• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of the effect of aft-loaded magnetic field on multiple ionizations in Hall thruster

    2022-08-01 11:33:46DemaiZENG曾德邁HongLI李鴻JinwenLIU劉金文YongjieDING丁永杰LiqiuWEI魏立秋DarenYU于達(dá)仁andWeiMAO毛威
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:金文

    Demai ZENG(曾德邁),Hong LI(李鴻),2,Jinwen LIU(劉金文),Yongjie DING(丁永杰),2,Liqiu WEI(魏立秋),2,Daren YU(于達(dá)仁),2 and Wei MAO(毛威)

    1 Lab of Plasma Propulsion,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    2 Key Laboratory of Aerospace Plasma Propulsion,Ministry of Industry and Information Technology,Harbin 150001,People’s Republic of China

    3 Qingdao Haier Smart Technology,Qingdao 266100,People’s Republic of China

    4 Beijing Institute of Control Engineering,Beijing 100190,People’s Republic of China

    Abstract It is assumed that the shift of a strong magnetic field region with a positive gradient from exit plane to outside,namely the transit from a normal loaded magnetic field to an aft-loaded one,enhances the multiple ionization process in the magnetically shielded Hall thruster.To confirm this conjecture,a comparative study is carried out numerically with a particle-in-cell method.The simulation results prove that compared with the normal loaded magnetic field,the application of aft-loaded magnetic field enhances the multiple ionization process.This study further analyzes the ionization characteristics of the transition from low-charged ions to high-charged ions under two magnetic field conditions and the influence of the magnetic strength of aft-loaded magnetic field on the multiple ionization characteristics.The study described herein is useful for understanding the discharge characteristics of Hall thruster with an aft-loaded magnetic field.

    Keywords:Hall thruster,aft-loaded magnetic field,multiple ionization,electron temperature

    1.Introduction

    A Hall thruster is a type of power device used in the field of electric propulsion,and its main principle is to ionize and accelerate the propellant gas(Xenon in general)using electric and magnetic fields and to generate thrust[1,2].Hall thrusters have the advantage of being highly efficient,of having highly specific impulses and a simple structure.In addition,with the rapid development of the commercial aerospace industry,Hall thrusters will become more widely used in aerospace fields such as the propulsion of small or microsatellites[3,4].

    Hall thruster consists of a discharge channel,anode,magnetic circuit,and cathode.The magnetic field in the Hall thruster is formed by the magnetic circuit,mainly in the radial direction,and the electrons are magnetized,whereas the ions are not.Electrons are emitted from the cathode,they enter the channel,and are captured by the magnetic field.The neutral gas diffuses from the anode to the downstream of the channel.Ions are generated by the ionization collisions between atoms and electrons,and then accelerated by the self-consistent electric field to form thrust.

    Figure 1.Collision section curves:(a)elastic,excitation,and Xe→Xe+ collisions,(b)multiple collisions.

    The magnetically shielded Hall thruster has a significant advantage in extending the service life of a Hall thruster,therefore this technique is widely used[13–16].Hoferet alused anE×Bprobe to measure the proportion of multiple charged ions on two 6 kW thrusters,one provided with magnetic shielding technology and the other without such technology,and found that the application of magnetic shielding significantly enhances the multiple ionization process[17].The main differences between magnetically shielded thrusters and unshielded thrusters in design include,the position of the strong magnetic field region with a positive gradient,the curvature of the magnetic field line near the wall area,and the shape of the discharge channel[18,19].For unshielded thrusters,the magnetic field with a positive gradient is fully located inside the channel,which is a normal loading manner.For magnetically shielded thrusters,part of the magnetic field with a positive gradient is located outside the channel;specifically,the magnetic field peak is shifted from the exit plane to outside.Therefore,it can be called the aft-loading of the magnetic field[20].The experiment confirmed that the ionization zone and acceleration zone move downstream in the magnetically shielded thrusters[18].As a result,part or all of the acceleration zone is located outside the channel.The majority of the potential drop is located downstream from the exit of the channel,which in turn causes great changes in the electron energy conversion process[18].Thus,it is guessed that the transit from a normally loaded magnetic field to an aft-loaded one[20]is the main reason for the enhancement of multiple ionizations in the magnetically shielded Hall thruster.The physical mechanism of it has yet to be clearly explained.Based on this,a numerical simulation is used to compare and analyze the mechanisms of the influence of the two different loading manners of magnetic field on the multiple ionization process,and thereby help to understand the characteristics of the multiple ionization process of a Hall thruster with aft-loaded magnetic field.

    The remainder of this paper is arranged as follows.Section 2 introduces the numerical model and research methods applied.Section 3 describes and analyzes the simulation results.Section 4 provides some concluding remarks.

