• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structured Controller Design for Interconnected Systems via Nonlinear Programming

    2022-07-18 06:17:42YanpengGuanJunpengDuandXinchunJia
    IEEE/CAA Journal of Automatica Sinica 2022年7期

    Yanpeng Guan, Junpeng Du, and Xinchun Jia,,

    Dear Editor,

    This letter deals with the structural controller design problem of interconnected systems with unknown feedback topology. Firstly,under a cardinality constraint on the directed communication links among sub-controllers, a distributed controller’s feedback gain and feedback topology are incorporated in a unified co-design framework. Secondly, the cardinality constraint introduced in the distributed control is represented by a binary integer programming.To deal with the complementary constraint, a nonlinear programming(NLP) is proposed to relax the binary integer programming. Finally,incorporating the NLP into the standard distributed event-triggered control method, an algorithm is developed for interconnected systems to simultaneously design the feedback topology and controller gain.

    An interconnected system is composed of several coupling subsystems, which usually coordinate with each other to accomplish a common task. Such systems exist in a large number of practical scenarios, such as power plants [1], intelligent transportation [2]. Due to their complex structure, large scale and comprehensive functions,interconnected systems are also referred to as large scale systems.With the rapid progress in embedded microprocessors and communication technology, a great amount of concern has been devoted to how to control the thriving interconnected systems [3].

    It is noted that existing distributed control strategies are mainly claimed over prescribed feedback topologies. In this way, since the distributed controller design and the feedback topology design are mutually independent, the following two unexpected cases may emerge. On the one hand, the preset feedback topology may provide redundant communication channels, which could lead to unnecessary expenditure and malicious attacks. On the other hand, it is also perhaps that the preset feedback topology could not support the required control performance, which leaves the issue of distributed controller design unsolvable. While a feasible solution can be obtained with a minor modification of the feedback topology.Therefore, one promising way to deal with the challenge is to codesign of the feedback topology and feedback gain for an interconnected system, which is the motivation of this letter.

    The overall controller gain of an interconnected system is usually a matrix with zero blocks, where each matrix block represents a channel gain and a null block implies no channel is set. Therefore,for an interconnected system, the design of a structured controller with unknown zero/nonzero structure is actually a co-design of feedback topology and feedback gain. With given controller structure, a chordal decomposition method is proposed to design sparse structured controller gain [4]. A structured controller design method is developed via constraining some decision matrix variables in the Lyapunov method [5]. In the case when feedback topology is not preset, the structured controller design problem becomes nondeterministic polynomial (NP) hard due to its combinatorial property[6]. By decomposing a nonlinear term existed in a linear matrix inequality into linear ones, a sparse promoting algorithm is presented for a liner system [7]. But a clear relationship between the sparse structure and feedback topology is not established. A alternating direction multipliers method is developed for the sake of generating a feedback gain with as many zero elements as possible in an optimal control problem [8]. A weightedl1iterative algorithm is proposed for interconnected systems to generate controller gains with null blocks[9]. More recently, a structured controller design method is proposed in [10] through a regularized mixed-integer programming (RMIP). It is noted that the method in [10] is one-step with a fixed sparsity,while iterative procedures are utilized in [9] to gradually promote sparsity in controller gain. However, one drawback of the former approach [10] is that a sufficient large upper bound should be preset for the expected structured controller gain in advance.

    On the other hand, event-triggered transmission strategy (ETS) has witnessed incredible developments over the past decade due to its advantage on resource saving [11]. In effect, the way that ETS savs resources by reducing redundant transmissions, is exactly a sparsification of feedback traffic flow in some specific channel(s).While it is obvious that sparsification of feedback topology could save the transmission resources by reducing redundant feedback communication channels, which is also an important motivation of structure controller design.

    This letter is going to investigate the issue of structured controller design for event-triggered interconnected systems via NLP. The main contributions of this letter are: 1) An algorithm based on NLP is developed to deal with the NP hard cardinality constraint. Compared withl1iterative algorithms, the initial point is not required to set beforehand; Compared with RMIP, the preset bound for controller gain is no longer needed. 2) A practicable solution is provided to codesign of feedback topology and feedback gain for event-triggered interconnected systems. And the limited transmission resources can be substantially saved from reducing redundant feedback channels as well as from reducing unnecessary transmissions in the remaining feedback channels.

