• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Risk analysis and maintenance decision making of natural gas pipelines with external corrosion based on Bayesian network

    2022-07-14 09:19:32YunTaoLiXiaoNingHeJianShuai
    Petroleum Science 2022年3期

    Yun-Tao Li,Xiao-Ning He,Jian Shuai

    College of Safety and Ocean Engineering,China University of Petroleum,Beijing,China

    Keywords:

    ABSTRACT

    1.Introduction

    Most natural gas transportation occurs through pipelines due to their high efficiency,low cost,and inability to be easily affected by the transportation environment(Cui et al.,2020;Wang et al.,2020;Turkowski and Szudarek,2019;Hao et al.,2019).The extension of pipeline service life leads to a greatly increased probability of pipeline accidents(Xing et al.,2020;Wang et al.2017,2020;Liu et al.,2018;Lu et al.,2015;Badida et al.,2019;Guo et al.,2016).Some characteristics of the soil,such as salinity,may have a negative effect on pipelines due to long-term contact.(Li et al.,2018;Wang et al.,2015a).External corrosion has been determined to be one of the main reasons for the failure of buried pipelines(Liu et al.,2018;Li et al.,2018;Gadala et al.,2016).Once a pipeline fails,disastrous consequences such as fires,explosions,and environmental pollution can result(Cui et al.,2020;Zhou et al.,2020;Liu et al.,2018).The timely maintenance of corroded pipelines is important for preventing unnecessary losses(Bastian et al.,2019;Liu et al.,2018).However,excessive maintenance may reduce the efficiency of pipeline transportation.For this reason,risk-based maintenance has been applied to provide a balance between safety and efficiency(Li et al.,2017).In other words,maintenance plans need to be optimized with a consideration of both the costs and the failure risks of pipelines.

    It is necessary to analyse the causes of buried pipeline external corrosion and consider how to take targeted maintenance measures.Several studies have been conducted in the fields of pipeline risk analysis in both qualitative and quantitative ways,especially for the assessment of failure probability and the prediction of corrosion rate(Wang et al.,2015b;Caleyo et al.,2015;Badida et al.,2019;Lecchi,2011;Guo et al.,2016;Vanaei et al.,2017;Valor et al.,2013;Wang and Duan,2019;Chen et al.,2020).For example,Allahkaram et al.(2015)estimated the corrosion rate of pipelines under the influence of stray currents.Shan et al.(2018)established an assessment model of gas transmission pipeline failure probability based on historical failure-related data and modification factors.The establishment of maintenance strategies can reduce the probability of failure to some extent.Zakikhani et al.(2020)proposed a maintenance planning framework for the external corrosion of gas transmission pipelines through an availabilitycentred reliability-based maintenance planning procedure.A multilevel strategy was proposed for the maintenance optimization of pipeline systems subjected to external corrosion by XQ Liu et al.(2018).At present,many studies have been conducted on pipeline risk assessment and maintenance(Kimiya et al.,2020).How to combine maintenance decisions and risk assessments to effectively improve the safety of pipeline operation is necessary.

    Pipeline risks change when different maintenance decisions are made.This dynamic feature places a high demand on the risk analysis method(Wu et al.,2017;Kabir et al.,2015).However,conventional risk analysis methods like fault tree analysis and event tree analysis(Wu et al.,2017;Naghavi-Konjin et al.,2020)have limitations,such as the inability to analyse the relationship between variables and the absence of specific probability expressions of the events(Guo et al.,2020).Therefore,a risk analysis method that can describe the relationship among variables with uncertainty and multi-state issues is needed(Zhang et al.,2018;Wang et al.,2017).Bayesian network(BN)are one of the most effective theoretical models in the field of uncertain knowledge expression and inference(Zhou et al.,2020).The main advantage of a Bayesian network is that it can update the probability and act as a special dynamic manifestation according to the different settings of the evidence nodes(Li et al.,2020;Dahire et al.,2018;Wang et al.,2017).This advantage can be applied in the external corrosion risk assessment of pipelines with a consideration of pipeline maintenance.During pipeline operation,specific parameters can be obtained through detection or pipeline properties.Those parameters,as well as the assumed maintenance decisions,can appear as evidence nodes in a Bayesian network to update the predicted failure probability.

    To reduce the pipeline failure probability caused by external corrosion with reasonable maintenance methods,a maintenance decision model based on a Bayesian network is proposed in this paper.Section 2 describes the framework and the methods employed in this work.Section 3 and Section 4 introduce the risk assessment model and maintenance decision model,respectively.Section 5 illustrates the application of the model through a case study.Section 6 offers conclusions.

    2.Methodology

    This section provides an overview of the proposed methodology.The framework is shown in Fig.1.First,a fault tree model is established to analyse the risk factors for buried natural gas pipelines.Then,the Bayesian network is determined accordingly.Second,a probability estimation model that combines expert experience and fuzzy set theory is established to determine the conditional probability tables(CPTs)and some parts of the prior probability in the BN.Finally,the maintenance decision model based on the BN is proposed.