    2.Research methods

    Particle-in-cell(PIC)simulation is a powerful method to study the physical processes of Hall thrusters[21–24].Because a Hall thruster has an axisymmetric cylindrical structure,its discharge can be considered uniform along the azimuthal direction.Therefore,only the axial(z)and radial(r)directions are considered when constructing the calculation model.Our team has developed a mature PIC platform with a 2D3V framework,which has been used to solve many physical problems.A brief introduction of the PIC model is presented below.The details can be found in[25–30].To investigate the topic of this study,the PIC platform is updated by considering the multiple ionization process.

    2.1.PIC numerical model

    In the previous model,only elastic collision,excitation collision and single ionization collisions between atoms and electrons were considered.In order to study the multiple ionization,a total of eight types of independent collisions between electrons and atoms or ions are considered,where the electron is the incident particle,including an elastic collision,excitation collision,and six types of ionization collisions,namely,Xe→Xe+,Xe→Xe2+,Xe→Xe3+,Xe+→Xe2+,Xe+→Xe3+,Xe2+→Xe3+.In addition,the movement of high-charged ions is also considered.The collision cross-section data of elastic collision,excitation collision and single ionization are the same as those used by Szabo[31]and shown in figure 1(a).The collision crosssection data of multiple ionization collisions are summarized in[32–38]and shown in figure 1(b).The calculation process of an electron collision is optimized using the Monte Carlo Collison(MCC)method and the NULL-collision method proposed by Vahedi[39].After electrons collide,the collision form can be determined through a single estimate.In addition,a Bohm anomalous conduction is also considered in the model[40]and the Bohm collision frequency νBis used to equal this effect:

    whereCBis the semi-empirical coefficient,eis the basic charge quantity,Bis the strength of the magnetic field,andmeis the electron mass.Coulomb and charge exchange collisions have yet to be considered.

    Figure 2.Schematic diagram of simulation domain.

    The induced magnetic field is ignored in the model since its magnitude is much smaller than that of the applied one.Therefore,only the electrostatic model is considered,and the Poisson equation is adopted and numerically solved to obtain the electric field.

    For particle dynamics,the motion of the atoms is processed according to the free molecular flow;the motion of electrons is controlled by an electric and magnetic field;the motion of ions is only influenced by the electric field.

    The renown42 of the Prince and his adventure had gone before him, and the Emperor sat on his throne awaiting the arrival of the Prince and his companions

    Five typical boundary conditions are considered,as shown in figure 2.On the boundary of the anode,the neutral atoms are injected and the potential is set as the discharge voltage.Generally,the material of the discharge channel is BN ceramic.Therefore,the channel wall is regarded as a dielectric boundary.On the boundary of the dielectric wall,a normal electric field is determined by the charge density deposited on the wall.In addition,the secondary electron emission(SEE)effect of an electron-wall collision is considered in the model[41,42].The face of the pole boundary is considered a capacitance boundary,and its potential is determined by the amount of charge deposited on the surface.On the open boundary,electrical neutrality is maintained by injecting electrons,and the potential is set to zero.Moreover,on the symmetry boundary,the radial electric field is set to zero and the particles are specularly reflected.

    2.2.Magnetic field intensity distribution for different loading manners

    In this study,a simulated thruster with a size similar to those of SPT-100 and PPS-1350[43]with a power of 1.35 kW was selected,as shown in figure 2.The magnetic field used in the PIC simulation is calculated using the open-source software named Finite Element Method Magnetics(FEMM).According to the research purpose,two magnetic field configurations,aft-loaded magnetic field and normal loaded magnetic field were designed,as shown in figure 3.For the aft-loaded magnetic field,the position of the maximum magnetic field strength realized along the centerline is pushed from the channel exit to a site 4 mm outside the channel.The magnetic field strength at the channel exit on the channel centerline accounts for 86% of the maximum magnetic field,and this ratio in the 6 kW power magnetic-shielding Hall thruster developed by Jet Propulsion Laboratory(JPL)is 83%[13,14,19].Thus,they are similar in magnetic field intensity distribution,which satisfies the characteristics of the aft-loaded magnetic field.

    Figure 3.Distribution of normalized magnetic field strength along the channel centerline for different magnetic field configurations.

    3.Results and analysis

    In the simulation,the discharge voltage is set as 300 V and the anode mass flow rate is set as 5.65 mg s?1.Regarding the Bohm coefficientCBin the semi-empirical formula,it was found that theCBvalue outside the channel is larger than that inside the channel[40,44].Considering that part of the positive-gradient region of the aft-loaded magnetic field is located outside the channel,different Bohm coefficients are used depending on the gradient of the magnetic field[45].CBis selected as 1/310 for the positive-gradient region and 1/18 for the negative-gradient region.These Bohm coefficients are chosen to ensure that the simulated performance is closer to the experimental one[44,46,47].