    Problem statement:Consider an interconnected system that is comprised of some coupling subsystems with the model of

    wherej∈:={1,2,...,N},xj(t) denote the state vector;uj(t)represent control input generated via sub-controllerj;A jandBjare known matrices;Hjiis a constant matrix representing a coupling gain from subsystemitoj. Fig. 1 schematically illustrates the considered interconnected system.

    Each subsystem is equipped with a sub-controller, which could interact with other sub-controllers over networks. The controller for the overall system is composed ofNsub-controllers, and the form of each is given as follows:

    where the sub-controller gainsKjis are to be determined.

    It is noted that the zero/nonzero structure ofK jisconstitutes the communication topology among sub-controllers. Different from most of the existing system frameworks [12], the communication topology among sub-controllers is neither fixed nor stochastically varying in this letter, while it is to be determined under a cardinality constraint on the directed transmission links among sub-controllers.

    Fig. 1. A networked interconnected system.

    For the purpose of reducing occupation of the transmission resources, we utilize a distributed ETS (DETS) for the transmission of state measurement. An event threshold condition of sampled data is required to be evaluated before transmission. The DETS designed in this letter will only transmit data when the threshold is violated.

    In what follows,xj(kh) represents the signal sampled at instantkh.Only thexj(kh) that violates the following threshold condition will be transmitted to sub-controllerj:

    It is noted that controller gain K as well as its structure is to be designed in this letter. In the existing literature on controller design of interconnected systems, the communication topology among the sub-controllers is well set beforehand. But it is practically difficult to determine which sub-controllers should be connected in advance. For the sake of seeking some optimal control performance, it is nature to set as many feedback channels as possible. However, in this way, in addition to the waste of transmission resources to some extent, the establishment of too many communication channels can also easily incur network attacks [13]. Therefore, in this letter, we constrain the number of feedback communication channels among sub-controllers prior to the design of controller gains. This number is denoted as cardnd(K)with the following definition:

    Controller (5) with cardnd(K)≤κ will be termed a?-sparse structured controller, where κ ∈[0,N2?N) is an integer. Therefore,our purpose is to design a structured controller gain K which guarantees exponentially asymptotical stability of the following controlled system:

    where A and B can be easily obtained from (1).

    Remark 1: In the proposed system framework, to design a?-sparse structured controller for the interconnected system is actually a kind of co-design of feedback topology structure and the feedback gain for the system. Although the positive integer?is preset in this letter, it can be adjusted according to practical control and/or communication requirements. Generally, a larger?implies more feedback channels,better control performance and higher communication cost.Therefore, one purpose of structural controller design is to seek a tradeoff between control and communication performances.

    Remark 2: It is noted that all the subsystems inherit the same sampling rate in this letter. However, the developed approach applies to the multi-rate sampling scenario, where the issues of transmission delays and packet dropouts could also be considered.

    Structured controller design:It is noted that the main challenge of designing a allowable controller for event-triggered closed-loop systems (7)-(8) is how to deal with the cardinality constraint (8). We will first seek a centralized feedback gain for system (7), based on which, a?-sparse structured controller is to be designed.

    Theorem 1: With preset DETS(h,Γ,δ ), controller gain K and a positive scalarα, event-triggered system (7) is exponentially asymptotically stable, if one could find matricesX>0,Y>0,Z,Ssuch that

    where

    where

    Furthermore, a centralized controller gain is given as Kc=KX?1.And the weighting matrix is given as Γ =X?1?X?1.

    One can see that a feasible gain matrix Kcresulted from Theorem 2 does not inherit the required sparse structure. That is, the cardinality constraint cardnd(Kc)≤κ can not be guaranteed. However, from the way that Kcis generated, Kc=KX?1, one can find that cardnd(Kc)=cardnd(K)since invertible matrixXis block diagonal.Therefore, we can transfer the imposed cardinality constraint equivalently from KctoK. For this purpose, one can first partitionKinto blocks such thatKand K inherit the same block structure.Introduce a set of binary variables as follows:

    Then, the constraint c ardnd(K)≤κ can be equivalently transformed as

    To enlarge the feasible region of binary integer programming (14),we consider a relaxation of (14).

    It is noted that (15a) and (15b) still can not be directly applied into structured controller design due to the complementary constraintzjiKji=0.

    wherej≠i,K ji≤κ means that all the elements in matrixK jiare less than or equal toκwithκbeing a positive scalar. Then, we have the following result.