    2.1.Fault tree analysis

    Fault tree(FT)is a deductive failure analysis method used to analyse the unwanted state of a system from the result to the causes(Gachlou et al.,2019;Badida et al.,2019;Yin et al.,2020).It is mainly used in the fields of reliability engineering and safety engineering to find the causes of accidents.In practical applications,fault tree analysis is good at finding the weak part of a system.However,a FT cannot express the uncertainty of an event accurately.The probability of the events in a FT is expressed in Boolean algebra with“AND”and“OR”gates.Its conditional probability has only two values,0 or 1.This is much different from a real situation.For example,the occurrence of a stray current could enhance the possibility of external corrosion but not definitely lead to the failure of a pipeline.In contrast,a Bayesian network has a flexible structure and a better representation of the probability of events(Badida et al.,2019;Villa et al.,2016).

    Fig.1.The framework of the proposed methodology.

    2.2.Bayesian network

    A Bayesian network,also known as a belief network,is a directed acyclic graph model.It is comprised of nodes representing stochastic variables and directed arcs symbolizing probabilistic conditional dependencies among the variables(Khakzad et al.,2011;Tien and Kiureghian,2016).A Bayesian network is a causal association model that has a strong ability to deal with uncertainties.This was first proposed by Judea Pearl in 1985 and has since become one of the main techniques for dealing with uncertain information(Pearl,1985).Usually,a BN consists of nodes,directed edges and conditional probabilistic tables(CPTs)(Li et al.,2020).The nodes,including parent nodes and child nodes,represent random variables.The directed edges show the dependencies among the variables.The CPTs show the conditional probabilities between the dependent variables and the parent nodes.(Khakzad et al.,2013).

    A joint probability distribution over a set of variables X={X1,X2,…,Xn}is shown as follows:where Xi?X.Pa(Xi)is the parent set of the variable Xi(Li et al.,2020).

    Given new observations or evidence,the prior probability of the variable can be updated.Then,the posterior probability of the variable can be obtained as(Caleyo et al.,2015):

    2.3.Probabilistic estimation model

    For accurate failure probabilities that are difficult to obtain through inadequate historical data,a probabilistic estimation model combining experts’judgement and fuzzy set theory can be used as an alternative.There are many applications of fuzzy set theory that deal with uncertainty and inaccuracy in expert judgements in linguistic terms(Yazdi and Kabir,2017).Trapezoidal fuzzy numbers are adopted in this study to express the probability of occurrence of an event(Li et al.,2019).

    The membership function of a trapezoidal fuzzy number has the following form:

    Fig.2.Fault tree diagram.

    Fig.3.Bayesian network for buried pipeline external corrosion.

    Where A=(a,b,c,d)is a group of trapezoidal fuzzy numbers.

    In this paper,9 linguistic terms are used to estimate the occurrence probability of events.Three experts are asked to describe the probability of the basic events with“Very low,Low-Very Low,Low,Fairy low,Medium,Fairy high,High,High-Very High,and Very high”.Fuzzy set theory is applied to transform the description of linguistic terms into fuzzy numbers,as shown in Table 1.Because the professional and education levels of experts are not exactly the same,different experts are assigned weights expressed byω=(ω1,ω2,ω3).The influencing factors of the weights are professional position,education level,experience and age(Ramzali et al.,2015).The fuzzy failure possibility of event i in state j can be calculated with Eq.(4)where P(~)ijis the trapezoidal fuzzy probability of event i,Aijis the expert's description of event i corresponding to a fuzzy array,andωlis the weight of expert l,l=1,2,3.In general,the number of experts should be at least 3 to reduce the subjectivity of judgment.

    Table1 Linguistic terms and their corresponding fuzzy numbers used to describe the likelihood of an event(Chen and Hwang,1992).

    Fig.4.Bayesian network of soil corrosivity.

    To obtain a representative probability value of the basic events,the fuzzy numbers must be defuzzified.Based on obtaining the trapezoidal fuzzy probability,the fuzzy possibility scores P*of the node are calculated with the centre area method,as shown in Eq.(5)

    Finally,the fuzzy probability scores are converted to the fuzzy probability based on a function developed by Onisawa(1988),as shown in Eq(6).where K is a constant and FP is the fuzzy probability of the event.

    Table 1 shows the probability ranges and fuzzy numbers corresponding to different fuzzy terms for event likelihood.For the prior probability that cannot be obtained according to the historical data,as well as the CPTs that are not simply converted from the logic gates,the probabilistic estimation model is an alternative.

    2.4.Optimization function

    Maintenance plays an important role in reducing the risk.The main concept of the maintenance decision model is to analyse the effect of maintenance strategies on reducing the failure probability.At the same time,the cost of the maintenance method should also be reasonable.