    3.1.The influence of the loading manner of the magnetic field on the ionization process

    Table 1 shows the different charged ion currents and their proportions of the total currents under different magnetic field loading manners.It can be seen that the change in loading manner of magnetic field from normal loading to aft-loading enhances the multiple ionization effect,where the proportion of Xe2+and Xe3+increases.

    Table 1.Multiple charged ion currents and ratios under different magnetic field loading manners.

    To further analyze the influence of the magnetic field loading manner on the ionization process,the contour of the ionization collision rate distribution of the particle collisions is given.It should be noted that,according to the introduction to the PIC numerical model in section 2.1,six types of ionization collision processes were considered in this study.Undoubtedly,the process of Xe→Xe+plays a leading role,and the Xe→Xe+ionization collision rate distributions are shown in figure 4.The proportion of Xe2+in the product is second only to Xe+,therefore,the following content will mainly focus on the generation of Xe2+.The generation of Xe2+comes from Xe+→Xe2+and Xe→Xe2+,and their ionization collision rate distributions are shown in figures 5 and 6.

    First,from the perspective of the ionization rate,the ionization rate of the Xe→Xe+ionization process corresponding to the normal loaded magnetic field is higher,and the ionization rates of Xe→Xe2+and Xe+→Xe2+corresponding to the aft-loaded magnetic field are both higher.The ionization rate represents the probability of occurring of multiple ionization.This is consistent with the conclusion that the aft-loading of the magnetic field enhances the multiple ionization process.In addition,the results in figures 5 and 6 can illustrate that there are two ways to generate Xe2+in both cases,namely Xe→Xe2+and Xe+→Xe2+,and between the two,Xe+→Xe2+is dominant.Similarly,by using the PIC for a calculation and comparison,it can be seen that Xe+→Xe3+is dominant among the three ionization processes generated for Xe3+,namely,Xe→Xe3+,Xe+→Xe3+,and Xe2+→Xe3+.So it can be inferred multiply charged ions are more likely created from singly charged ions than directly from neutrals.

    Second,two characteristics of the multiple ionization process can be concluded from the contour of the ionization rate distribution.On one hand,compared to the normal loading case,in the aft-loading case,multiple ionization collisions occur at the position closer to the channel downstream.On the other hand,for the generation of Xe2+,in both cases,compared to the ionization process of Xe→Xe2+,the ionization process of Xe+→Xe2+occurs on closer to the channel downstream.

    In a Hall thruster,the ionization rateRionof the propellant is shown in formula(5),whereneis the electron density,nais the atom density,andβiis the ionization rate coefficient.Since ionization rate coefficient and electron temperature are directly related,the atom density and electron temperature are the main factors determining the magnitude of the ionization rate.The distributions of electric potential and electron temperature on the channel centerline are shown in figure 7.

    In addition,the magnetic field strength is one of the key factors that determine the spatial conductivity of electrons,so the magnetic field strength and its distribution are the key factors that determine spatial conductivity.Combining figures 3 and 7,compared to normal loading,aft-loading of magnetic field makes the positive-gradient magnetic field partly located outside the channel,causing significant changes in the conductivity inside and outside the channel.In the aftloading,the conductivity inside the channel increases,and the potential drop in the channel decreases.

    In the aft-loading case,the main potential drop is located outside the discharge channel,reaching 240 V on the channel centerline.In addition,the electrons emitted from the cathode rapidly reach a high electron temperature with a peak value of 54 eV under the strong heating of the electric field outside the channel.Such a high electron temperature enhances the ionization collision effect outside the channel,although compared to that inside the channel,the density of heavy particles outside the channel remains low,and thus the electrons are still at a high temperature of 32 eV when reaching the channel exit.

    In the normal loading case,the main potential drop is located inside the channel,reaching 80 V on the channel centerline,and thus the heating effect of the electric field outside the channel on the electrons is poor,and the peak temperature of the electrons outside the channel is only 19 eV.As the electrons move toward the channel exit,the ionization energy loss is slightly higher than the heating effect of the electric field,and the temperature of the electrons at the channel exit is 18 eV.

    Figure 4.Contours of Xe→Xe+ ionization rate of(a)aft-loading case and(b)normal loading case.

    Figure 5.Contours of Xe→Xe2+ ionization rate of(a)aft-loading case and(b)normal loading case.

    Figure 6.Contours of Xe+→Xe2+ ionization rate of(a)aft-loading case and(b)normal loading case.

    Figure 7.Distribution of(a)electric potential and(b)electron temperature on the channel centerline.

