densities are 16.94 and 4.78 times higher than that of the ICP.However,it should be noted that if the discharge does not converted to the W mode,the density may be smaller than in the case without a magnetic field.The effect of the magnetic field also agrees with experimental results[28].

    5.Conclusions

    In this paper,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to model helicon discharges.This model includes the motions of electrons,ions,and atoms and the interactions with the electrostatic field and the electromagnetic field.Discharges were simulated at different input currents and for different background magnetic fields.The unique phenomenon characteristic of helicon plasma sources can be seen in the simulation results,which verifies that this model is an effective tool for the study of helicon discharges.

    First,the input current is set to 700 A and the magnetic field is set to 0.1 T.With continuous ionization,the waves are able to penetrate the plasma after the plasma density reaches the MCS.As a result,the electromagnetic field is able to heat the plasma core,the deposited power increases dramatically,and inflection points and temperature peaks appear.

    The input current is then changed while keeping the magnetic field constant.The results show that the plasma density and the ionization rate decrease with the input current and the moment when the discharge mode converts is postponed.

    Finally,the discharge is simulated at 0 T,0.01 T,and 0.1 T with a series of input currents.It is found that the discharge mode conversion is always accompanied by a plasma density jump and a temperature peak.Therefore,the density jump can be used a sign which indicates the conversion of the discharge mode.In addition,the magnetic field strongly enhances the discharge,and the plasma density is an order of magnitude higher than that in an ICP.However,the plasma density may be smaller if the discharge has not entered the wave mode.

    Acknowledgments

    This work is supported by the Shaanxi Key Laboratory of Plasma Physics and Applied Technology.