    For pipeline external corrosion,the maintenance cost,inspection cost and expected failure loss are considered.The maintenance decision is made based on the optimization of the total cost,which can be calculated as:

    where R is the total cost.CRiis the cost when choosing maintenance method i.CFjis the loss of failure mode j,and PFjis the probability of failure mode j after maintenance implementation.CDkis the cost of the routing inspection,and PDkis the certain inspection frequency,which is determined by DS evidence theory.m is the total number of failure modes,while s is the total number of inspection frequency classifications.

    Fig.5.Maintenance decision model.

    3.Hazard identification and risk assessment model

    3.1.Fault tree diagram

    In this part,a fault tree that takes external corrosion as the target event is built to analyse the possible reasons for the external corrosion.External corrosion can be categorized into two types:1)soil corrosion and 2)stray current corrosion(Cui et al.,2016).Either of them will lead to external corrosion of the pipeline.Direct causes are further discussed for these two forms of corrosion,and 18 basic events leading to pipeline external corrosion are obtained.Fig.2 shows the analysis process of hazard identification,and the basic events are listed in Table 2.

    Table2 Basic events of FT.

    Fig.2 analyses the possible causes of external corrosion for buried pipelines.However,“Yes”or“No”cannot represent the actual states of some basic events of the fault tree.For example,the nodes“inspection frequency”and“service time of the pipe”have 3-4 states.For this reason,the FT needs to be transferred into a BN to solve those problems,especially for events with multiple states.

    Fig.6.Marked observable nodes in the Bayesian network.

    3.2.External corrosion analysis with BN

    All the basic events in the FT correspond to the root nodes in the Bayesian network.According to the relationship of the events in the FT,the nodes are connected in a Bayesian network with directional edges.It should be noted that the directional direction of the edges is consistent with the output direction of the logic gates in the FT.The established FT in Fig.2 is transformed into a Bayesian network,and the corresponding revisions are made.The revised structure of the Bayesian network is shown in Fig.3.

    The nodes in this Bayesian network and their corresponding states are described in detail in Section 4.2.

    Soil corrosivity plays an important role in influencing factors of the external corrosion of buried pipelines.Many factors influence soil corrosivity,and the classification is complex.Therefore,soil corrosivity was modelled separately in this study.According to GB/T 19,285-2014,there are 8 main factors affecting soil corrosivity.Fig.4 shows the Bayesian network of the soil corrosivity,which includes the soil resistivity,redox potential,free corrosion potential,pH value,chloride content,soil salinity,soil moisture,and soil texture.Table 3 exhibits the nodes and the states variables.

    Table3 Nodes illustration in the Bayesian network of soil corrosivity.

    According to GB/T 19,285-2014,each grade of the above parameters was assigned a score.The sum of the scores of the 8 parameters can be divided into 4 grades presenting the soil corrosivity.The CPT of soil corrosivity is determined by the sum of the evaluation scores.The probability of soil corrosivity at different levels can then be obtained from the BN mentioned in Fig.4 accordingly.

    4.Maintenance decision model

    4.1.Determination of maintenance measures

    To address the external corrosion of natural gas pipelines,maintenance measures are divided into four parts:1)maintenance of coating;2)maintenance of cathodic protection system;3)stray current;and 4)pipeline replacement.The corresponding maintenance means for each part are shown in Table 4.

    Table4 Description of means of maintenance.

    In the engineering practice,“direct drainage”and“ground drainage”are more convenient and economical.Therefore,other drainage modes were not considered in this study.All the repair parts of the pipe are listed in Table 4.The external corrosion caused by the different parts of the pipeline refers to different failure scenarios.In the face of various maintenance methods,choosing appropriate maintenance means in the face of different failure scenarios is a problem that needs to be solved.

    4.2.Establishment of maintenance decision model

    A Bayesian network can flexibly delete and add nodes.Taking advantage of this feature,maintenance strategies are considered the parent nodes of pipeline failure causes and are inserted into the BN in Fig.3.The risk,or the pipeline failure probability,can then be reassessed under the assumption that maintenance measures have been conducted.A decision can be made according to the optimization function combining the reassessed risk and the costs,as mentioned above in Eq.(7).For a given pipeline,the costs of specific maintenance measures,failure loss and inspection frequency can be obtained from historical experience and expert estimation.

    I lay down on the examining table. I d worn a big plaid flannel6 shirt and a camisole underneath. It was a carefully thought out costume that I hoped others would regard as a casual wardrobe choice. The plaid camouflaged7 my new chest, the camisole protected it and the buttons on the shirt made for easy medical access.

    Fig.5 shows the maintenance decision model,which is based on the BN in Fig.3,with the maintenance nodes added.The illustrations of the nodes are listed in Table 5.

    Table5 Node illustration in the maintenance decision model.

    4.3.Model parameters

    The prior probabilities and the CPTs are pre-set parameters in the BN.In this work,the prior probabilities and the CPTs are obtained by combining historical statistical data and expert estimations.

