• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alterations of autophagic and innate immune responses by the Crohn’s disease-associated ATG16L1 mutation

    2022-07-30 10:03:12OkaiWatanabeMinagaKamataHonjoKudo
    World Journal of Gastroenterology 2022年26期

    Okai N, Watanabe T, Minaga K, Kamata K, Honjo H, Kudo M

    Abstract Crohn’s disease (CD) is driven by the loss of tolerance to intestinal microbiota and excessive production of pro-inflammatory cytokines. These pro-inflammatory cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs). Impaired activation of PRR-mediated signaling pathways is associated with chronic gastrointestinal inflammation, as shown by the fact that loss-of-function mutations in the nucleotide-binding oligomerization domain 2 gene increase the risk of CD development. Autophagy is an intracellular degradation process,during which cytoplasmic nutrients and intracellular pathogens are digested.Given that impaired reaction to intestinal microbiota alters signaling pathways mediated by PRRs, it is likely that dysfunction of the autophagic machinery is involved in the development of CD. Indeed, the loss-of-function mutation T300A in the autophagy related 16 like 1 (ATG16L1) protein, a critical regulator of autophagy, increases susceptibility to CD. Recent studies have provided evidence that ATG16L1 is involved not only in autophagy, but also in PRR-mediated signaling pathways. ATG16L1 negatively regulates pro-inflammatory cytokine responses of macrophages and DCs after these cells sense the intestinal microbiota by PRRs. Here, we discuss the molecular mechanisms underlying the development of CD in the T300A ATG16L1 mutation by focusing on PRR-mediated signaling pathways.

    Key Words: ATG16L1; Crohn's disease; Autophagy; Innate immunity; Cytokine; Pattern recognition receptors

    lNTRODUCTlON

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-12, and IL-23,underlie the immunopathogenesis of Crohn’s disease (CD), as evidenced by the clinical efficacy of targeting these cytokines for the treatment of patients[1,2]. These colitogenic cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs), which are classified into Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and retinoic acid-inducible gene I (RIG-I)-like receptors(RLRs)[3-6]. Thus, excessive pro-inflammatory cytokine responses caused by PRR activation play critical roles in the development of CD. This notion is fully supported by the identification of loss-of-function mutations inNOD2as one of the strongest risk factors for CD. NOD2 is an intracellular PRR that senses muramyl dipeptide (MDP) derived from bacterial cell wall components and negatively regulates TLRmediated pro-inflammatory cytokine responses[5,6].

    Autophagy refers to the process during which cytoplasmic components and intracellular pathogens are delivered to the lysosome for degradation in the form of double-membrane-bound autophagosomes[7]. The autophagy related 16 like 1 (ATG16L1) protein plays an indispensable role in the initiation and completion of the autophagic process. In addition to its role in autophagy, ATG16L1 has been shown to be involved in PRR-mediated innate immunity. ATG16L1 negatively regulates pro-inflammatory and type I interferon (IFN-I) responses mediated by TLRs, NLRs, and RLRs[8]. More importantly, the lossof-function mutation T300A inATG16L1has been identified as a risk factor for CD in parallel with mutations inNOD2[6]. In this minireview article, we summarize the molecular mechanisms by which the T300A mutation inATG16L1predisposes the host to CD development by focusing on the regulatory role of ATG16L1 in PRR-mediated signaling pathways.

    lNDUCTlON OF AUTOPHAGY BY ATG16L1

    ATG16L1 is an indispensable molecule for autophagic responses (Table 1). The autophagy process includes vesicle nucleation, vesicle elongation, vesicle completion, fusion with lysosome, degradation,and recycling[9]. Autophagy dysfunction is associated with neurodegenerative diseases, microbial infections, and aging[7]. Although autophagy has been identified as the primary cell response to the lack of nutrients, recent studies have highlighted the importance of autophagy in microbial infection and immune responses[9]. The autophagy process is negatively regulated by growth factors, which activate the mechanistic target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K)-AKT pathways[7,9]. On the contrary, nutrient starvation or rapamycin treatment promotes the autophagic process through the inhibition of mTOR. Thus, the PI3K-AKT-mTOR pathway negatively regulates autophagic process. On the molecular level, mTOR activation controls the initiation of autophagy by suppressing the activation of the primary initiation complex of autophagy, called Unc-51 Like autophagy activating kinase 1 (ULK1) complex, composed of ULK1/2, ATG101, ATG13, and RB1CC1/FIP200[9]. The formed ULK1 complex translocates to the site of the second complex, called the PI3K complex[9]. The latter PI3K complex recruits a number of ATG proteins to promote elongation and expansion of the autophagosome.