    Lemma 1: Given a scalarκ, constraint(K)≤κ is satisfied if and only if one could find matricesK jiand scalarsz ji,j,i∈Ξ,j≠isuch that

    Then, one can verify that (16a)?(16d) hold.

    Sufficient condition. It follows from conditions (16a) and (16b)that the number ofz jisatisfyingz ji>κ is at leastN(N?1)?κ.Therefore, conditions (16c) and (16d) lead to(K)≥N(N?1)?κ, which implies that c ardκnd(K)≤κ holds. ■

    By using Lemma 1, we can relax complementary constraint (15b)to nonlinear constraint (16b)?(16d), which can be easily resolved.Fig. 2 illustrates the feasible region of (16b)?(16d) in the scalar case,i.e., all of the matricesK jis are scalars. One can find from the figure that the feasible region of (16b)?(16d) can be described by some nonlinear functions [15].

    It follows the definition that(K) denotes the number ofK’s nondiagonal blocks whose elements can only vary between [?κ,κ].Therefore, asκapproaches 0,(K) approaches cardnd(K).Based on the NLP, we have the following Algorithm 1 to generate a feasible structured controller gain K with cardnd(K)≤κ, which guarantees exponentially asymptotical stability of event-triggered system (7).

    Remark 3: The values ofz jiandK jiare mutually constrained in binary integer programming (14) as well as in the nonlinear programming in Algorithm 1. In this case, the number of null or“small” blocks (K ji) can be constrained by constraining the sum ofz jis.

    Fig. 2. Feasible region of (16b)?(16d) in the scalar case.

    Remark 4: In Algorithm 1, the step length can take a larger value.For example, take κ=κ/10 in Step 4. After all, a smallerκimplies that the deleted block matrices are closer to a null matrix, and the verification in Step 4 is more likely to succeed. Or actually, one may directly obtain a feasible solution by taking a smaller enoughκonce and for all.

    Algorithm 1?-Sparse Structured Controller Design via NLP

    An example:We select a fourth-order power plant for simulation to validate the presented structured controller design approach. The power system consists of three subsystems. The modeling and parameters of the power plant can be found in [16].

    Chooseh=10 ms, α=0.01, δ=diag{0.1,0.2,0.1}. We takeκ=2 and κ0=0.01 in this example. Solving Algorithm 1 leads to a feasible K as follows:

    with

    In order to show the merits of the developed approach, we try to use some existing methods for sparsity optimization for the same power system, such as alternating direction method of multipliers(ADMM) in [8]. The ADMM is a typical sparsity promoting method in the literature. For the same example, the simulation results show that our nonlinear programming method can generate more zero blocks in the controller gain K in the limit case. Moreover,cardnd(K)can be easily adjustable with the developed approach.

    State responses of the controlled plant shows the exponential stability of the plant. Figs. 3?5 illustrate state responses of the controlled plant. Under the DETS. It is noted that within the simulation periodTs=6 s, the number of event-triggered transmissions in the three subsystems are respectively, 130, 135, and 136,all far less than 600, the numbers of transmissions under the periodic sampling/transmission strategy. This illustrates DETS’s merit on resource efficiency.

    Conclusions:The design of structured controller with sparse gain matrix for interconnected systems has been studied. The distributed control framework of an interconnected system under a DETS and unknown feedback topology has been developed for simultaneously designing of the feedback topology and feedback gain. The cardinality constraint involved in the structured controller design issue has been relaxed and resolved by a nonlinear programming. By incorporating the NLP into the standard centralized controller design method, an algorithm has been developed for designing sparse structured controller with cardinality constraint. The developed approach has been verified via a three machine interconnected power plant.

    Fig. 5. x 3(t)’s responses.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (61973201), and the Fundamental Research Program of Shanxi Province (20210302124030).