    The prior probability of some nodes can be obtained from statistics.For example,according to statistics,the probability of a pipe being less than 20 years old is 0.61,and the probability that it is between 20 and 30 years old is 0.26.The specific statistical results are taken as the prior probabilities of the“service time of the pipe”node.However,it is not practical to obtain all prior probability from historical statistics because of the limitation of data access.The probabilistic estimation model based on expert experience can be an alternative.

    Experts are asked to describe the probability of BN nodes using linguistic terms.Based on the methods proposed in Section 2.3,the fuzzy probability(FP)can be calculated as the prior probability of root nodes.Table 6 lists the prior probability of each basic event.

    Table6 Prior probability of root nodes.

    It is particularly noted that maintenance strategies are observable nodes in the BN.The states of the maintenance nodes can be directly determined through observation.Therefore,no prior probability is assigned to such nodes.Regarding another observable node“inspection frequency”,the experts'judgement may differ due to different statistical cycles and methods.DS evidence theory is applied here to calculate the posterior probability distribution,considering all expert judgements.The use of DS evidence theory in Bayesian networks can be found in Ref(Hui et al.,2017).The observable nodes are marked in a deeper colour in the Bayesian network,as shown in Fig.6.

    The BN is mapped from the FT,but the logic gates in the FT cannot be converted to the CPTs in the BN directly.In this paper,the CPTs are determined with both logic gates and the probability estimation model mentioned in Section 2.3.Logic gates represent deterministic relationships among variables(Gachlou et al.,2019;Badida et al.,2019;Yin et al.,2020;Yu et al.,2019).The external corrosion node reflects the OR gate relationship.It's assumed that when“replace the pipe”is“Yes”,external corrosion is eliminated.If no maintenance measures are taken,either soil corrosion or stray current corrosion occurs,the state of external corrosion is“Yes”.Table 7 shows this relationship.

    Table7 The CPT of the node“External corrosion”.

    For the BN in Fig.6,the CPTs of some nodes are complex.For example,“coating failure”has 7 parent nodes,leading to the CPT of 192 combinations.It is difficult to ask experts to put such numerous cases into linguistic terms.For the sake of simplification,some assumptions are employed.It is assumed that replacement of the coating leads to a coating failure probability of zero.When the coating is not replaced,the coating failure risk is the sum of the failure probabilities of each risk factor separately.

    Fig.7.Initial condition of Bayesian network.

    The part of the fuzzy probability of the“coating failure”node after simplification is shown in Table 8,where“C”“T”“P”“I”and“S”represent“construction quality issues”,“third party activities”,“poor quality of coating”,“improper selection of coating”,and“service time of the pipe”,respectively.

    Table8 Part of CPT for“coating failure”node.

    5.Case study

    5.1.Scene description

    Table9 Soil parameter hypothesis.

    Fig.8.Bayesian network after taking maintenance measures.

    5.2.Maintenance decision

    Under the above conditions,a decision should be made on how to maintain the pipeline.It is assumed that coating repair and grounding drains are adopted,and parts of cathodic protection are determined to be repaired.At this point,it can be observed that the probability of external corrosion is reduced to 2.56E-08,as shown in Fig.8.According to the historical data and expert judgements,the cost values of different repair parts and methods are determined in Table 10.The inspection costs and the failure losses are also obtained in the same way.To simplify the calculation,all descriptions are specific to a pipe segment.

    Table10 The cost setting.

    Different combinations of maintenance means correspond to different cost values.The loss amount of external corrosion is considered to be 80 million.If the pipe is replaced,the external corrosion probability is reduced to zero,but the total cost is 2.018 million.In addition,a summary of all available means of maintenance and the corresponding cost values are given in Table 11.

    The variation in the risk of external corrosion and the costs under the above four maintenance conditions are shown in Fig.9.The numbers 1-17 correspond to the 17 maintenance plans in Table 11.According to the optimization function proposed in Section 2.4,the maintenance methods of coating repair will optimize the situation.

    Table11 Maintenance means summary.

    6.Conclusions

    In this paper,a fault tree model is first used to analyse the causes of external corrosion in buried pipelines,including corrosion factors and anti-corrosion measures.A novel maintenance decision model based on a Bayesian network is proposed accordingly to analyse the maintenance cost and the effect of external corrosion maintenance strategies on failure probability.Fuzzy set theory was employed with domain expert knowledge to estimate the occurrence probabilities of the root events and the CPTs.Events with observable or measurable states are set as evidence nodes to represent the pipeline conditions and the implemented maintenance measures.The effect of maintenance on failure reduction is illustrated through a case study.It shows that the maintenance decision model is practicable for selecting the optimal maintenance plan,as well as realizing the risk reassessment after the implementation of maintenance measures.It is verified that the method proposed in this paper is feasible for decision making regarding the maintenance of pipeline external corrosion,as well as other failure scenarios,which will be studied in the future work.