    ORCID iDs

    猜你喜歡
    魏建國(guó)
    ESR-PINNs: Physics-informed neural networks with expansion-shrinkage resampling selection strategies
    “未來(lái)5年,中國(guó)將領(lǐng)跑全球高品質(zhì)消費(fèi)”
    Study of double-chamber air arc plasma torch and the application in solid-waste disposal
    只有中國(guó)能提供消費(fèi)大市場(chǎng)以及完整的供應(yīng)鏈”
    男子堅(jiān)守小站三十三年 陪伴母親“守著”父親
    華聲文萃(2019年11期)2019-09-10 07:22:44
    男子堅(jiān)守小站33年 陪伴母親“守著”父親
    魏建國(guó)作品
    久久热精品热| 国产在视频线精品| 99热这里只有是精品在线观看| 丝袜喷水一区| 亚洲成人av在线免费| 日本与韩国留学比较| 亚洲av男天堂| av又黄又爽大尺度在线免费看| 免费大片18禁| 久久精品夜色国产| 国产伦精品一区二区三区四那| 精品熟女少妇av免费看| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 亚洲国产精品成人久久小说| 国产欧美日韩精品一区二区| 天天躁夜夜躁狠狠久久av| 一本—道久久a久久精品蜜桃钙片| 久久6这里有精品| 免费在线观看成人毛片| 国产av一区二区精品久久| 亚洲欧美精品自产自拍| 日韩大片免费观看网站| 国语对白做爰xxxⅹ性视频网站| 国产91av在线免费观看| 少妇高潮的动态图| 国产熟女午夜一区二区三区 | 777米奇影视久久| 一级毛片我不卡| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 欧美bdsm另类| 少妇猛男粗大的猛烈进出视频| 成年人午夜在线观看视频| 国产日韩欧美亚洲二区| 日韩熟女老妇一区二区性免费视频| 欧美日韩视频精品一区| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 久久99蜜桃精品久久| 搡老乐熟女国产| 免费黄色在线免费观看| 欧美一级a爱片免费观看看| 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 精品卡一卡二卡四卡免费| 欧美 日韩 精品 国产| 伊人久久精品亚洲午夜| 欧美亚洲 丝袜 人妻 在线| 国产亚洲午夜精品一区二区久久| 久久精品久久久久久久性| kizo精华| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| 九九爱精品视频在线观看| 中国美白少妇内射xxxbb| av有码第一页| 亚洲欧美一区二区三区黑人 | av网站免费在线观看视频| 寂寞人妻少妇视频99o| 婷婷色麻豆天堂久久| 少妇人妻一区二区三区视频| 日本wwww免费看| 欧美激情国产日韩精品一区| 国产毛片在线视频| 国产高清不卡午夜福利| 亚洲av欧美aⅴ国产| 亚洲精品日韩在线中文字幕| 日韩中字成人| 黑人猛操日本美女一级片| 免费观看无遮挡的男女| 国产成人aa在线观看| 麻豆乱淫一区二区| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 午夜免费鲁丝| 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 美女福利国产在线| 晚上一个人看的免费电影| 欧美3d第一页| 国产国拍精品亚洲av在线观看| 一级片'在线观看视频| 男女国产视频网站| 久久午夜综合久久蜜桃| 精品久久国产蜜桃| 国产男女内射视频| 国产精品三级大全| 久久久久人妻精品一区果冻| 久久97久久精品| 黄色怎么调成土黄色| 午夜免费鲁丝| 啦啦啦中文免费视频观看日本| 久久97久久精品| av国产久精品久网站免费入址| 国产亚洲精品久久久com| 黄色视频在线播放观看不卡| 人妻系列 视频| 国产精品国产三级国产专区5o| videos熟女内射| 国产在线视频一区二区| 人体艺术视频欧美日本| 2022亚洲国产成人精品| 91aial.com中文字幕在线观看| 国产精品国产三级国产av玫瑰| 日韩强制内射视频| av国产久精品久网站免费入址| 下体分泌物呈黄色| 99热全是精品| 在线观看人妻少妇| 十八禁网站网址无遮挡 | 97在线视频观看| 久久6这里有精品| 日韩亚洲欧美综合| 男人狂女人下面高潮的视频| 国产欧美日韩精品一区二区| 熟女电影av网| 日韩精品有码人妻一区| 中国国产av一级| 日韩亚洲欧美综合| 亚洲国产精品999| 午夜av观看不卡| 99久久综合免费| 