    国产色视频综合| 亚洲成人免费电影在线观看| 国产精品综合久久久久久久免费| 免费电影在线观看免费观看| 欧美成人性av电影在线观看| 国产成人一区二区三区免费视频网站| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久久人妻蜜臀av| 999久久久精品免费观看国产| 男人舔女人下体高潮全视频| 欧美成人性av电影在线观看| 久久久久国产一级毛片高清牌| 日本一本二区三区精品| 一级毛片女人18水好多| 成人精品一区二区免费| 精品卡一卡二卡四卡免费| 久久精品亚洲精品国产色婷小说| 黄片播放在线免费| 一级毛片高清免费大全| 精品国产亚洲在线| 中文字幕人妻丝袜一区二区| 给我免费播放毛片高清在线观看| 两个人看的免费小视频| 欧美三级亚洲精品| 男女床上黄色一级片免费看| 欧美成狂野欧美在线观看| 亚洲欧洲精品一区二区精品久久久| 曰老女人黄片| 国产精品久久久av美女十八| 欧美日韩乱码在线| 亚洲第一欧美日韩一区二区三区| 国产免费男女视频| 久久久国产欧美日韩av| 少妇裸体淫交视频免费看高清 | 黄色片一级片一级黄色片| 国产成人av激情在线播放| 中文亚洲av片在线观看爽| 久久婷婷人人爽人人干人人爱| 亚洲av熟女| 国产单亲对白刺激| 欧美性长视频在线观看| 国产一区在线观看成人免费| 亚洲欧美一区二区三区黑人| 精品欧美一区二区三区在线| 色老头精品视频在线观看| 久久国产精品男人的天堂亚洲| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 无限看片的www在线观看| 亚洲精品一区av在线观看| 亚洲无线在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址| 18禁观看日本| 黑丝袜美女国产一区| 免费在线观看亚洲国产| 好看av亚洲va欧美ⅴa在| 午夜福利在线在线| 91成年电影在线观看| 在线观看免费午夜福利视频| 热re99久久国产66热| 日韩欧美国产一区二区入口| 露出奶头的视频| bbb黄色大片| 黄色毛片三级朝国网站| 国产精品影院久久| 91av网站免费观看| 亚洲第一欧美日韩一区二区三区| 欧美日韩精品网址| 国产91精品成人一区二区三区| 一边摸一边抽搐一进一小说| 91大片在线观看| 亚洲电影在线观看av| 欧美黑人欧美精品刺激| 99久久国产精品久久久| 中文资源天堂在线| 中文字幕人成人乱码亚洲影| 久久精品成人免费网站| 精品国产乱子伦一区二区三区| 999精品在线视频| 亚洲精品美女久久久久99蜜臀| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多| 亚洲精品在线观看二区| 精品免费久久久久久久清纯| 国产激情久久老熟女| 国产精品免费视频内射| 一二三四社区在线视频社区8| 久9热在线精品视频| 免费一级毛片在线播放高清视频| 国产男靠女视频免费网站| videosex国产| 欧美成人一区二区免费高清观看 | 久久久久国产精品人妻aⅴ院| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美精品综合一区二区三区| 久久婷婷人人爽人人干人人爱| 日韩大码丰满熟妇| 两个人看的免费小视频| 波多野结衣高清无吗| 国产精品av久久久久免费| 成年女人毛片免费观看观看9| 在线十欧美十亚洲十日本专区| 国产不卡一卡二| 18美女黄网站色大片免费观看| 最新美女视频免费是黄的| 国产99白浆流出| 国产精品九九99| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲精品国产色婷小说| 嫩草影视91久久| 免费看a级黄色片| 久久精品国产综合久久久| 黄色成人免费大全| 巨乳人妻的诱惑在线观看| 国产黄色小视频在线观看| 99久久精品国产亚洲精品| 99国产精品99久久久久| 日本成人三级电影网站| 欧美+亚洲+日韩+国产| 国产av一区二区精品久久| 精品久久久久久久末码| 可以在线观看毛片的网站| 国产av在哪里看| 男女之事视频高清在线观看| www日本在线高清视频| 91字幕亚洲| 香蕉丝袜av| 法律面前人人平等表现在哪些方面| 欧美成人午夜精品| 露出奶头的视频| 99久久综合精品五月天人人| 精品不卡国产一区二区三区| 国产三级黄色录像| 91麻豆av在线| 亚洲精品国产区一区二| 成人免费观看视频高清| 亚洲精品国产一区二区精华液| 久久香蕉精品热| 日韩三级视频一区二区三区| 成年女人毛片免费观看观看9| 亚洲专区国产一区二区| 亚洲中文av在线| 国产单亲对白刺激| 亚洲精品在线美女| 免费高清在线观看日韩| 特大巨黑吊av在线直播 | 99国产综合亚洲精品| 成人三级做爰电影| 丝袜在线中文字幕| 成人午夜高清在线视频 | 久久久久久大精品| 亚洲一区高清亚洲精品| 黄网站色视频无遮挡免费观看| 女生性感内裤真人,穿戴方法视频| 首页视频小说图片口味搜索| 精品一区二区三区视频在线观看免费| 