    Fig.9.External corrosion risk and cost variation.

    Acknowledgment

    This work was supported by the National Key R&D Program of China(Grant No.2018YFC0809300),the National Natural Science Foundation of China(Grant No.51806247),the Key Technology Project of PetroChina Co Ltd.(Grant No.ZLZX2020-05),the Foundation of Sinopec(Grant No.320034),and the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020YXZZ052).

    一级毛片电影观看 | 99热网站在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久久亚洲| 最新在线观看一区二区三区| 又粗又爽又猛毛片免费看| 午夜爱爱视频在线播放| 国产精品一区二区性色av| 99久国产av精品国产电影| 女同久久另类99精品国产91| 性插视频无遮挡在线免费观看| 黄色配什么色好看| 一区二区三区四区激情视频 | 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 毛片女人毛片| 精品一区二区三区人妻视频| 蜜桃久久精品国产亚洲av| 男女那种视频在线观看| 又黄又爽又刺激的免费视频.| 波多野结衣巨乳人妻| 久久综合国产亚洲精品| 在线播放无遮挡| 我要搜黄色片| 亚洲欧美日韩东京热| 搡老妇女老女人老熟妇| 一个人看视频在线观看www免费| 综合色丁香网| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| 亚洲色图av天堂| 国产成人影院久久av| 成人特级黄色片久久久久久久| 国产亚洲精品久久久com| 国产午夜福利久久久久久| 最近在线观看免费完整版| 日本免费一区二区三区高清不卡| 三级毛片av免费| 午夜影院日韩av| 极品教师在线视频| 成人国产麻豆网| 日本色播在线视频| 国产亚洲精品久久久com| 99久久久亚洲精品蜜臀av| 51国产日韩欧美| 国产精品无大码| 欧美高清性xxxxhd video| 99久久中文字幕三级久久日本| 天堂网av新在线| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 美女内射精品一级片tv| 成人特级黄色片久久久久久久| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 联通29元200g的流量卡| 中国国产av一级| 看十八女毛片水多多多| 国产亚洲av嫩草精品影院| 久久九九热精品免费| 美女内射精品一级片tv| 国产高清视频在线观看网站| 国产真实伦视频高清在线观看| 精品不卡国产一区二区三区| 国产免费男女视频| 国内精品宾馆在线| 亚洲欧美日韩无卡精品| 天堂影院成人在线观看| 久久久久久国产a免费观看| 免费看光身美女| 久久九九热精品免费| 国产男靠女视频免费网站| 精品久久久久久成人av| 国产国拍精品亚洲av在线观看| av福利片在线观看| 欧美不卡视频在线免费观看| 国产成人a区在线观看| 日本黄色片子视频| 亚洲欧美清纯卡通| av在线天堂中文字幕| 精品一区二区免费观看| 国产在线男女| 国产精品久久视频播放| 日日啪夜夜撸| 国产乱人偷精品视频| 嫩草影院精品99| 小说图片视频综合网站| 免费在线观看成人毛片| 国产私拍福利视频在线观看| 国产精品不卡视频一区二区| 成人无遮挡网站| 国产男靠女视频免费网站| av黄色大香蕉| 18禁在线播放成人免费| 欧美三级亚洲精品| 女人被狂操c到高潮| 五月玫瑰六月丁香| 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 亚洲成人精品中文字幕电影| 精品一区二区三区av网在线观看| 观看美女的网站| 国产午夜福利久久久久久| 蜜桃亚洲精品一区二区三区| 亚洲熟妇中文字幕五十中出| 黄色一级大片看看| 美女 人体艺术 gogo| 香蕉av资源在线| 熟妇人妻久久中文字幕3abv| 1024手机看黄色片| 看非洲黑人一级黄片| 久久久欧美国产精品| 久久久久久大精品| 国产午夜精品论理片| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 国产成人福利小说| 欧美区成人在线视频| 欧美中文日本在线观看视频| 国产av不卡久久| 国产白丝娇喘喷水9色精品| 最近的中文字幕免费完整| 免费电影在线观看免费观看| 亚洲最大成人中文| 精品无人区乱码1区二区| 日韩大尺度精品在线看网址| 一级毛片电影观看 | 亚洲av五月六月丁香网| 国产日本99.