    Two ubiquitin-like conjugation systems, the ATG5-ATG12-ATG16L1 conjugation system and the microtubule-associated protein 1 Light chain 3 (LC3) conjugation system, play important roles in the elongation and expansion of the autophagosome[7,9]. The conjugation of the membrane lipid phosphatidylethanolamine with the soluble form of LC3 and formation of the ATG5-ATG12-ATG16L1 complex is necessary for the maturation of autophagosomes[7,9,10]. Matured autophagosomes are fused with lysosomes for the degradation of cellular materials. Vesicles containing ATG16L1 are necessary formembrane trafficking and autophagosome formation[7,9,10]. Thus, ATG16L1 is an essential protein for the induction and completion of autophagic responses.

    Table 1 Physiological functions of autophagy related 16 like 1

    ATG16L1 AND lNNATE lMMUNlTY

    ATG16L1 has been shown to attenuate proinflammatory cytokine responses in innate immunity(Table 1)[8]. RLRs, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), are sensors for RNA viruses[3]. IFN-I, which is produced after viral RNA is sensed by RLRs, plays a protective role in host defense[3]. Mouse embryonic fibroblasts deficient in ATG5 displayed enhanced production of IFN-I after exposure to vesicular stomatitis virus due to enhanced activation of IFN regulatory factor 3[11]. Enhanced production of IFN-I is associated with reduced viral load[11]. ATG16L1 is involved in the regulation of IFN-I mediated by RLRs. Two mitochondrial proteins, NLRX1 and its binding partner,Tu translation elongation factor, interact with ATG5, ATG12, and ATG16L1, and suppress RLR-induced IFN-I production and thereby promoting autophagy[12]. In addition, ATG16L1 has been shown to regulate IFN-I production by interacting with TLR3 and TLR4[13]. Samieet al[13] have provided evidence that macrophages deficient in ATG16L1 produced large amounts of IFN-I after stimulation with TLR3 and TLR4 Ligands (Figure 1). Mechanistically, the loss of ATG16L1 resulted in the accumulation of the toll-IL-1 receptor domain-containing adaptor inducing IFN-β protein (TRIF), leading to the excessive activation of TLR3- and TLR4-mediated signaling pathways. Interestingly, macrophages isolated from individuals bearing the CD-associated ATG16L1 T300A variant also exhibited enhanced IFN-I production upon stimulation with TLR3 and TLR4 Ligands[13]. Thus, ATG16L1 functions as a negative regulator of IFN-I production induced by TLR activation. Excessive activation of IFN-I signaling caused by ATG16L1 deficiency may protect against microbial infection. In fact, ATG16L1 hypomorphic mice displayed enhanced IFN-I signaling upon challenge withCitrobacter rodentium,which conferred protection from enteric pathogen infection[14]. This protection was mediated by mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING) proteins, because mice with hypomorphic ATG16L1 expression and deficient in MAVS or STING were not protected from theC.rodentiuminfection. Similarly, the clearance ofSalmonella typhimuriumfrom the intestine was augmented in mice with myeloid cell-specific ATG16L1 deficiency in an IFN-I-dependent manner[13].IL-22 is a barrier protective cytokine that stimulates antimicrobial responses in the intestine[15]. IL-22 induces STING-dependent IFN-I signaling, which is augmented in the absence of ATG16L1[15]. Such enhanced IFN-I signaling promotes TNF-α production, leading to ileal inflammation, suggesting that ATG16L1 deficiency mediates pro-inflammatory TNF-α responses through cooperative interaction between IL-22 and IFN-I[15]. Taken together, these studies suggest that ATG16L1 dampens IFN-I production mediated by RLRs and TLRs. In turn, the lack of negative regulation of IFN-I signaling owing to the absence of ATG16L1 or the presence of ATG16L1 T300A variant mediates protection from microbial infection in the gastrointestinal tract in an IFN-I-dependent manner.

    In addition to attenuating IFN-I production, ATG16L1 also suppresses IL-1β production by macrophages[16,17]. Macrophages expressing ATG16L1 that lacks the coiled-coil domain produced large amounts of IL-1β upon stimulation with lipopolysaccharide (LPS) (Figure 1)[17]. Pro-IL-1β is processed into the mature form of IL-1β by caspase-1[18]. Accumulation of TRIF is involved in enhanced IFN-I production in the absence ofATG16L1or presence of theATG16L1T300A mutation[13]. Similarly,TRIF-dependent activation of caspase-1 leads to increased production of IL-1β in macrophages lacking ATG16L1[17]. In a murine model of urinary tract infection, ATG16L1 deficiency promoted clearance of uropathogenicEscherichia colithrough excessive production of IL-1β[19]. Thus, ATG16L1 negatively regulates pro-inflammatory pathways mediated not only by IFN-I, but also by IL-1β.

