• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stabilization of ion-temperature-gradient mode by trapped fast ions

    2022-07-13 00:37:16SiqiWANG王思琪HuishanCAI蔡輝山BaofengGAO高寶峰andDingLI李定
    Plasma Science and Technology 2022年6期

    Siqi WANG (王思琪),Huishan CAI (蔡輝山),Baofeng GAO (高寶峰) and Ding LI (李定)

    1 CAS Key Laboratory of Geospace Environment,School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People's Republic of China

    2 Institute of Physics,Chinese Academy of Sciences,Beijing 100190,People's Republic of China

    Abstract Understanding and modeling fast-ion stabilization of ion-temperature-gradient (ITG) driven microturbulence have profound implications for designing and optimizing future fusion reactors.In this work,an analytic model is presented,which describes the effect of fast ions on ITG mode.This model is derived from a bounce-average gyro-kinetic equation for trapped fast ions and ballooning transformation for ITG mode.In addition to dilution,strong wave-fast-ion resonant interaction is involved in this model.Based on numerical calculations,the effects of the main physical parameters are studied.The increasing density of fast ions will strengthen the effects of fast ions.The effect of wave-particle resonance strongly depends on the temperature of fast ions.Furthermore,both increasing density gradient and the ratio of the temperature and density gradients can strengthen the stabilization of fast ions in ITG mode.Finally,the influence of resonance broadening of wave-particle interaction is discussed.

    Keywords: fast ions,ITG instability,gyro-kinetic

    1.Introduction

    Improving plasma confinement is beneficial for designing future nuclear fusion devices and optimizing the performance of present devices.An important limiting factor of plasma confinement in fusion devices is microturbulence [1].As a significant driver of plasma turbulence,ion-temperature-gradient (ITG)instability[2-5]is principally responsible for the degradation of ion energy confinement.Therefore,it is extremely valuable to study the mechanisms that limit its development.

    Fast ions[6]are mainly generated by fusion reactions,as well as auxiliary heating systems,such as neutral beam injection [7] and ion cyclotron resonance heating [8].Understanding the behavior of fast ions is important since they are an essential component of fusion plasma and play a major role in sustaining fusion-relevant bulk temperatures.In addition,fast ions carry large power,which implies that even small fast-ion losses can damage the first wall of a fusion device.Therefore,the confinement of fast ions is worth studying.

    The study of fast-ion interaction with plasma turbulence has recently attracted particular interest.On the one hand,background plasma turbulence can induce the transport of fast ions and lead to the redistribution or losses of fast ions[9-12].On the other hand,fast ions can affect plasma turbulence in turn [13-15].In some experimental and numerical studies[16-20],the suppression of plasma turbulence has also been observed,which is linked to the presence of fast ions.Generally,the effects of fast ions can be classified as electrostatic effects and electromagnetic effects.In [14],the effect of the dilution of the main ions on stabilizing ITG turbulence is investigated.However,the fast-ion effect can be observed even under low density,which suggests other interaction mechanisms in addition to dilution [21].In [22],a strong dynamic effect of fast ions on suppressing plasma turbulence has been observed in an electrostatic setup.Significantly,the wave-particle resonance mechanism is taken into account[23,24].With regard to electromagnetic stabilization of ITG turbulence,there are many experimental and numerical studies[25-30].As shown in[22],the linear growth rate exhibits the same behavior in the electromagnetic and electrostatic framework,while the growth rate is lower in the electromagnetic framework than that in the electrostatic framework for the same parameters.Mostly,the effects of the fast-ion stabilization of ITG turbulence are studied by both linear and nonlinear numerical simulation methods.

    In this paper,a theoretical interpretation for the observed impact of fast ions on ITG mode is offered.Both analytical and numerical calculations are presented in this work.The physical mechanisms of fast-ion stabilization on ITG mode are studied in detail.The interaction of fast ions with ITG mode is investigated in the framework of gyro-kinetic theory[31].The dispersion relation consisting of ITG mode and fast ions is normally derived by utilizing the quasi-neutrality condition and ballooning transformation.It is discovered that fast ions can interact with ITG instability via wave-particle resonance.Based on numerical calculations,the effects of density,temperature,density gradient and the ratio of the temperature and density gradients of fast ions on both the real frequency and growth rate of ITG mode are investigated.The effect of dilution is also presented in numerical calculations.It is found that,in addition to dilution,the resonant fast-ion stabilizing effect plays a significant role.