免费观看| 长腿黑丝高跟| 女同久久另类99精品国产91| 国产精品久久久久久久久免| 一级毛片电影观看 | 在线观看av片永久免费下载| 老师上课跳d突然被开到最大视频| 最近中文字幕高清免费大全6| 亚洲激情五月婷婷啪啪| 国产成人a区在线观看| 亚洲婷婷狠狠爱综合网| 美女免费视频网站| av在线亚洲专区| 最近的中文字幕免费完整| 国产精品人妻久久久影院| 国产精品1区2区在线观看.| 男人狂女人下面高潮的视频| 久久久久久大精品| 日韩欧美 国产精品| 欧洲精品卡2卡3卡4卡5卡区| 男女啪啪激烈高潮av片| 久久午夜福利片| 欧美日韩国产亚洲二区| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看 | 国产在线精品亚洲第一网站| 久久99热6这里只有精品| 亚洲18禁久久av| 插逼视频在线观看| 日本在线视频免费播放| 两个人视频免费观看高清| 成人永久免费在线观看视频| 国产av不卡久久| 日本在线视频免费播放| 国产精品无大码| 内射极品少妇av片p| 成人二区视频| 在线观看美女被高潮喷水网站| 亚洲精品在线观看二区| 小蜜桃在线观看免费完整版高清| 麻豆成人午夜福利视频| 五月玫瑰六月丁香| 欧美bdsm另类| 99久久精品热视频| 男人舔女人下体高潮全视频| 精品人妻视频免费看| 午夜影院日韩av| 男女啪啪激烈高潮av片| 男女啪啪激烈高潮av片| 看片在线看免费视频| 99热全是精品| 少妇裸体淫交视频免费看高清| 久久国产乱子免费精品| 天天一区二区日本电影三级| 99热这里只有是精品在线观看| 欧美性猛交╳xxx乱大交人| 亚洲真实伦在线观看| 尾随美女入室| 91精品国产九色| 一个人观看的视频www高清免费观看| av国产免费在线观看| 日韩精品中文字幕看吧| 高清毛片免费看| 久久久久国内视频| 美女黄网站色视频| 永久网站在线| 啦啦啦韩国在线观看视频| 欧美xxxx黑人xx丫x性爽| 九九久久精品国产亚洲av麻豆| 波野结衣二区三区在线| 国产又黄又爽又无遮挡在线| 国产精华一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲成人久久性| 天堂√8在线中文| 久久热精品热| 在线播放无遮挡| 免费看日本二区| 久久韩国三级中文字幕| 国产蜜桃级精品一区二区三区| 在线a可以看的网站| 亚洲av成人精品一区久久| 久久午夜亚洲精品久久| 色哟哟·www| 日本与韩国留学比较| 国产免费男女视频| 亚洲人成网站在线播| 中国美女看黄片| 免费不卡的大黄色大毛片视频在线观看 | 免费在线观看成人毛片| 成人漫画全彩无遮挡| 一a级毛片在线观看| 国语自产精品视频在线第100页| 国产又黄又爽又无遮挡在线| 国产亚洲av嫩草精品影院| АⅤ资源中文在线天堂| 日韩人妻高清精品专区| 久久久久免费精品人妻一区二区| 中出人妻视频一区二区| 少妇猛男粗大的猛烈进出视频 | 午夜福利18| 亚洲av五月六月丁香网| 久久人妻av系列| 最近2019中文字幕mv第一页| 综合色丁香网| 亚洲av.av天堂| 91久久精品电影网| 欧美日韩国产亚洲二区| 亚洲不卡免费看| 毛片女人毛片| 99九九线精品视频在线观看视频| 国产一区二区在线观看日韩| 亚洲第一区二区三区不卡| 青春草视频在线免费观看| 又爽又黄无遮挡网站| 性色avwww在线观看| 97在线视频观看| 久久精品国产自在天天线| 亚洲中文字幕日韩| 亚洲人成网站在线观看播放| 精品久久久久久成人av| 亚洲国产色片| 岛国在线免费视频观看| 韩国av在线不卡| 亚洲中文日韩欧美视频| 欧美又色又爽又黄视频| av天堂在线播放| 九九爱精品视频在线观看| 国产高清视频在线观看网站| 国产亚洲精品av在线| 91久久精品国产一区二区成人| 亚洲中文字幕日韩| 三级毛片av免费| 搡女人真爽免费视频火全软件 | 国产精品一二三区在线看| 国产伦精品一区二区三区视频9| 国产av麻豆久久久久久久| av卡一久久| av在线观看视频网站免费| 老师上课跳d突然被开到最大视频| 亚洲成a人片在线一区二区| 国产成人一区二区在线| 精品一区二区三区视频在线观看免费| 免费人成视频x8x8入口观看| 日韩高清综合在线| 少妇熟女欧美另类| 精品人妻一区二区三区麻豆 | 淫妇啪啪啪对白视频| 国产久久久一区二区三区| 国产单亲对白刺激| 在线免费十八禁| 午夜福利视频1000在线观看| 日韩av在线大香蕉| 亚洲av一区综合| 久久久久久国产a免费观看| 黑人高潮一二区| 菩萨蛮人人尽说江南好唐韦庄 | 精品午夜福利在线看| 最近手机中文字幕大全| 亚洲av电影不卡..