    Regulatory T cells (Tregs) expressing forkhead box P3 (FOXP3) are a specialized T cell population that is indispensable for the establishment and maintenance of immunological self-tolerance[20].Impaired activation of Tregs leads to the development of autoimmune disorders.Bacteroides fragilis(B.fragilis) has been considered to stimulate beneficial immunoregulatory functions through induction of Tregs[21]. Chuet al[22] provided evidence that ATG16L1 expressed in DCs was required for the induction of Tregs expressing FOXP3 upon exposure to outer membrane vesicles (OMVs) ofB. fragilis.Oral administration of OMVs fromB. fragilisprotected wild-type mice from experimental colitis[22],and this effect was accompanied by increased proportions of Tregs expressing FOXP3 and IL-10. Such protective effect of oral administration of OMVs was not seen in mice with DC-specific ATG16L1 deficiency. Thus, ATG16L1 is involved in the maintenance of immune homeostasis through induction of Tregs expressing FOXP3.

    Mutations inNOD2are the strongest risk factor for the development of CD[5,6]. MDP, a bacterial component derived from intestinal bacteria, is a prototypical NOD2 ligand[23,24]. Activation of NOD2 by MDP induces autophagy in macrophages, DCs, and fibroblasts, but not in cells harboring CDassociatedNOD2mutations[25]. Physical interaction between NOD2 and ATG16L1 is induced by the stimulation with MDP[25,26]. Thus, MDP activation of NOD2 mediates bactericidal effects in an ATG16L1-dependent manner, and the presence of CD-associatedNOD2mutations promotes overgrowth of intestinal bacteria, leading to excessive production of pro-inflammatory cytokines.

    Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) is a signaling molecule downstream of NOD2 and TLRs[23,24]. It remains unclear whether ATG16L1 binds to RIPK2 after activation of NOD2. In this regard, we confirmed that ATG16L1 binds to the kinase domain of RIPK2 in overexpression studies[26,27]. In human DCs, ATG16L1 interacted with RIPK2 after the stimulation with MDP and this interaction suppressed NF-κB-dependent proinflammatory responses mediated by TLRs[26,27]. Transfection of intactATG16L1, but not ofATG16L1with the T300A mutation, reduced TLR2-mediated NF-κB activation in human embryonic kidney cells. In the physiological setting, NF-κB activation, as assessed by the degradation of IκBα and expression of phospho-IκBα, was markedly suppressed in human DCs stimulated with TLR2 and NOD2 ligands as compared to the effect of stimulation with a TLR2 ligand alone[26,27]. Furthermore, knockdown ofATG16L1by its specific siRNA increased IL-6 and IL-12p40 production by human DCs upon exposure to TLR2 and NOD2 ligands as compared to the levels of those cytokines in cells transfected with control siRNA[26,27].These studies strongly suggest that ATG16L1 functions as a negative regulator of TLR2-mediated proinflammatory cytokine responses (Figure 1).

    NF-κB activation mediated by TLRs and NOD2 is tightly regulated by Lys (K63)- linked polyubiquitination of RIPK2[23,24,27,28]. As for the molecular mechanisms accounting for the suppression of TLR2-mediated NF-κB activation and pro-inflammatory cytokine production, ATG16L1 has been shown to inhibit polyubiquitination of RIPK2[26,28]. NOD2 activation by MDP also inhibited polyubiquitination of RIPK2 through the induction of interferon regulatory factor 4 (IRF4)[23,24]. Overexpression studies revealed that ATG16L1 and IRF4 act cooperatively to suppress K63-linked polyubiquitination of RIPK2[27]. Given that physical interaction between RIPK2 and IRF4 or ATG16L1 is induced after NOD2 activation by MDP, it is likely that NOD2 downregulates TLR-mediated proinflammatory cytokine responses through binding of ATG16L1 and IRF4 to RIPK2. This idea is fully supported by the fact that RIPK2 expression level is markedly elevated in the colonic mucosa of patients with CD and ulcerative colitis (UC), and it corelates with the levels of pro-inflammatory cytokines, such as TNF-α and IL-6[29].Furthermore, the percentages of lamina propria DCs expressing ATG16L1 and IRF4 in the colon inversely correlate with the expression levels of TNF-α and IL-6[27]. Collectively, these studies support the idea that ATG16L1 acts in concert with NOD2 to suppress excessive pro-inflammatory cytokine responses mediated by TLRs and thereby maintains intestinal homeostasis.

    ATG16L1 AND CD

    The polymorphism Thr300Ala (or T300A) in the coding region of theATG16L1gene confers increased risk for the development of CD[6,10,16]. This polymorphism is a loss-of-function mutation, which affects the induction of autophagy against invading bacteria and is associated with gut bacterial overgrowth and pro-inflammatory cytokine responses[6,10,16]. Recent studies have successfully elucidated some of the molecular mechanisms accounting for the development of CD in the presence of the ATG16L1 T300A variant. Given that ATG16L1 is constitutively expressed in epithelial cells,especially Paneth cells and myeloid cells, these studies have highlighted the importance of ATG16L1-mediated signaling pathways in innate immune cells for the immunopathogenesis of CD[17,25,28,30,31].