国产成人精品一,二区| 大话2 男鬼变身卡| 美女xxoo啪啪120秒动态图| 99热6这里只有精品| 国产成人午夜福利电影在线观看| 日本色播在线视频| 国产在视频线精品| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 午夜福利视频精品| 少妇精品久久久久久久| 欧美最新免费一区二区三区| 中文资源天堂在线| 夫妻午夜视频| 视频中文字幕在线观看| 国产精品嫩草影院av在线观看| 亚洲精品国产av蜜桃| 亚洲无线观看免费| 国产高清不卡午夜福利| 如日韩欧美国产精品一区二区三区 | 欧美+日韩+精品| 插逼视频在线观看| 亚洲精品,欧美精品| 色哟哟·www| 亚洲国产最新在线播放| 国产精品久久久久久精品古装| 免费黄频网站在线观看国产| 夜夜爽夜夜爽视频| 亚洲成色77777| 日产精品乱码卡一卡2卡三| 国产伦精品一区二区三区视频9| 成人影院久久| 欧美精品亚洲一区二区| 久久久国产欧美日韩av| 久热这里只有精品99| 男人添女人高潮全过程视频| 国产欧美亚洲国产| 寂寞人妻少妇视频99o| 99久久精品热视频| 久久精品夜色国产| 亚洲av二区三区四区| 日韩三级伦理在线观看| 乱系列少妇在线播放| 亚洲三级黄色毛片| 欧美人与善性xxx| 男人爽女人下面视频在线观看| a 毛片基地| 久久精品国产a三级三级三级| 秋霞伦理黄片| 夜夜看夜夜爽夜夜摸| 婷婷色综合大香蕉| 色视频在线一区二区三区| 51国产日韩欧美| 欧美bdsm另类| 天美传媒精品一区二区| 99热全是精品| 少妇的逼水好多| 三级国产精品欧美在线观看| 亚洲国产av新网站| 美女福利国产在线| 成人综合一区亚洲| 久久99蜜桃精品久久| 一级毛片我不卡| 午夜视频国产福利| 草草在线视频免费看| 一本一本综合久久| 久久久久国产网址| 午夜久久久在线观看| 嘟嘟电影网在线观看| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 国产午夜精品一二区理论片| 亚洲综合色惰| 久久久久久久大尺度免费视频| 亚洲电影在线观看av| 成人特级av手机在线观看| 久久久久久久国产电影| 日韩欧美 国产精品| 久久综合国产亚洲精品| 欧美精品高潮呻吟av久久| 国产精品成人在线| 亚洲欧美清纯卡通| 午夜福利,免费看| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 免费观看在线日韩| 国产av国产精品国产| 欧美一级a爱片免费观看看| 亚洲一区二区三区欧美精品| 一本大道久久a久久精品| 国产伦在线观看视频一区| 日韩制服骚丝袜av| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 久久久久视频综合| 亚洲av综合色区一区| 肉色欧美久久久久久久蜜桃| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 日韩制服骚丝袜av| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 黄色毛片三级朝国网站 | 我的女老师完整版在线观看| 超碰97精品在线观看| 高清黄色对白视频在线免费看 | 99视频精品全部免费 在线| 18禁在线播放成人免费| 日韩电影二区| 一级毛片 在线播放| 免费看日本二区| 欧美精品一区二区大全| 少妇猛男粗大的猛烈进出视频| a级一级毛片免费在线观看| 极品人妻少妇av视频| 性色av一级| 成人毛片60女人毛片免费| 午夜福利视频精品| 欧美人与善性xxx| 国产亚洲91精品色在线| 欧美 日韩 精品 国产| 一级,二级,三级黄色视频| 一本久久精品| 女性生殖器流出的白浆| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 七月丁香在线播放| 久久久久久人妻| 亚洲av中文av极速乱| 亚洲精品国产av成人精品| 国产成人一区二区在线| 国产精品免费大片| 亚洲精品一区蜜桃| 国产一区二区在线观看日韩| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 能在线免费看毛片的网站| 在线精品无人区一区二区三| 我要看日韩黄色一级片| av专区在线播放| 七月丁香在线播放| 丝瓜视频免费看黄片| 亚洲欧美精品专区久久| 国产 精品1| 最近中文字幕2019免费版| 久久青草综合色| 赤兔流量卡办理| 日本vs欧美在线观看视频 | 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 中文欧美无线码| 成年人午夜在线观看视频| 亚洲成人av在线免费| 久久精品久久精品一区二区三区| 欧美激情国产日韩精品一区| 青青草视频在线视频观看| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 