在线观看| 日韩一区二区视频免费看| 亚洲av二区三区四区| 亚洲精品在线观看二区| 亚洲精品成人久久久久久| 国产一区二区亚洲精品在线观看| 在现免费观看毛片| 亚洲va在线va天堂va国产| 亚洲五月天丁香| 久久6这里有精品| 免费观看人在逋| 超碰av人人做人人爽久久| 激情 狠狠 欧美| 国产一区二区亚洲精品在线观看| 日本精品一区二区三区蜜桃| 高清日韩中文字幕在线| 国产伦精品一区二区三区视频9| 亚洲精品成人久久久久久| 无遮挡黄片免费观看| 人人妻人人澡欧美一区二区| 欧美一区二区精品小视频在线| 免费观看精品视频网站| 精品人妻一区二区三区麻豆 | 亚洲欧美中文字幕日韩二区| 嫩草影院入口| 国产成人91sexporn| 男女做爰动态图高潮gif福利片| 国产一区二区在线观看日韩| 国产 一区精品| 美女大奶头视频| 亚洲乱码一区二区免费版| 婷婷精品国产亚洲av在线| 亚洲精品亚洲一区二区| 日韩av不卡免费在线播放| 22中文网久久字幕| 在线观看av片永久免费下载| 国产爱豆传媒在线观看| 老熟妇仑乱视频hdxx| 精品人妻视频免费看| 丝袜美腿在线中文| 国产aⅴ精品一区二区三区波| 精品人妻一区二区三区麻豆 | 国产伦精品一区二区三区四那| 99精品在免费线老司机午夜| 国产精品电影一区二区三区| 国产av麻豆久久久久久久| 99久久精品一区二区三区| 看片在线看免费视频| 在线国产一区二区在线| 亚洲欧美成人精品一区二区| 中文资源天堂在线| 国产精品亚洲美女久久久| 国产午夜精品论理片| 搞女人的毛片| 日韩精品中文字幕看吧| 成年版毛片免费区| 免费av不卡在线播放| 99视频精品全部免费 在线| 成年女人看的毛片在线观看| 寂寞人妻少妇视频99o| 成人毛片a级毛片在线播放| 日韩一本色道免费dvd| 日本五十路高清| 美女免费视频网站| 婷婷六月久久综合丁香| av免费在线看不卡| 长腿黑丝高跟| 亚洲精品久久国产高清桃花| 国产成人a∨麻豆精品| 男插女下体视频免费在线播放| 1024手机看黄色片| 美女 人体艺术 gogo| 美女高潮的动态| 成年av动漫网址| 久久人妻av系列| 可以在线观看毛片的网站| 亚洲精华国产精华液的使用体验 | 亚洲国产精品久久男人天堂| 国产aⅴ精品一区二区三区波| 一级黄片播放器| 欧美3d第一页| 直男gayav资源| 欧美一级a爱片免费观看看| 赤兔流量卡办理| 国产成人freesex在线 | 97在线视频观看| 一夜夜www| 美女cb高潮喷水在线观看| 一进一出抽搐动态| 中出人妻视频一区二区| 天堂影院成人在线观看| 成人一区二区视频在线观看| 91在线观看av| 欧美最新免费一区二区三区| 国产一级毛片七仙女欲春2| 久久欧美精品欧美久久欧美| 国产一区二区在线观看日韩| 亚洲精品色激情综合| 乱人视频在线观看| 美女内射精品一级片tv| 精品人妻熟女av久视频| 如何舔出高潮| 国产精品一区二区免费欧美| 在线播放无遮挡| 免费av不卡在线播放| ponron亚洲| 91av网一区二区| 精品午夜福利在线看| 免费看美女性在线毛片视频| 成人无遮挡网站| 免费在线观看成人毛片| 久久精品国产亚洲av天美| 免费观看精品视频网站| 亚洲最大成人中文| 我的老师免费观看完整版| 国产真实伦视频高清在线观看| 美女黄网站色视频| 成人漫画全彩无遮挡| 一本久久中文字幕| 日本黄色片子视频| 国产视频一区二区在线看| 深爱激情五月婷婷| 特大巨黑吊av在线直播| 国产黄片美女视频| 国产精品一及| 国内精品宾馆在线| 看片在线看免费视频| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久| 成人性生交大片免费视频hd| 亚洲第一电影网av| 伦精品一区二区三区| 亚洲成人久久性| 国产精品久久久久久精品电影| 偷拍熟女少妇极品色| 国产淫片久久久久久久久| 亚洲不卡免费看| 搡老熟女国产l中国老女人| 国产一级毛片七仙女欲春2| 久久精品国产自在天天线| 综合色av麻豆| 好男人在线观看高清免费视频| 蜜桃久久精品国产亚洲av| 亚洲欧美成人精品一区二区| 日本黄大片高清| 丰满乱子伦码专区| 天堂影院成人在线观看| 日日啪夜夜撸| 日韩成人av中文字幕在线观看 | 亚洲精品在线观看二区| а√天堂www在线а√下载| 久久精品国产鲁丝片午夜精品| 亚洲一区二区三区色噜噜| 噜噜噜噜噜久久久久久91| 国产91av在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品sss在线观看| 亚洲最大成人av| 亚洲国产色片| 亚洲人成网站高清观看| 成人亚洲欧美一区二区av| 一级a爱片免费观看的视频| 免费大片18禁| 色综合站精品国产| 九九热线精品视视频播放| 色综合站精品国产| 九九热线精品视视频播放| 亚洲精品国产成人久久av| or卡值多少钱| 欧美性感艳星| 国产高清有码在线观看视频| 成人午夜高清在线视频| 欧美zozozo另类| 99国产精品一区二区蜜桃av| 性插视频无遮挡在线免费观看| 一级毛片我不卡| 国产亚洲av嫩草精品影院| 