    Paneth cells are localized at the base of the crypts in the ileum, and they contribute to the maintenance of intestinal homeostasis through the secretion of antimicrobial peptides (AMPs) and inhibition of intestinal bacterial overgrowth[32]. Mice with hypomorphic expression of ATG16L1 and ATG16L1 T300A-knockin (KI) mice exhibit increased proportions of Paneth cells with abnormal phenotypes, as assessed by lysozyme localization and granule morphology[30-32]. Moreover, Paneth cells from patients with CD carrying ATG16L1 T300A have unusual granule morphology and accumulation of AMPs, with both having been observed also in mice deficient in ATG16L1 or expressing ATG16L1 T300A[32]. Furthermore, defective function of Paneth cells in the absence of ATG16L1 or the presence of theATG16L1T300A mutation led to higher susceptibility to TNF-α-mediated necroptosis and accumulation of the endoplasmic reticulum stress sensor IRE1a, indicating that necroptosis and endoplasmic reticulum stress are involved in the pathogenesis of CD[33]. Thus, the ileal mucosa of patients and mice bearing ATG16L1 T300A is characterized by the defective function of Paneth cells,which results in the overgrowth of intestinal bacteria. This notion is supported by the fact that CD patients bearing theATG16L1T300A mutation display impaired clearance of pathogenic bacteria in the ileal mucosa[34]. It is well established that CD occurs as a result of the interplay between genetic susceptibility and environmental factors. Cigarette smoking is a risk factor for developing CD[35].Interestingly, cigarette smoking has been suggested to amplify effects of theATG16L1T300A mutation,triggering Paneth cell defects, thereby causing chronic intestinal inflammation[31].

    Pro-inflammatory cytokine responses play an important role in the development of CD[1]. TheATG16L1T300A mutation has been shown to enhance pro-inflammatory cytokine responses in the intestine. Mice lacking ATG16L1 in hematopoietic cells were susceptible to dextran sodium sulfate(DSS)-induced colitis[17]. Aggravated DSS-induced colitis in mice lacking ATG16L1 was alleviated by blocking IL-1β-mediated signaling pathways[17]. Furthermore, macrophages lacking ATG16L1 produced more IL-1β upon stimulation with LPS[17]. As for the molecular mechanisms accounting for enhanced production of IL-1β in the absence of ATG16L1, Saitohet al[17] showed that ATG16L1 deficiency resulted in increased production of this cytokine through the TRIF-dependent activation of caspase-1. Thus, ATG16L1 deficiency predisposed mice to DSS-induced colitis by activating IL-1βmediated signaling pathways. In line with these data obtained in mice lacking ATG16L1 in hematopoietic cells, ATG16L1 T300A-KI mice displayed enhanced production of IL-1β upon exposure to LPS[16]. These studies, which utilized ATG16L1-deficient and ATG16L1 T300A-KI mice, support the idea that intact ATG16L1-medaited signaling pathways limit pro-inflammatory cytokine responses triggered by activation of TLRs. In this regard, we and others have reported that ATG16L1 negatively regulates pro-inflammatory cytokine responses mediated by RIPK2, a downstream signaling molecule of TLRs and NLRs[27,28]. Binding of ATG16L1 to the kinase domain of RIPK2 inhibits polyubiquitination of RIPK2, followed by suppression of NF-κB activation[27,28]. These studies strongly suggest that ATG16L1 activation maintains intestinal homeostasis and attenuates reactions against microbiota by inhibiting TLR-mediated pro-inflammatory cytokine responses in macrophages and DCs. Strong support for this idea also comes from the observations that colonic pro-inflammatory cytokine expression inversely correlates with the percentage of CD11c+DCs expressing ATG16L1 in patients with CD and that induction of remission is accompanied by accumulation of CD11c+DCs expressing ATG16L1 in the gastrointestinal tract of patients with CD[27].

    ATG16L1 negatively regulates IFN-I responses mediated by RLRs and TLRs[11-14]. Isolated macrophages from patients with CD bearing theATG16L1T300A mutation produced more IFN-I upon stimulation with TLR3 and TLR4 ligands than macrophages from patients with intact ATG16L1[13,36].Excessive production of IFN-I is involved in the immunopathogenesis of CD and UC. Expression levels of the IFN-stimulated genes was shown to be higher in the inflamed colonic mucosa of patients with CD or UC than in healthy controls[13]. Moreover, expression levels of IFN-stimulated genes rapidly declined in response to infliximab treatment. Although the presence of theATG16L1T300A variant is associated with colitogenic IFN-I responses, the enhanced production of IFN-I may improve survival of patients with colorectal cancer[36].