    Combining figures 4 and 5,when an electron emitted from the cathode moves toward the near-exit,it first encounters a large number of propellant atoms,and when propellant is freely diffused from the anode into the channel downstream,the gas becomes evenly dispersed within the entire channel between the inner and outer walls,and the gas density along the centerline experiences a significant drop from upstream to downstream.In aft-loading case,the temperature of the electron entering the channel is 32 eV.Such a high electron temperature causes an immediately strong ionization collision between the atom and electron.Considering figure 1,the probability of occurrence of a multiple ionization collision is high.In a normal loading case,the electrons entering the channel are at a low electron temperature of 18 eV.According to formula(4),such a propellant density and electron temperature environment fails to meet the condition of a large number of ionizations.Therefore,the electron continues to move upstream under the heating effect of the electric field within the channel,although because the wall surface energy loss of the electron in the channel is also large,the electron temperature is basically maintained at 20 eV,which is much lower than the electron temperature of 32 eV at the channel exit in aft-loading case.However,as the electron moves closer to the anode,the atom density of the propellant increases significantly.According to formula(4),there will be numerous ionization collisions between the electrons and atoms,causing an avalanche effect,and thus ionization is completed.Compared to the aft-loading case,the rate of double and even higher ionization collisions is low owing to the low electron temperature,and as the ionization area is closer to the anode,the propellant is distributed more intensively and the density becomes higher;thus,the rate of single ionization collisions increases.

    Combining figures 3 and 6,the aft-loading of the magnetic field leads to the zone of ionization process of Xe→Xe+to move downstream,and the generation of Xe2+is mainly through process of Xe+→Xe2+.According to formula(4),the zone of ionization process of Xe+→Xe2+must be downstream of the zone of ionization process of Xe→Xe+.Therefore,the zones of ionization process of Xe+→Xe2+and Xe→Xe+both move downstream.Compared to the normal loading case,in the aft-loading case,the main potential drop is outside the channel,where interaction between the channel and the electron is lost,the electron temperature is higher at the channel exit.The distance between the Xe→Xe+ionization process zone and the exit of the channel is reduced,which leads to the weakening of the cooling effect of the channel and heavy particles on the electrons.Finally,electrons in the zone of ionization process of Xe+→Xe2+have higher energy,therefore,the generation of Xe2+is enhanced.

    3.2.The influence of magnetic field strength on the ionization process in aft-loading case

    In section 3.1,the multiple ionization process was simulated under different magnetic field distributions but the same maximum magnetic field strength at the centerline of the channel.The change of the multiple ionization in different loading manners is due to the relative change of the spatial conductivity,and the conductivity is greatly affected by the strength of the magnetic field.Therefore,the influence of magnetic field strength on ionization process in aft-loading case needs to be considered.This part focuses on the influence of magnetic field strength on the ionization process in aft-loading case,because the strength and configuration of the magnetic field are both key factors for the ionization process.Based on previous experimental experience,the range of maximum magnetic field intensity of the channel centerline has been selected.The range of variation of the maximum magnetic field is 180–280 G under the conditions of the aftloaded magnetic field.The simulation result is shown in figure 8.The proportion of Xe2+and Xe3+increases with the increase in magnetic field strength under the aft-loaded magnetic field.

    Figure 8.Multiple charged ion currents ratio with different magnetic field strengths in the aft-loading case.

    This part still uses Xe2+as the research object.It was pointed out in section 3.1 that the Xe+→Xe2+ionization process is dominant in the ionization process with the generation of Xe2+,and thus the Xe+density is a key factor determining the ionization rate of the Xe+→Xe2+process.

    Figure 9.Distributions of(a)electric potential and(b)electron temperature on the channel centerline in the aft-loading case.

    Figure 10.Distributions of(a)Xe→Xe+ and(b)Xe+→Xe2+ ionization rates on the channel centerline in the aft-loading case.

    In the positive gradient region of the magnetic field,the plasma instability is suppressed and the classical conduction is dominant;the electron conductivity is thus inversely proportional to the square of the magnetic field strength.The Bohm conduction is dominant in the negative gradient region of the magnetic field,where the electron conductivity is inversely proportional to the magnetic field strength.Therefore,in the aft-loading case,with the increase of the magnetic field strength,the ratio of the conductivity outside the channel to the inside of the channel increases,and the potential drop outside the channel decreases,as shown in figure 9(a).The value of electron temperature is the result of electric field heating and collision cooling.When the electron gains higher energy in the acceleration zone,the collision loss energy increases,and the electron temperature decreases in the ionization zone,as shown in figure 9(b).The production rate of Xe2+is mainly determined by processes of Xe→Xe+and Xe+→Xe2+,in which the electron temperature is the key factor.So higher electron temperature in the ionization zone is the main reason for the increase in production rate,as shown in figures 10(a)and(b).The results show that the proportion of Xe2+increases as the magnetic field strength increases.

    The variance of the proportion of Xe3+with magnetic field strength has the same trend as that of Xe2+.It can be well-understood since both of them are generated mainly from the ionization of Xe+.