国产成人aa在线观看| 桃色一区二区三区在线观看| 亚洲中文日韩欧美视频| 亚洲精品亚洲一区二区| 久久久精品94久久精品| 国产成人aa在线观看| 国产伦精品一区二区三区四那| 精品99又大又爽又粗少妇毛片| 大香蕉久久网| 少妇丰满av| 日日干狠狠操夜夜爽| 女的被弄到高潮叫床怎么办| 国内精品一区二区在线观看| 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 久久久国产成人精品二区| 一个人看视频在线观看www免费| 97人妻精品一区二区三区麻豆| 我要搜黄色片| 91精品国产九色| 看免费成人av毛片| 欧美日韩精品成人综合77777| 国产黄色小视频在线观看| 一级av片app| 亚洲色图av天堂| 一进一出好大好爽视频| 美女cb高潮喷水在线观看| 午夜精品一区二区三区免费看| 日本-黄色视频高清免费观看| av免费在线看不卡| 99久久精品国产国产毛片| 99热这里只有是精品50| 亚洲中文字幕一区二区三区有码在线看| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 欧美潮喷喷水| 波多野结衣高清无吗| 免费大片18禁| 蜜桃久久精品国产亚洲av| 中文亚洲av片在线观看爽| 天堂√8在线中文| 51国产日韩欧美| 成人综合一区亚洲| 天天躁夜夜躁狠狠久久av| 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 精品福利观看| 丰满人妻一区二区三区视频av| 国产片特级美女逼逼视频| 国产亚洲精品av在线| 2021天堂中文幕一二区在线观| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品熟女少妇av免费看| 丰满乱子伦码专区| 亚洲欧美精品综合久久99| 插逼视频在线观看| 一级毛片电影观看 | 噜噜噜噜噜久久久久久91| 国产v大片淫在线免费观看| 欧美日韩国产亚洲二区| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 日韩高清综合在线| 国产精品久久电影中文字幕| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 韩国av在线不卡| 亚洲经典国产精华液单| 少妇的逼好多水| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 中文字幕免费在线视频6| 国内精品美女久久久久久| 深爱激情五月婷婷| 精品久久久久久久久久久久久| ponron亚洲| 欧美激情在线99| 国内精品久久久久精免费| 国产精品福利在线免费观看| 欧美成人一区二区免费高清观看| 精品久久久久久久人妻蜜臀av| 色噜噜av男人的天堂激情| 欧美色视频一区免费| 国产精品乱码一区二三区的特点| 日韩三级伦理在线观看| 女人被狂操c到高潮| 熟女电影av网| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 亚洲美女黄片视频| 免费观看的影片在线观看| 特级一级黄色大片| 免费高清视频大片| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 欧美最黄视频在线播放免费| 看非洲黑人一级黄片| 国产人妻一区二区三区在| 免费无遮挡裸体视频| 91久久精品国产一区二区三区| 99久久成人亚洲精品观看| 亚洲真实伦在线观看| 久久九九热精品免费| 久久鲁丝午夜福利片| 国产精品三级大全| 色尼玛亚洲综合影院| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 久久久久国产网址| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 亚洲精品日韩av片在线观看| 成人性生交大片免费视频hd| 波野结衣二区三区在线| 欧美性感艳星| 日本熟妇午夜| 91久久精品国产一区二区成人| 亚洲国产高清在线一区二区三| 最近手机中文字幕大全| 欧美日韩一区二区视频在线观看视频在线 | 久久亚洲精品不卡| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| a级毛片a级免费在线| 青春草视频在线免费观看| 亚洲综合色惰| 99热这里只有精品一区| 国产一区二区三区av在线 | 两个人视频免费观看高清| 亚洲成av人片在线播放无| 国产成人福利小说| 国产成人a区在线观看| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 午夜激情欧美在线| 国产精品综合久久久久久久免费| 春色校园在线视频观看| 精品福利观看| 亚洲国产精品成人综合色| 搞女人的毛片| 久久午夜福利片| 国产精品综合久久久久久久免费| 久久久久性生活片|