    Similar to the molecular mechanisms of chronic inflammation in the presence of CD-associated mutations inNOD2,theATG16L1T300A mutation promotes the development of CD by causing impaired production of AMPs in Paneth cells and excessive secretion of TLR-mediated pro-inflammatory cytokines by macrophages and DCs. MDP activation of NOD2 induces robust production of AMPs from Paneth cells, thereby preventing bacterial overgrowth in the intestine[5]. Paneth cells deficient in NOD2 or bearing CD-associatedNOD2mutations fail to produce AMPs[5]. With regard to the pro-inflammatory cytokine responses, activation of intact NOD2 by MDP negatively regulates the production of TLR-mediated pro-inflammatory cytokines through the induction of IRF4[23,24]. In the absence of intactNOD2or the presence of CD-associatedNOD2mutations, pro-inflammatory cytokine responses by DCs are markedly enhanced upon exposure to TLR ligands derived from the intestinal microbiota[5]. Thus, impaired function of Paneth cells and excessive pro-inflammatory cytokine responses by TLRs underlie the immunopathogenesis of CD in the presence ofATG16L1andNOD2mutations.

    CONCLUSlON

    The autophagic protein ATG16L1 plays an indispensable role in the maintenance of intestinal homeostasis. TheATG16L1T300A mutation confers an increased risk for the development of CD as it is associated with increased bacterial burden and excessive pro-inflammatory cytokine responses in the gastrointestinal tract. Elucidation of the molecular mechanisms by which theATG16L1T300A variant leads to the development of CD has provided new insights into the immunopathogenesis of CD induced by impaired induction of autophagy.

    ACKNOWLEDGEMENTS

    We appreciate Ms. Yukiko Ueno for her secretarial support.

    FOOTNOTES

    Author contributions:Okai N and Watanabe T drafted the manuscript; Watanabe T, Minaga K, Kamata K, Honjo H,and Kudo M revised the manuscript; OKai N, Watanabe T, Minaga K, Kamata K, Honjo H and Kudo M have read and approved the final manuscript.

    Conflict-of-interest statement:The authors declare that they have no conflicts of interest to disclose.

    Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    Country/Territory of origin:Japan

    ORClD number:Natsuki Okai 0000-0002-3167-4927; Tomohiro Watanabe 0000-0001-7781-6305; Kosuke Minaga 0000-0001-5407-7925; Ken Kamata 0000-0003-1568-0769; Hajime Honjo 0000-0002-0888-3384; Masatoshi Kudo 0000-0002-4102-3474.

    Corresponding Author's Membership in Professional Societies:The Japanese Society of Gastroenterology, No. 34410.