亚洲九九香蕉| 久久人妻av系列| 精品电影一区二区在线| 日韩av在线大香蕉| 一级毛片精品| avwww免费| 精品欧美国产一区二区三| 男男h啪啪无遮挡| 欧美在线黄色| 日韩有码中文字幕| 美女国产高潮福利片在线看| 黄色视频不卡| 精品久久久久久成人av| 18禁观看日本| 视频在线观看一区二区三区| 久久精品国产综合久久久| 日本 av在线| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 老司机福利观看| 久久精品91蜜桃| 久久久精品欧美日韩精品| 色av中文字幕| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲美女久久久| 一区二区日韩欧美中文字幕| 免费在线观看成人毛片| 久热爱精品视频在线9| 19禁男女啪啪无遮挡网站| 91麻豆av在线| www.自偷自拍.com| a在线观看视频网站| 99国产精品99久久久久| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 身体一侧抽搐| 国产成人精品久久二区二区91| 男女那种视频在线观看| 日韩 欧美 亚洲 中文字幕| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 日韩三级视频一区二区三区| 亚洲第一电影网av| 在线视频色国产色| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区mp4| 国产三级黄色录像| 最近最新中文字幕大全电影3 | 欧美日韩一级在线毛片| 黄色成人免费大全| 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 免费电影在线观看免费观看| 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜| 中文字幕另类日韩欧美亚洲嫩草| 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月| 无人区码免费观看不卡| 亚洲国产高清在线一区二区三 | 亚洲精品av麻豆狂野| 午夜a级毛片| 在线观看日韩欧美| 一边摸一边做爽爽视频免费| 满18在线观看网站| 国产熟女xx| 国产精品,欧美在线| e午夜精品久久久久久久| 夜夜看夜夜爽夜夜摸| 黄频高清免费视频| 亚洲国产欧美网| 国产高清激情床上av| 久久天躁狠狠躁夜夜2o2o| 欧美丝袜亚洲另类 | 久久天躁狠狠躁夜夜2o2o| svipshipincom国产片| 又黄又爽又免费观看的视频| avwww免费| 1024视频免费在线观看| 最新美女视频免费是黄的| 亚洲精品国产区一区二| 在线天堂中文资源库| 国产麻豆成人av免费视频| 成人永久免费在线观看视频| 欧美在线黄色| 欧美成人一区二区免费高清观看 | 久久午夜亚洲精品久久| 精品福利观看| 成在线人永久免费视频| 一级毛片精品| 亚洲国产欧洲综合997久久, | 99精品欧美一区二区三区四区| 特大巨黑吊av在线直播 | 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 亚洲五月婷婷丁香| 亚洲五月色婷婷综合| 99国产综合亚洲精品| 中文字幕久久专区| 亚洲av美国av| 欧美国产日韩亚洲一区| 午夜福利欧美成人| 免费看日本二区| 99久久久亚洲精品蜜臀av| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 哪里可以看免费的av片| 成年免费大片在线观看| 一二三四在线观看免费中文在| 波多野结衣高清作品| xxxwww97欧美| 亚洲中文字幕一区二区三区有码在线看 | 男人舔女人的私密视频| 男人操女人黄网站| 国产午夜福利久久久久久| 国产精品 国内视频| 无限看片的www在线观看| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 国产一卡二卡三卡精品| 亚洲第一电影网av| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 日韩精品青青久久久久久| 欧美成狂野欧美在线观看| av免费在线观看网站| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 91成年电影在线观看| 亚洲欧美日韩高清在线视频| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 精品乱码久久久久久99久播| 国产高清videossex| 美女免费视频网站| 欧美一级毛片孕妇| 亚洲国产毛片av蜜桃av| www国产在线视频色| 国产精品影院久久| 精品一区二区三区四区五区乱码| 嫩草影视91久久| 1024手机看黄色片| 色哟哟哟哟哟哟| 丝袜人妻中文字幕| 久久香蕉精品热| 老鸭窝网址在线观看| 国产免费男女视频| 51午夜福利影视在线观看| 