    4.Conclusions

    In this work,the mechanisms of the influence of two different loading manners of a magnetic field,normal loading and aftloading,on the multiple ionization process of a Hall thruster were studied using a particle-in-cell simulation method.The simulation results proved the assumption that the shift of the strong magnetic field region with a positive gradient from the exit plane to outside indeed enhances the multiple ionization process.The increase of electron temperature in the ionization region is the main reason for the enhancement of multiple ionization.Compared with normal loading,in the aft-loading case,the position of the ionization zone moves downstream of the channel,resulting in the weakening of the cooling effect of the channel and the increase of the electron temperature.The increase of the magnetic field strength changes the relative conductivity of the ionization zone,reduces the collision loss in the acceleration zone,and leads to the increase of the electron temperature.

    Acknowledgments

    This work is funded by National Natural Science Foundation of China(Nos.52076054 and 51736003),Advanced Space Propulsion Laboratory of Beijing Institute of Control Engineering and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.LabASP2019-04),the Civil Aerospace Technology Pre-research Project(No.D03015)and the Defense Industrial Technology Development Program(No.JCKY2019603B005).

    猜你喜歡
    金文
    西周金文所見(jiàn)“小學(xué)”史料三題
    甲骨金文所見(jiàn)族考論
    Understanding Chinese Characters
    Special Focus(2019年5期)2019-06-12 02:35:54
    西周金文車器“鞎”補(bǔ)釋*——兼論《詩(shī)經(jīng)》“鞹鞃”
    簡(jiǎn)談對(duì)金文“蔑懋”問(wèn)題的一些新認(rèn)識(shí)
    釋甲骨金文的“徹”字異體——據(jù)卜辭類組差異釋字之又一例
    西周金文所見(jiàn)周天子對(duì)諸侯臣屬的聘問(wèn)之禮
    語(yǔ)法填空專練
    Analysing the cultural osmosis in English film appreciation class—Troy
    萊國(guó)出土異地商周金文通釋繹論
    東方考古(2016年0期)2016-07-31 17:45:44
    狂野欧美激情性xxxx| xxx96com| 国产精品乱码一区二三区的特点| 色哟哟哟哟哟哟| 亚洲 欧美 日韩 在线 免费| 精品卡一卡二卡四卡免费| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| 国产亚洲欧美98| 久久伊人香网站| 精品国产乱子伦一区二区三区| 亚洲中文日韩欧美视频| 91老司机精品| 亚洲人成网站高清观看| 国内精品久久久久精免费| 国产亚洲精品一区二区www| 国产视频一区二区在线看| 男人舔女人的私密视频| av欧美777| 亚洲,欧美精品.| 听说在线观看完整版免费高清| 国产成人精品久久二区二区91| 亚洲国产精品成人综合色| 国产精品精品国产色婷婷| av欧美777| 久久香蕉精品热| 99国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 制服人妻中文乱码| www日本在线高清视频| 日本五十路高清| 天堂√8在线中文| 久久久久九九精品影院| 欧美久久黑人一区二区| 亚洲一区二区三区色噜噜| 丰满的人妻完整版| 黄片大片在线免费观看| 黄色a级毛片大全视频| 成年版毛片免费区| 丰满的人妻完整版| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| svipshipincom国产片| 美女国产高潮福利片在线看| 久久婷婷人人爽人人干人人爱| cao死你这个sao货| 日本在线视频免费播放| 中文亚洲av片在线观看爽| 久热这里只有精品99| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 