    S-Editor:Ma YJ

    L-Editor:A

    P-Editor:Ma YJ

    国产亚洲精品久久久久5区| 男人的好看免费观看在线视频 | 动漫黄色视频在线观看| 人人妻人人澡欧美一区二区| 久久久久久国产a免费观看| 久久九九热精品免费| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频| 三级男女做爰猛烈吃奶摸视频| 中文字幕人成人乱码亚洲影| а√天堂www在线а√下载| 国产成人aa在线观看| 99热这里只有是精品50| 国产精品国产高清国产av| 免费看a级黄色片| 久久久国产精品麻豆| 真人一进一出gif抽搐免费| 精品久久久久久久久久久久久| 欧美精品啪啪一区二区三区| 在线视频色国产色| 日本免费a在线| 热99re8久久精品国产| 欧美最黄视频在线播放免费| 日本免费一区二区三区高清不卡| 久久久国产精品麻豆| 国产成人aa在线观看| 国产99久久九九免费精品| 亚洲国产高清在线一区二区三| 亚洲精品久久成人aⅴ小说| 欧美日韩乱码在线| 色av中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩av在线大香蕉| 久久伊人香网站| 亚洲av中文字字幕乱码综合| 麻豆一二三区av精品| 亚洲av五月六月丁香网| 国产精品久久久人人做人人爽| 亚洲aⅴ乱码一区二区在线播放 | 亚洲中文av在线| 真人一进一出gif抽搐免费| 99热这里只有是精品50| 欧美一区二区精品小视频在线| 亚洲精品美女久久久久99蜜臀| 一本久久中文字幕| 看免费av毛片| 久久久久亚洲av毛片大全| 国产亚洲欧美在线一区二区| 欧美色欧美亚洲另类二区| 亚洲中文日韩欧美视频| 2021天堂中文幕一二区在线观| 午夜福利免费观看在线| 成人国语在线视频| 香蕉久久夜色| 在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 在线观看66精品国产| 两个人免费观看高清视频| 国产精品九九99| 欧美性猛交╳xxx乱大交人| 男人舔女人下体高潮全视频| 日韩成人在线观看一区二区三区| 国产男靠女视频免费网站| 国产精品久久久久久精品电影| 女生性感内裤真人,穿戴方法视频| 制服丝袜大香蕉在线| 国产成人影院久久av| 久久精品91蜜桃| 精品人妻1区二区| 精品国产美女av久久久久小说| 99在线人妻在线中文字幕| 免费电影在线观看免费观看| 成在线人永久免费视频| 国产亚洲欧美98| 亚洲专区字幕在线| 免费av毛片视频| 免费看十八禁软件| 99热这里只有是精品50| 神马国产精品三级电影在线观看 | 好看av亚洲va欧美ⅴa在| 麻豆一二三区av精品| 国产三级中文精品| 欧美日韩乱码在线| 中文在线观看免费www的网站 | 亚洲人成伊人成综合网2020| 日本熟妇午夜| 18禁黄网站禁片免费观看直播| 亚洲七黄色美女视频| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 1024香蕉在线观看| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 国产一区在线观看成人免费| 日韩高清综合在线| 成人一区二区视频在线观看| 村上凉子中文字幕在线| 免费搜索国产男女视频| 国产成人av激情在线播放| 亚洲精品中文字幕在线视频| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 一进一出好大好爽视频| 给我免费播放毛片高清在线观看| 国产av麻豆久久久久久久| 日韩欧美国产一区二区入口| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| 岛国在线观看网站| 在线免费观看的www视频| 亚洲成av人片免费观看| 窝窝影院91人妻| av中文乱码字幕在线| 日韩欧美一区二区三区在线观看| 18禁国产床啪视频网站| 久久中文看片网| 精品久久久久久久毛片微露脸| 国产精品自产拍在线观看55亚洲| 深夜精品福利| 舔av片在线| 精华霜和精华液先用哪个| 在线观看www视频免费| 亚洲成人久久性| 精品一区二区三区视频在线观看免费| 国产精品免费视频内射| 一边摸一边做爽爽视频免费| 欧美成人午夜精品| 亚洲国产高清在线一区二区三| 三级国产精品欧美在线观看 | www日本在线高清视频| 亚洲国产精品合色在线| 欧美乱色亚洲激情| 亚洲自偷自拍图片 自拍| 岛国在线观看网站| 国产精品亚洲一级av第二区| 在线a可以看的网站| 成人特级黄色片久久久久久久| 妹子高潮喷水视频| 国产高清视频在线播放一区| 波多野结衣高清无吗| 亚洲美女黄片视频| 国产精品久久久av美女十八| 国产一区二区在线观看日韩 | 精品免费久久久久久久清纯| 国产精品久久久久久人妻精品电影| 免费搜索国产男女视频| 黄片大片在线免费观看| 午夜福利视频1000在线观看| 久99久视频精品免费| 亚洲成a人片在线一区二区| 国产精品亚洲av一区麻豆| 午夜福利成人在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品人妻蜜桃| 国内精品久久久久精免费| 亚洲成av人片在线播放无| 岛国在线观看网站| 日本黄色视频三级网站网址| 黄色 视频免费看| 人人妻人人澡欧美一区二区| 午夜a级毛片| 日韩成人在线观看一区二区三区| 身体一侧抽搐| 啦啦啦免费观看视频1| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 欧美黄色片欧美黄色片| 亚洲成人国产一区在线观看| 国产亚洲欧美在线一区二区| а√天堂www在线а√下载| 欧美黑人巨大hd| 1024手机看黄色片| 国产在线精品亚洲第一网站| 日韩欧美国产在线观看| 怎么达到女性高潮| 成人永久免费在线观看视频| 欧美日韩精品网址| 精品国产亚洲在线| 日韩免费av在线播放| 中文字幕人成人乱码亚洲影| 一进一出好大好爽视频| 国产精品日韩av在线免费观看| 91av网站免费观看| 色精品久久人妻99蜜桃| 麻豆成人午夜福利视频| 亚洲第一欧美日韩一区二区三区| 久久国产精品人妻蜜桃| 亚洲av成人一区二区三| 婷婷亚洲欧美| 日韩欧美 国产精品| 欧美在线黄色| 日韩三级视频一区二区三区| 我要搜黄色片| a级毛片在线看网站| 一级作爱视频免费观看| 老司机福利观看| 久久热在线av| netflix在线观看网站| 亚洲国产精品合色在线| 久久婷婷成人综合色麻豆| 97人妻精品一区二区三区麻豆| av欧美777| 