亚洲精品乱码久久久v下载方式| 国内少妇人妻偷人精品xxx网站| 美女xxoo啪啪120秒动态图| 国产精品三级大全| 狂野欧美激情性xxxx在线观看| 最后的刺客免费高清国语| 超碰97精品在线观看| a级片在线免费高清观看视频| av在线观看视频网站免费| 亚洲色图综合在线观看| 亚洲欧美成人精品一区二区| 国产视频首页在线观看| 国产高清三级在线| 99热网站在线观看| 亚洲精品一区蜜桃| 搡女人真爽免费视频火全软件| 国产精品一二三区在线看| 永久免费av网站大全| 亚洲综合精品二区| 99精国产麻豆久久婷婷| 男男h啪啪无遮挡| 十八禁网站网址无遮挡 | 久久久欧美国产精品| 久久人人爽人人爽人人片va| 成人综合一区亚洲| 777米奇影视久久| 91成人精品电影| 99久久精品热视频| 老熟女久久久| 99热网站在线观看| 又爽又黄a免费视频| 哪个播放器可以免费观看大片| 51国产日韩欧美| 天天操日日干夜夜撸| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 视频中文字幕在线观看| 欧美激情国产日韩精品一区| 精品少妇久久久久久888优播| 久久亚洲国产成人精品v| 欧美另类一区| kizo精华| 青青草视频在线视频观看| 国产精品人妻久久久久久| 夫妻午夜视频| 欧美高清成人免费视频www| 黑人猛操日本美女一级片| 成年女人在线观看亚洲视频| 国国产精品蜜臀av免费| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| 亚洲精品乱久久久久久| 又爽又黄a免费视频| 日本wwww免费看| 国产国拍精品亚洲av在线观看| 极品少妇高潮喷水抽搐| 亚洲国产精品专区欧美| 中文在线观看免费www的网站| 精品久久久久久电影网| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久亚洲| 久久99热6这里只有精品| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 大陆偷拍与自拍| 免费观看无遮挡的男女| h日本视频在线播放| 最近中文字幕高清免费大全6| 亚洲在久久综合| 日本爱情动作片www.在线观看| 99re6热这里在线精品视频| 偷拍熟女少妇极品色| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 99国产精品免费福利视频| 少妇裸体淫交视频免费看高清| 少妇的逼水好多| 亚洲精品国产成人久久av| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 自线自在国产av| 亚洲av成人精品一二三区| 九九爱精品视频在线观看| 日本wwww免费看| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| 久久久久久久亚洲中文字幕| 亚洲一级一片aⅴ在线观看| 国产高清三级在线| 国产国拍精品亚洲av在线观看| 成年女人在线观看亚洲视频| 日韩强制内射视频| 亚洲在久久综合| 国产av国产精品国产| 女人久久www免费人成看片| 精品少妇内射三级| 在线天堂最新版资源| 高清欧美精品videossex| 永久网站在线| 最近的中文字幕免费完整| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 亚洲欧洲精品一区二区精品久久久 | 免费黄网站久久成人精品| 亚洲av成人精品一二三区| 又爽又黄a免费视频| 中国三级夫妇交换| 久久这里有精品视频免费| 精品一区在线观看国产| 不卡视频在线观看欧美| 久久国产亚洲av麻豆专区| 国产在线免费精品| 最近手机中文字幕大全| 成人毛片60女人毛片免费| 国产美女午夜福利| 亚洲精品乱码久久久久久按摩| 日韩 亚洲 欧美在线| 国产极品天堂在线| 91精品国产九色| 婷婷色综合大香蕉| 国产日韩欧美亚洲二区| 国产精品免费大片| 亚洲性久久影院| 国产av国产精品国产| 黄色日韩在线| 女性被躁到高潮视频| 中文天堂在线官网| 妹子高潮喷水视频| 日韩伦理黄色片| 乱人伦中国视频| 黑人高潮一二区| a级一级毛片免费在线观看| 久久影院123| 日韩,欧美,国产一区二区三区| av国产精品久久久久影院| 人人妻人人澡人人爽人人夜夜| 春色校园在线视频观看| 日韩一本色道免费dvd| 性色av一级| 26uuu在线亚洲综合色| av线在线观看网站| 啦啦啦在线观看免费高清www| 国产午夜精品一二区理论片| 久久精品久久精品一区二区三区| 黄色日韩在线| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 性色av一级| 人人妻人人澡人人看| tube8黄色片| 夫妻午夜视频| 日韩,欧美,国产一区二区三区| 久久午夜福利片| 高清黄色对白视频在线免费看 | 少妇人妻 视频| 