欧美精品亚洲一区二区| 他把我摸到了高潮在线观看| 午夜福利视频1000在线观看| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 亚洲中文av在线| 大香蕉久久成人网| 好男人在线观看高清免费视频 | 亚洲自偷自拍图片 自拍| 岛国在线观看网站| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 久久热在线av| 一区二区三区高清视频在线| 欧美激情高清一区二区三区| 久久草成人影院| 国产精品亚洲美女久久久| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 91麻豆av在线| 亚洲熟女毛片儿| 亚洲成人国产一区在线观看| e午夜精品久久久久久久| 一级毛片精品| 男女午夜视频在线观看| 国产精品 国内视频| svipshipincom国产片| av免费在线观看网站| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 亚洲欧美精品综合一区二区三区| 天堂动漫精品| 久9热在线精品视频| 窝窝影院91人妻| 97碰自拍视频| 黄色视频,在线免费观看| 免费看日本二区| 天天一区二区日本电影三级| 国产精品香港三级国产av潘金莲| 丝袜人妻中文字幕| 久久青草综合色| 国产成人欧美| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 久久国产乱子伦精品免费另类| 一夜夜www| 99久久综合精品五月天人人| 国产人伦9x9x在线观看| 身体一侧抽搐| 久久人妻福利社区极品人妻图片| 午夜久久久在线观看| 欧美成人午夜精品| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 一级a爱视频在线免费观看| 99热只有精品国产| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 男女下面进入的视频免费午夜 | 国产精品野战在线观看| www日本黄色视频网| 久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 免费看a级黄色片| 欧美zozozo另类| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频日本深夜| 91成年电影在线观看| 久久久久国产一级毛片高清牌| 黄色成人免费大全| 亚洲av电影在线进入| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 99在线人妻在线中文字幕| 日本撒尿小便嘘嘘汇集6| 又黄又爽又免费观看的视频| 国产成年人精品一区二区| 三级毛片av免费| 不卡av一区二区三区| 久热这里只有精品99| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 两个人免费观看高清视频| 精品欧美国产一区二区三| 国产成人精品久久二区二区免费| 久久婷婷人人爽人人干人人爱| 国产av又大| 国产熟女xx| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 精品高清国产在线一区| 日韩欧美一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 听说在线观看完整版免费高清| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看| 香蕉丝袜av| √禁漫天堂资源中文www| 国产午夜福利久久久久久| 国产一区二区三区在线臀色熟女| 久久午夜综合久久蜜桃| 国产成人系列免费观看| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 久久狼人影院| 黄色片一级片一级黄色片| 亚洲最大成人中文| av有码第一页| 制服人妻中文乱码| 美女免费视频网站| 在线观看免费午夜福利视频| 日韩国内少妇激情av| 久久中文看片网| x7x7x7水蜜桃| 亚洲电影在线观看av| 精品久久久久久久毛片微露脸| 一卡2卡三卡四卡精品乱码亚洲| 在线观看www视频免费| 国产精品精品国产色婷婷| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 欧美乱妇无乱码| 国产精品亚洲美女久久久| 亚洲国产看品久久| bbb黄色大片| 曰老女人黄片| 叶爱在线成人免费视频播放| 啦啦啦观看免费观看视频高清| 色在线成人网| 国产av又大| 无限看片的www在线观看| 亚洲成人国产一区在线观看| 特大巨黑吊av在线直播 | 亚洲免费av在线视频| 少妇 在线观看| 亚洲中文av在线| 校园春色视频在线观看| 国产精品影院久久| 制服诱惑二区| 一级a爱视频在线免费观看| 亚洲av日韩精品久久久久久密| 人妻久久中文字幕网| 黄网站色视频无遮挡免费观看| 免费高清视频大片| 麻豆成人午夜福利视频| 亚洲avbb在线观看| 9191精品国产免费久久| 国产精品亚洲一级av第二区| 国产精品久久久久久亚洲av鲁大| 黄片小视频在线播放| 国产精品自产拍在线观看55亚洲| 麻豆国产av国片精品| 午夜久久久久精精品| 欧美性长视频在线观看| 国产av在哪里看| 99在线人妻在线中文字幕| 一区二区三区精品91| 免费看日本二区| 精品卡一卡二卡四卡免费| 18禁观看日本| 长腿黑丝高跟| 亚洲精华国产精华精| 亚洲男人的天堂狠狠| 757午夜福利合集在线观看| 久久久久久久久久黄片| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 日本a在线网址| 观看免费一级毛片| 日韩 欧美 亚洲 中文字幕| 午夜精品在线福利| 国产精品1区2区在线观看.