    The rest of the paper is organized as follows.In section 2,adopting proper approximations,the dispersion relation including ITG mode and trapped fast ions is established.In section 3,based on numerical calculations,the dispersion relation is solved and different physical parameters controlling the stabilizing effect are investigated.Furthermore,the influence of resonance broadening of wave-particle interaction is discussed.Our conclusions are given in section 4.

    2.Dispersion relation

    The dispersion relation for ITG mode including fast ions and the bulk plasma is given by quasi-neutrality equation:

    Here,the bulk plasma is perceived to be composed of deuterium and electrons.Zfis the charge number of fast ions.For the electron response,an adiabatic approximation is adopted for k‖vTe?ω and the electron perturbation density δneis given by,

    However,an adiabatic approximation is not appropriate for both main ions and fast ions.The perturbed ion distribution function can be written as,

    Here,j refers to the species of particles and δgjis the nonadiabatic part of the perturbed distribution function,which is determined by the gyro-kinetic equation [31]:

    Here,vdj=,ωcj=and K=v2/2,where b is a unit vector parallel to the magnetic field,κ is the magnetic curvature,Mjis the mass of species j and(r,θ,ξ) denote the minor radius,poloidal angle and toroidal angle,respectively.The equilibrium distribution function is assumed to be Maxwellian.Obviously,in the above equation,the first term in the square bracket denotes the space-gradientdriven term and the second term denotes the energy-gradientdriven term.

    First,the dynamics of background main ions is presented.According to the gyro-kinetic equation,the perturbed ion distribution function δgiis obtained as,

    where,

    In previous works [3,4],the above equation has been studied under some limits.By considering the limits?1,?1 and keeping the leading contributions inand,the perturbed density of the main ions is expressed as,

    withbi=.Here,ρTiis the Larmor radius of the background main ions.Note that,under the limits?1,?1),the growth rate of ITG mode in this work is larger than that in simulation studies [22].

    For the fast-ion dynamics,both of δgfand δφ are expanded in toroidal and poloidal Fourier harmonics:

    Then,the Fourier transform of equation (4) is,

    The ordering relationship between the terms in equation (9) is as follows:

    Here,Δr is the radial distance from a reference mode rational surface and Δrmis the distance between the two adjacent rational surfaces,implies,where ωtfis the transit frequency.It is also true thatfor ITG mode.kθρTf<1 requires.Note that the upper and lower limits of Tf/Tiare given as.Subsequently,krρTf<1 for kr~skθ.denotes the adiabatic part of the perturbed distribution function of fast ions.Then<1 and<1,where[1+ηf(E Tf-3 2)].

    Based on the above ordering,equation (9) can be expanded as,

    Equation (11) can be solved as,

    Substituting equation (13) into equation (12) and taking the bounce average [32,33],we get:

    According to equation (14),the expression for the nonadiabatic part of the perturbed trapped fast-ion distribution function can be derived as,

    Significantly,the precession motion of fast ions can resonate with ITG mode when.Here,ωris the real frequency of ITG mode.This implies that fast ions can stabilize ITG mode via wave-particle resonance.

    The equilibrium distribution function of fast ions is assumed to be a Maxwellian distribution function [11,34],wherec1=is the normalized coefficient.

    Substituting the Maxwellian distribution function into equation (15),the perturbed density of trapped fast ions is written as,

    Combining equations(2),(7)and(16)and employing the ballooning transformation [35]δφ=,the quasi-neutrality condition in equation (1) can be expressed as,

    where,

    with y=skθx,σ=,ι=,,τ1=Te/Tiand τ2=ZfTe/Tf.Ω=is the normalized frequency andis the normalized energy.=with Ω=Ωr+iγ.Here,Ωris the normalized real frequency and γ is the normalized growth rate.The bracket 〈…〉θrepresents a θ-average value.The notation for the angle part of integration is expressed as,where Q is an arbitrary function of α.