91在线观看av| 丝袜美腿诱惑在线| 国产精品亚洲美女久久久| 视频区欧美日本亚洲| 免费在线观看日本一区| 国产av不卡久久| 亚洲欧洲精品一区二区精品久久久| 男人舔女人下体高潮全视频| 亚洲avbb在线观看| 在线观看一区二区三区| 成人三级做爰电影| 一区福利在线观看| 成人18禁在线播放| 久久天堂一区二区三区四区| 亚洲天堂国产精品一区在线| 精品乱码久久久久久99久播| 两个人看的免费小视频| 国产欧美日韩一区二区三| 国产精品久久电影中文字幕| 国产主播在线观看一区二区| 一卡2卡三卡四卡精品乱码亚洲| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 日韩精品青青久久久久久| 操出白浆在线播放| 日本免费一区二区三区高清不卡| 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片| 久久亚洲真实| 国产精品一区二区精品视频观看| 久久亚洲真实| 精品少妇一区二区三区视频日本电影| 丝袜人妻中文字幕| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看.| 国产高清有码在线观看视频 | 国产黄片美女视频| 久久亚洲真实| 女同久久另类99精品国产91| 十八禁人妻一区二区| 欧美绝顶高潮抽搐喷水| 亚洲一码二码三码区别大吗| 国语自产精品视频在线第100页| 黄频高清免费视频| 激情在线观看视频在线高清| 久久天躁狠狠躁夜夜2o2o| 777久久人妻少妇嫩草av网站| 免费人成视频x8x8入口观看| av免费在线观看网站| 亚洲精华国产精华精| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频 | 国产精品一区二区三区四区久久 | 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 亚洲久久久国产精品| 久久人妻av系列| 在线免费观看的www视频| 国产人伦9x9x在线观看| 国产精品二区激情视频| 黄色毛片三级朝国网站| 成在线人永久免费视频| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品合色在线| 色精品久久人妻99蜜桃| 久久精品91蜜桃| 午夜精品在线福利| 亚洲专区中文字幕在线| av片东京热男人的天堂| 亚洲精品一区av在线观看| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产激情久久老熟女| 婷婷六月久久综合丁香| 国产在线精品亚洲第一网站| 亚洲精品国产精品久久久不卡| 可以在线观看毛片的网站| 女性生殖器流出的白浆| 久久久久免费精品人妻一区二区 | 免费在线观看日本一区| 露出奶头的视频| 91九色精品人成在线观看| 精品国产乱码久久久久久男人| 一本大道久久a久久精品| 91av网站免费观看| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| 在线观看www视频免费| 久久午夜亚洲精品久久| 丝袜在线中文字幕| 欧美成人一区二区免费高清观看 | 欧美zozozo另类| 欧美久久黑人一区二区| 无遮挡黄片免费观看| 真人一进一出gif抽搐免费| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 亚洲人成网站高清观看| 国产主播在线观看一区二区| 桃色一区二区三区在线观看| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 在线观看舔阴道视频| 国产精品二区激情视频| 国产精品 欧美亚洲| 午夜福利18| 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 一夜夜www| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀| 中文在线观看免费www的网站 | 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 在线视频色国产色| 久久伊人香网站| 亚洲成人国产一区在线观看| 日日爽夜夜爽网站| 国产精品av久久久久免费| 亚洲国产精品合色在线| av中文乱码字幕在线| 桃色一区二区三区在线观看| 日韩 欧美 亚洲 中文字幕| 黄色丝袜av网址大全| 国产精品二区激情视频| 99久久99久久久精品蜜桃| 亚洲欧美一区二区三区黑人| 女同久久另类99精品国产91| av福利片在线| 无遮挡黄片免费观看| 午夜久久久在线观看| 国产一卡二卡三卡精品| 麻豆一二三区av精品| 免费观看人在逋| 国产精品99久久99久久久不卡| 免费看十八禁软件| 国产不卡一卡二| 国产人伦9x9x在线观看| 亚洲中文av在线| 国产免费男女视频| 又大又爽又粗| 91字幕亚洲| 免费看日本二区| 在线永久观看黄色视频| 成人一区二区视频在线观看| 亚洲性夜色夜夜综合| 