| 露出奶头的视频| 制服人妻中文乱码| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 欧美国产精品va在线观看不卡| 久久中文看片网| 欧美黄色淫秽网站| 91字幕亚洲| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 黄色女人牲交| 欧美中文日本在线观看视频| 精品电影一区二区在线| 十八禁人妻一区二区| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 日本五十路高清| 久久天躁狠狠躁夜夜2o2o| 99久久99久久久精品蜜桃| 免费电影在线观看免费观看| www国产在线视频色| 在线观看www视频免费| 性色av乱码一区二区三区2| 看免费av毛片| 色综合亚洲欧美另类图片| 99热6这里只有精品| 久久久久国产精品人妻aⅴ院| 十八禁网站免费在线| 99久久精品国产亚洲精品| 亚洲电影在线观看av| 亚洲九九香蕉| 国产激情欧美一区二区| 久久精品aⅴ一区二区三区四区| tocl精华| 国产视频一区二区在线看| 香蕉丝袜av| 人人澡人人妻人| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 香蕉国产在线看| 婷婷亚洲欧美| 亚洲七黄色美女视频| 国产精品野战在线观看| 国产av不卡久久| 亚洲男人的天堂狠狠| 亚洲真实伦在线观看| 真人一进一出gif抽搐免费| 久热爱精品视频在线9| 亚洲九九香蕉| 色播在线永久视频| 久久精品影院6| 亚洲精品国产一区二区精华液| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 国产精品野战在线观看| 亚洲成av片中文字幕在线观看| 亚洲avbb在线观看| 亚洲国产精品sss在线观看| 在线观看日韩欧美| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 久久午夜综合久久蜜桃| 国产精品久久久人人做人人爽| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 国产精品久久久人人做人人爽| 在线天堂中文资源库| 日韩欧美三级三区| 很黄的视频免费| 亚洲熟女毛片儿| 日韩欧美免费精品| 亚洲国产精品久久男人天堂| 韩国精品一区二区三区| 欧美黑人巨大hd| 黑人操中国人逼视频| 精品乱码久久久久久99久播| 久久这里只有精品19| 精品福利观看| 久久香蕉国产精品| 久久草成人影院| 日韩精品青青久久久久久| 1024视频免费在线观看| 熟妇人妻久久中文字幕3abv| 亚洲第一青青草原| 国产精品亚洲av一区麻豆| 亚洲电影在线观看av| 成人午夜高清在线视频 | 久久天堂一区二区三区四区| 最新在线观看一区二区三区| 欧美国产精品va在线观看不卡| 亚洲熟妇熟女久久| 亚洲精品国产一区二区精华液| 每晚都被弄得嗷嗷叫到高潮| 亚洲一码二码三码区别大吗| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 在线十欧美十亚洲十日本专区| 美女高潮到喷水免费观看| 欧美中文综合在线视频| 欧美一区二区精品小视频在线| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 国产私拍福利视频在线观看| 三级毛片av免费| 国产精品1区2区在线观看.| 亚洲精品美女久久av网站| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 亚洲熟妇中文字幕五十中出| 精品午夜福利视频在线观看一区| 欧美日韩黄片免| 1024香蕉在线观看| 日韩高清综合在线| 国产精品一区二区免费欧美| 国产黄片美女视频| 国产精品二区激情视频| 亚洲第一欧美日韩一区二区三区| 欧美日韩黄片免| 精品免费久久久久久久清纯| 国产又黄又爽又无遮挡在线| av中文乱码字幕在线| 亚洲精华国产精华精| 亚洲国产欧美网| 免费电影在线观看免费观看| 最新在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 午夜免费鲁丝| 亚洲国产精品999在线| 麻豆成人午夜福利视频| 黄色成人免费大全| 国产精品av久久久久免费| 国产人伦9x9x在线观看| 午夜两性在线视频| 欧美最黄视频在线播放免费| 精品电影一区二区在线| 黄频高清免费视频| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 日韩国内少妇激情av| 亚洲一码二码三码区别大吗| 少妇 在线观看| 久久久久九九精品影院| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 国产成人av教育| 午夜福利在线在线| 在线av久久热| 久久亚洲精品不卡| 两个人看的免费小视频| 日韩三级视频一区二区三区| 99久久99久久久精品蜜桃| 久久中文字幕人妻熟女| 又黄又粗又硬又大视频| 欧美黑人巨大hd| 国产亚洲av高清不卡| 禁无遮挡网站| 大型黄色视频在线免费观看| 国产97色在线日韩免费| 国产不卡一卡二| 亚洲国产中文字幕在线视频| 婷婷六月久久综合丁香| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| av电影中文网址| 国产亚洲精品久久久久5区| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区91| 国产黄片美女视频| 久久午夜亚洲精品久久| 91字幕亚洲| 99久久精品国产亚洲精品| 成人三级黄色视频| 国产片内射在线| 中文字幕人妻丝袜一区二区| 午夜日韩欧美国产| 满18在线观看网站| 黄色成人免费大全| 色播亚洲综合网| 日本成人三级电影网站| 欧美色视频一区免费| 欧美+亚洲+日韩+国产| 日韩一卡2卡3卡4卡2021年| 亚洲成人精品中文字幕电影| 色尼玛亚洲综合影院| 国产av一区二区精品久久| 