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 亚洲欧美日韩东京热| videossex国产| 在线看a的网站| 99九九在线精品视频 | 亚洲精品456在线播放app| 亚洲国产av新网站| 亚洲丝袜综合中文字幕| 18禁在线播放成人免费| 国产男女超爽视频在线观看| 精品人妻熟女av久视频| 欧美日韩视频精品一区| 国产亚洲av片在线观看秒播厂| 精品久久久久久久久av| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 成人亚洲欧美一区二区av| av女优亚洲男人天堂| 国产黄色免费在线视频| 久久久久久久大尺度免费视频| 免费观看a级毛片全部| 丰满饥渴人妻一区二区三| 天天躁夜夜躁狠狠久久av| 夜夜骑夜夜射夜夜干| 黄色配什么色好看| 丰满迷人的少妇在线观看| 国产在线男女| 最近中文字幕高清免费大全6| 大陆偷拍与自拍| 水蜜桃什么品种好| 欧美bdsm另类| 亚洲三级黄色毛片| 久久久久久久精品精品| 插逼视频在线观看| 韩国av在线不卡| 日韩av不卡免费在线播放| 狂野欧美激情性bbbbbb| 最新中文字幕久久久久| 国产淫语在线视频| av在线播放精品| 国产欧美亚洲国产| 亚洲精品日本国产第一区| 婷婷色综合大香蕉| av在线老鸭窝| 美女国产视频在线观看| 久久狼人影院| 日本av手机在线免费观看| 国产熟女欧美一区二区| 免费在线观看成人毛片| 少妇人妻久久综合中文| av视频免费观看在线观看| 一级二级三级毛片免费看| 久久国产精品大桥未久av | 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区国产| 国产精品福利在线免费观看| 亚洲精品456在线播放app| 日韩中字成人| 日韩电影二区| 久久 成人 亚洲| 午夜福利网站1000一区二区三区| 男人狂女人下面高潮的视频| 国产精品人妻久久久影院| 高清视频免费观看一区二区| 久久精品久久精品一区二区三区| 亚洲国产精品一区二区三区在线| 麻豆成人午夜福利视频| 日韩伦理黄色片| 日韩精品免费视频一区二区三区 | 日韩精品有码人妻一区| av专区在线播放| 91久久精品国产一区二区成人| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 在线观看三级黄色| 国产伦在线观看视频一区| 亚洲综合精品二区| av播播在线观看一区| 亚洲精品中文字幕在线视频 | 老熟女久久久| 国产视频首页在线观看| 欧美日韩综合久久久久久| 国产精品嫩草影院av在线观看| 久久国产乱子免费精品| 亚洲三级黄色毛片| 亚洲美女视频黄频| 久久毛片免费看一区二区三区| 美女内射精品一级片tv| 最新的欧美精品一区二区| 亚洲精品乱码久久久v下载方式| 黑人猛操日本美女一级片| 波野结衣二区三区在线| 欧美精品亚洲一区二区| 99久久精品热视频| 91精品一卡2卡3卡4卡| 亚洲va在线va天堂va国产| 久久99蜜桃精品久久| 欧美精品高潮呻吟av久久| 日本爱情动作片www.在线观看| 久久99一区二区三区| 亚洲精品中文字幕在线视频 | 又爽又黄a免费视频| 中国国产av一级| 肉色欧美久久久久久久蜜桃| 美女视频免费永久观看网站| 大片电影免费在线观看免费| 免费看光身美女| 亚洲欧美中文字幕日韩二区| 草草在线视频免费看| kizo精华| 国产亚洲精品久久久com| av免费观看日本| 亚洲第一av免费看| 久久 成人 亚洲| 午夜日本视频在线| 亚洲精品乱码久久久v下载方式| 91久久精品国产一区二区三区| 欧美区成人在线视频| 91精品国产国语对白视频| 成人毛片a级毛片在线播放| 亚洲精品国产av蜜桃| a级毛片免费高清观看在线播放| 成人亚洲精品一区在线观看| 日韩一区二区三区影片| 五月玫瑰六月丁香| 亚洲中文av在线| 国产片特级美女逼逼视频| 日本色播在线视频| 日韩欧美一区视频在线观看 | 日韩一本色道免费dvd| 97在线人人人人妻| 午夜免费鲁丝| 22中文网久久字幕| 纯流量卡能插随身wifi吗| 亚洲精品国产成人久久av| 日本免费在线观看一区| 国产精品久久久久久精品古装| 2018国产大陆天天弄谢| 老司机影院毛片| 亚洲成人一二三区av| 啦啦啦在线观看免费高清www| 日韩熟女老妇一区二区性免费视频| 韩国av在线不卡| av又黄又爽大尺度在线免费看| 国产精品.久久久| 人妻系列 视频| 自拍欧美九色日韩亚洲蝌蚪91 | 熟女人妻精品中文字幕| 桃花免费在线播放| 午夜福利,免费看| 久久久久精品性色| 久久久久久伊人网av| 蜜桃在线观看..| 久久午夜福利片| 一区在线观看完整版| 少妇的逼水好多| 日本欧美国产在线视频| 成人国产麻豆网| 人人妻人人爽人人添夜夜欢视频 | 精品国产露脸久久av麻豆| 晚上一个人看的免费电影| 狂野欧美激情性xxxx在线观看| 日本黄大片高清| 高清毛片免费看|