国产精品日韩av在线免费观看| 久久人妻福利社区极品人妻图片| 国产成人影院久久av| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 黑人操中国人逼视频| 久久久久久免费高清国产稀缺| 国产亚洲精品第一综合不卡| 久久天堂一区二区三区四区| 天天添夜夜摸| 免费看十八禁软件| aaaaa片日本免费| 国产片内射在线| 国产亚洲精品综合一区在线观看 | 淫秽高清视频在线观看| 一级片免费观看大全| 久99久视频精品免费| 日韩欧美在线二视频| 男男h啪啪无遮挡| 欧美精品亚洲一区二区| 18禁观看日本| 国产免费av片在线观看野外av| 亚洲狠狠婷婷综合久久图片| 国模一区二区三区四区视频 | 欧美色视频一区免费| 亚洲精品国产一区二区精华液| 国产1区2区3区精品| 亚洲专区国产一区二区| 男人舔女人的私密视频| av欧美777| 亚洲人成77777在线视频| 中国美女看黄片| 亚洲一区高清亚洲精品| 淫妇啪啪啪对白视频| 日韩国内少妇激情av| 国产爱豆传媒在线观看 | www国产在线视频色| 国产成人av激情在线播放| 757午夜福利合集在线观看| 国产精品综合久久久久久久免费| 国产又色又爽无遮挡免费看| 亚洲国产欧美人成| 亚洲精华国产精华精| 久久久久久亚洲精品国产蜜桃av| 黑人欧美特级aaaaaa片| 欧美性长视频在线观看| 午夜视频精品福利| 国产精品av视频在线免费观看| 久久久精品欧美日韩精品| 亚洲成av人片免费观看| 久久人妻av系列| 日本一本二区三区精品| 波多野结衣巨乳人妻| 日韩国内少妇激情av| 18禁观看日本| 亚洲精品国产精品久久久不卡| 久久九九热精品免费| 欧美一级毛片孕妇| 国产探花在线观看一区二区| 亚洲国产精品久久男人天堂| 久久午夜综合久久蜜桃| 人妻丰满熟妇av一区二区三区| 亚洲 欧美一区二区三区| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| www日本黄色视频网| 欧美性猛交黑人性爽| 99riav亚洲国产免费| 91麻豆av在线| 免费一级毛片在线播放高清视频| 亚洲国产精品合色在线| 男女午夜视频在线观看| 国产精品九九99| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 午夜精品在线福利| 精品午夜福利视频在线观看一区| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 亚洲精品中文字幕一二三四区| www.熟女人妻精品国产| 在线a可以看的网站| 亚洲av成人av| av片东京热男人的天堂| 欧美精品亚洲一区二区| 亚洲18禁久久av| 午夜老司机福利片| 99国产精品一区二区三区| 国产欧美日韩一区二区三| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 亚洲成人中文字幕在线播放| 久久久久九九精品影院| 欧美高清成人免费视频www| 在线观看一区二区三区| 国产av又大| 韩国av一区二区三区四区| 国产av不卡久久| 国内久久婷婷六月综合欲色啪| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 十八禁人妻一区二区| 亚洲最大成人中文| 午夜亚洲福利在线播放| 搞女人的毛片| 日韩欧美免费精品| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 九色国产91popny在线| 国产不卡一卡二| 国产成人欧美在线观看| 人人妻人人澡欧美一区二区| 桃色一区二区三区在线观看| 男女午夜视频在线观看| 欧美丝袜亚洲另类 | 美女午夜性视频免费| 最新在线观看一区二区三区| 日韩欧美精品v在线| 久久久久性生活片| 最好的美女福利视频网| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| 91国产中文字幕| 国产精品免费视频内射| 亚洲精品久久国产高清桃花| 熟女电影av网| 给我免费播放毛片高清在线观看| 不卡一级毛片| 十八禁人妻一区二区| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| 亚洲最大成人中文| 69av精品久久久久久| 国产伦在线观看视频一区| 亚洲狠狠婷婷综合久久图片| 香蕉久久夜色| 精品免费久久久久久久清纯| 色老头精品视频在线观看| а√天堂www在线а√下载| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 欧美性猛交黑人性爽| 看片在线看免费视频| 久久精品影院6| 精品一区二区三区av网在线观看| 99热只有精品国产| 亚洲人成网站高清观看| 深夜精品福利| 可以在线观看毛片的网站| 深夜精品福利| 成人欧美大片| 亚洲中文av在线| 日日爽夜夜爽网站| 琪琪午夜伦伦电影理论片6080| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 淫妇啪啪啪对白视频| 日本精品一区二区三区蜜桃| 久久国产精品人妻蜜桃| 老汉色av国产亚洲站长工具| 99精品在免费线老司机午夜| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| 91九色精品人成在线观看| 一个人免费在线观看的高清视频| 99国产精品99久久久久| 丝袜美腿诱惑在线| 欧美激情久久久久久爽电影| 久久精品91无色码中文字幕| 国产午夜福利久久久久久| 午夜精品在线福利| 亚洲全国av大片| 三级毛片av免费| 久久久久亚洲av毛片大全| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 国产av一区二区精品久久| 午夜成年电影在线免费观看| 一进一出好大好爽视频| 精品国产乱子伦一区二区三区| 99在线人妻在线中文字幕| 国产av麻豆久久久久久久| 色综合站精品国产| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 99在线视频只有这里精品首页| 两个人的视频大全免费| 国产成人av教育| www.