亚洲天堂国产精品一区在线| 国产三级黄色录像| 99国产精品一区二区三区| 国产精品 国内视频| 动漫黄色视频在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲美女黄片视频| 丰满人妻熟妇乱又伦精品不卡| 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 日韩有码中文字幕| 一级a爱片免费观看的视频| 亚洲第一电影网av| 国产欧美日韩精品亚洲av| 亚洲av片天天在线观看| 国产成人精品久久二区二区91| 精品不卡国产一区二区三区| 操出白浆在线播放| 18禁黄网站禁片免费观看直播| 亚洲国产精品999在线| 女警被强在线播放| 国产又爽黄色视频| 久久热在线av| 亚洲性夜色夜夜综合| 欧美日韩瑟瑟在线播放| 十八禁人妻一区二区| 日韩免费av在线播放| 亚洲一区高清亚洲精品| 草草在线视频免费看| 人人澡人人妻人| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 99riav亚洲国产免费| 久久久久久九九精品二区国产 | 久久久久国产一级毛片高清牌| 国产高清激情床上av| 99热这里只有精品一区 | 夜夜看夜夜爽夜夜摸| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻丝袜一区二区| 一本综合久久免费| 十八禁人妻一区二区| 好男人电影高清在线观看| 91麻豆av在线| 亚洲成av片中文字幕在线观看| 色播在线永久视频| 人成视频在线观看免费观看| 身体一侧抽搐| www国产在线视频色| 国产91精品成人一区二区三区| 一级毛片精品| 国产成人精品久久二区二区91| 亚洲 欧美 日韩 在线 免费| 国产视频内射| 久久精品国产亚洲av香蕉五月| 中文字幕久久专区| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 少妇被粗大的猛进出69影院| 可以在线观看毛片的网站| 51午夜福利影视在线观看| 亚洲熟女毛片儿| 免费在线观看亚洲国产| 在线永久观看黄色视频| 成人欧美大片| 色播亚洲综合网| 99久久久亚洲精品蜜臀av| 亚洲成国产人片在线观看| 国产免费av片在线观看野外av| 久久国产亚洲av麻豆专区| 大型av网站在线播放| 国产成人欧美| 成人三级做爰电影| 免费高清视频大片| 色婷婷久久久亚洲欧美| 麻豆成人午夜福利视频| 久久狼人影院| 国产激情偷乱视频一区二区| 亚洲黑人精品在线| 国内少妇人妻偷人精品xxx网站 | 亚洲成国产人片在线观看| 久久中文看片网| 国产熟女xx| 欧美成人一区二区免费高清观看 | 久久婷婷成人综合色麻豆| 久久久国产成人精品二区| 黄片小视频在线播放| netflix在线观看网站| 18美女黄网站色大片免费观看| 自线自在国产av| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 777久久人妻少妇嫩草av网站| 午夜精品久久久久久毛片777| 97人妻精品一区二区三区麻豆 | 久久精品aⅴ一区二区三区四区| 人妻丰满熟妇av一区二区三区| 日本免费a在线| 久久久久久免费高清国产稀缺| 亚洲一区高清亚洲精品| 国产精品二区激情视频| 在线十欧美十亚洲十日本专区| 精品欧美国产一区二区三| 18禁黄网站禁片免费观看直播| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放 | 嫩草影院精品99| 亚洲五月色婷婷综合| 麻豆成人午夜福利视频| 日韩欧美国产一区二区入口| 在线av久久热| 亚洲国产精品999在线| 黄频高清免费视频| 婷婷丁香在线五月| 国产高清视频在线播放一区| 成人手机av| 日韩欧美 国产精品| 久久久久九九精品影院| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 搞女人的毛片| 国产精品爽爽va在线观看网站 | 女人爽到高潮嗷嗷叫在线视频| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | x7x7x7水蜜桃| 波多野结衣av一区二区av| 亚洲av电影不卡..在线观看| 久久精品aⅴ一区二区三区四区| 制服人妻中文乱码| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 听说在线观看完整版免费高清| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合婷婷激情| 精品国产乱码久久久久久男人| 亚洲最大成人中文| 欧美成人一区二区免费高清观看 | 久久久久国产一级毛片高清牌| av欧美777| www.熟女人妻精品国产| 国产午夜精品久久久久久| 国产精品一区二区精品视频观看| 99热6这里只有精品| 免费在线观看完整版高清| 少妇熟女aⅴ在线视频| 免费在线观看黄色视频的| 他把我摸到了高潮在线观看| 又黄又粗又硬又大视频| 国产欧美日韩一区二区精品| 久久亚洲精品不卡| 搡老熟女国产l中国老女人| 久久性视频一级片| 男女下面进入的视频免费午夜 | 亚洲精品美女久久av网站| 777久久人妻少妇嫩草av网站| 97超级碰碰碰精品色视频在线观看| 国产精品二区激情视频| 午夜激情av网站| 最新在线观看一区二区三区| 亚洲精品美女久久av网站| 变态另类成人亚洲欧美熟女| 性欧美人与动物交配| 国产av不卡久久| 侵犯人妻中文字幕一二三四区| 十分钟在线观看高清视频www| 久久久水蜜桃国产精品网| 亚洲专区国产一区二区| www国产在线视频色| 成人免费观看视频高清| 亚洲 欧美 日韩 在线 免费| 美女扒开内裤让男人捅视频| 听说在线观看完整版免费高清| 在线观看www视频免费| 99热这里只有精品一区 | 国内少妇人妻偷人精品xxx网站 | 午夜久久久在线观看| 亚洲九九香蕉| 久久久久久九九精品二区国产 | 中文亚洲av片在线观看爽|