美女国产高潮福利片在线看| 成年人黄色毛片网站| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲国产一区二区在线观看| 男女床上黄色一级片免费看| 亚洲国产日韩欧美精品在线观看 | 老汉色∧v一级毛片| 很黄的视频免费| 精品国产一区二区三区四区第35| 精品久久久久久久久久免费视频| 一个人免费在线观看的高清视频| 老熟妇乱子伦视频在线观看| 好男人在线观看高清免费视频 | 欧美中文综合在线视频| 亚洲熟妇中文字幕五十中出| 久久久久免费精品人妻一区二区 | 国产成+人综合+亚洲专区| a级毛片在线看网站| 黑人巨大精品欧美一区二区mp4| 久久久国产成人免费| 国产三级在线视频| 日本在线视频免费播放| 国产一区二区在线av高清观看| 无限看片的www在线观看| 1024视频免费在线观看| 自线自在国产av| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 精品卡一卡二卡四卡免费| 免费人成视频x8x8入口观看| 免费在线观看影片大全网站| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院| 麻豆一二三区av精品| 久久精品国产亚洲av高清一级| 日韩中文字幕欧美一区二区| xxxwww97欧美| 亚洲激情在线av| 热re99久久国产66热| 国产成人精品久久二区二区91| 国产午夜福利久久久久久| xxxwww97欧美| 久久精品国产清高在天天线| 99久久99久久久精品蜜桃| 国产精品 国内视频| 日韩欧美 国产精品| 性欧美人与动物交配| 免费电影在线观看免费观看| 韩国av一区二区三区四区| 男女视频在线观看网站免费 | 女性生殖器流出的白浆| 白带黄色成豆腐渣| 免费在线观看黄色视频的| 国产成人系列免费观看| 我的亚洲天堂| 色综合站精品国产| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天添夜夜摸| 一级毛片精品| 亚洲av电影在线进入| 老司机深夜福利视频在线观看| 国产精品 国内视频| 国产一区二区三区视频了| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品999在线| 亚洲第一电影网av| 长腿黑丝高跟| 精品卡一卡二卡四卡免费| 亚洲av熟女| 欧美三级亚洲精品| 99热6这里只有精品| 国产真人三级小视频在线观看| 亚洲天堂国产精品一区在线| 欧美激情极品国产一区二区三区| 亚洲一区二区三区不卡视频| 夜夜爽天天搞| 久久精品91蜜桃| 精品一区二区三区四区五区乱码| 美女午夜性视频免费| 久久午夜综合久久蜜桃| 亚洲熟妇熟女久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 国产真实乱freesex| 国产av在哪里看| 免费看日本二区| 国产高清激情床上av| 九色国产91popny在线| 99在线人妻在线中文字幕| 亚洲国产欧美网| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 亚洲一码二码三码区别大吗| 老熟妇乱子伦视频在线观看| 视频在线观看一区二区三区| 亚洲国产高清在线一区二区三 | 91麻豆av在线| 久久精品aⅴ一区二区三区四区| 日韩欧美国产在线观看| 欧美黑人欧美精品刺激| 看片在线看免费视频| 叶爱在线成人免费视频播放| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 欧美日韩黄片免| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 特大巨黑吊av在线直播 | 国产片内射在线| 十八禁网站免费在线| 精品卡一卡二卡四卡免费| 日日干狠狠操夜夜爽| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 一区二区三区高清视频在线| 免费在线观看成人毛片| 国产一区在线观看成人免费| www.熟女人妻精品国产| 国产精品av久久久久免费| 亚洲一区二区三区色噜噜| 精品久久久久久成人av| 日韩视频一区二区在线观看| 国产99白浆流出| 99热这里只有精品一区 | 亚洲自拍偷在线| 夜夜躁狠狠躁天天躁| 免费搜索国产男女视频| 亚洲真实伦在线观看| 国内精品久久久久精免费| 老鸭窝网址在线观看| 2021天堂中文幕一二区在线观 | 久久中文字幕人妻熟女| 欧美亚洲日本最大视频资源| 欧美日韩亚洲国产一区二区在线观看| 91成年电影在线观看| 亚洲精品在线美女| 国产激情久久老熟女| av在线天堂中文字幕| 12—13女人毛片做爰片一| 国产成人欧美在线观看| 婷婷六月久久综合丁香| 人妻丰满熟妇av一区二区三区| 美女午夜性视频免费| 视频区欧美日本亚洲| 亚洲一区二区三区不卡视频| cao死你这个sao货| 身体一侧抽搐| 欧美色欧美亚洲另类二区| 男人舔女人下体高潮全视频|