自偷自拍.com| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 校园春色视频在线观看| 亚洲激情在线av| 国产在线精品亚洲第一网站| 国产精品九九99| netflix在线观看网站| 免费观看人在逋| 日韩精品中文字幕看吧| 麻豆av在线久日| 国产亚洲av高清不卡| 精品不卡国产一区二区三区| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 日本三级黄在线观看| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 亚洲人成网站高清观看| 色综合站精品国产| 亚洲自偷自拍图片 自拍| 久久久久久久精品吃奶| 日本黄色视频三级网站网址| 亚洲人成电影免费在线| 久久久久亚洲av毛片大全| 亚洲免费av在线视频| 欧美av亚洲av综合av国产av| 成人18禁在线播放| 亚洲精品美女久久久久99蜜臀| 国产1区2区3区精品| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 青草久久国产| 久久久久亚洲av毛片大全| 国产成人欧美在线观看| 黄色女人牲交| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 免费在线观看成人毛片| 18禁黄网站禁片免费观看直播| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久久毛片| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 欧美黄色淫秽网站| 久久99热这里只有精品18| xxx96com| 中文字幕熟女人妻在线| 手机成人av网站| 日韩大码丰满熟妇| 久久久久久人人人人人| 国产成人欧美在线观看| 久久精品国产清高在天天线| 天堂av国产一区二区熟女人妻 | 亚洲avbb在线观看| 99精品欧美一区二区三区四区| 免费一级毛片在线播放高清视频| 亚洲精品中文字幕一二三四区| 麻豆成人av在线观看| 成年人黄色毛片网站| 波多野结衣高清无吗| 人妻久久中文字幕网| 国产精品免费一区二区三区在线| 色综合婷婷激情| 两个人视频免费观看高清| 中文亚洲av片在线观看爽| 亚洲成人久久爱视频| 国产精品久久久av美女十八| 久久国产精品人妻蜜桃| 中文字幕熟女人妻在线| 亚洲欧美精品综合一区二区三区| av福利片在线| 国产一区二区在线观看日韩 | 1024手机看黄色片| 亚洲成人精品中文字幕电影| 制服人妻中文乱码| 国产精品爽爽va在线观看网站| 色老头精品视频在线观看| 青草久久国产| 午夜影院日韩av| 国产av一区在线观看免费| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| 麻豆av在线久日| 18禁观看日本| 精品久久久久久成人av| 亚洲熟妇熟女久久| 国产伦一二天堂av在线观看| 欧美成人一区二区免费高清观看 | 国产精品爽爽va在线观看网站| 色老头精品视频在线观看| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av高清一级| 中文资源天堂在线| 国产三级黄色录像| 一级毛片女人18水好多| 一进一出好大好爽视频| 午夜久久久久精精品| 国产高清激情床上av| 99久久综合精品五月天人人| av天堂在线播放| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 亚洲成人国产一区在线观看| 欧美一级毛片孕妇| 日韩免费av在线播放| 俺也久久电影网| 色老头精品视频在线观看| 亚洲av电影在线进入| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| aaaaa片日本免费| 亚洲成人久久性| 久久久久九九精品影院| 曰老女人黄片| 香蕉丝袜av| 欧美最黄视频在线播放免费| 久久天堂一区二区三区四区| 精品午夜福利视频在线观看一区| 亚洲av成人不卡在线观看播放网| 国产精华一区二区三区| 成年版毛片免费区| 少妇裸体淫交视频免费看高清 | 亚洲欧美精品综合一区二区三区| 精品国产乱码久久久久久男人| 国产激情偷乱视频一区二区| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久| 中文字幕人成人乱码亚洲影| 桃色一区二区三区在线观看| 日韩免费av在线播放| 毛片女人毛片| 小说图片视频综合网站| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 国产精品日韩av在线免费观看| 黄色a级毛片大全视频| 欧美午夜高清在线| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 三级毛片av免费| 午夜视频精品福利| 给我免费播放毛片高清在线观看| 久久国产精品影院| 免费搜索国产男女视频| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 在线国产一区二区在线| 黄色视频不卡| 中文字幕久久专区| 国产成年人精品一区二区| 亚洲人成网站高清观看| 国产欧美日韩精品亚洲av| svipshipincom国产片| 国产精品一及| 黄色a级毛片大全视频| 88av欧美| 亚洲天堂国产精品一区在线| 久久婷婷人人爽人人干人人爱| 成人亚洲精品av一区二区| av国产免费在线观看| 可以免费在线观看a视频的电影网站| 日本五十路高清| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| av福利片在线| 少妇粗大呻吟视频| 99在线视频只有这里精品首页| 99热这里只有是精品50| 免费高清视频大片| 国产激情欧美一区二区| 亚洲熟妇熟女久久| 色精品久久人妻99蜜桃| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 一本综合久久免费| 国产成人精品久久二区二区91| 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 国产激情久久老熟女| 亚洲激情在线av| 精品久久久久久久人妻蜜臀av| 亚洲av第一区精品v没综合| 国产精品一区二区三区四区免费观看 | 999精品在线视频| 好男人在线观看高清免费视频| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 欧美日韩黄片免| 精品欧美国产一区二区三| 老汉色∧v一级毛片| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽| 毛片女人毛片| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 男女午夜视频在线观看|