    Note that,λ1expresses the response of the background electrons.λ2comes from the background main ions.λ3,stem from fast ions.λ3expresses the adiabatic part of fast ions.All ofandarise from the non-adiabatic part of fast ions.Since the Bessel functionis expanded as≈,〈λ4〉θstems from the principal part of the Bessel function.〈λ5〉θ,〈λ6〉θcome from the poloidal component and the radial component of the Bessel function,respectively.Namely,〈λ5〉θand〈λ6〉θdenote the finite Larmor radius effect.

    To facilitate analysis,〈λ4〉θis divided into〈λ41〉θ,〈λ42〉θ,〈λ43〉θand〈λ44〉θ,i.e.〈λ4〉θ= 〈λ41〉θ+ 〈λ42〉θ+〈λ43〉θ+ 〈λ44〉θ,

    Corresponding to equation(4),〈λ41〉θimplies the effect of the energy-gradient-driven term of fast ions.〈λ42〉θrepresents the effect of the density-gradient-driven term.Both of〈λ43〉θand〈λ44〉θstem from the temperature-gradient-driven terms and are denoted simply as the-3ηf/2 term andterm.They are opposite in sign,which signifies different effects between them.The ordering relationship between〈λ42〉θ,〈λ43〉θand〈λ44〉θis about 1: 3.The same division is applied equally to〈5λ〉θand〈λ6〉θ.

    Following reference [4] and proceeding to perform the strong coupling approximation cosη+sηsinη=1+,equation (17) can be written as,

    We find that equation(20)is just the familiar Weber-Hermite equation,as shown in [4,36].The eigenfunction solution is the Hermite function.Considering only the lowest eigenstate and seeking the solution of the form=exp(-ζη2),the dispersion equation is obtained:

    with,

    Here,bs=τ1biθ.Distinctly,let nf0=0 and equation (21)returns to the eigenvalue equation of ITG mode in [4].

    It is important to note that a significant fraction of trapped fast ions can resonate with ITG mode when the precession frequency of fast ions is close to the frequency of ITG mode,i.e.when.Here,suggests the normalized energy of fast ions that resonate with ITG mode at a frequency Ωr.Distinctly,the resonant condition depends on τ2,i.e.Tf/Te.According to equation (18),the contributions to the nonadiabatic part of fast ions stem from the energy,density and temperature gradients of fast ions.If ηf?1,the temperaturegradient-driven terms (〈λ43〉θand〈λ44〉θ) will be dominant since the ordering relationship between〈λ42〉θ,〈λ43〉θand〈λ44〉θis about.Subsequently,there is a threshold condition between〈λ43〉θand〈λ44〉θ.At relatively low temperature,the energy of resonant fast ions,i.e.is relatively high.Therefore,.When the temperature of fast ions increases,the resonant energydecreases and then.The threshold condition implies that wave-fast-ion resonance may play different roles(stabilizing or destabilizing) in ITG mode at different temperatures.

    3.Numerical results

    In order to obtain further understanding of fast-ion stabilization on ITG instability,the main physical parameters including the density nf0/ne0,temperature Tf/Te,density gradientand the ratio of the temperature and density gradients ηfof fast ions are investigated in more detail.Significantly,the effects of the background-driven terms(energy and space gradients) are studied separately.

    In numerical calculation,equation (21) is solved without any approximation.The plasma parameters are mainly taken from a JET L-mode discharge 73 224[22,28]and are listed in table 1.To facilitate the analysis,there is a single fast particle species,fast helium-3,presented in the calculation and the bulk plasma is composed of deuterium and electrons.

    Figure 1.(a) Normalized growth rate and (b) normalized real frequency of ITG mode with different densities of fast ions.Red and black dashed lines show the case without fast ions and the dilution,respectively.Solid blue and orange lines show the case with fast helium at Tf=5Te and Tf=30Te.

    Table 1.Parameters for the JET discharge 73 224 with fast helium.

    3.1.Effects of fast-ion density,nf0/ne0

    In this subsection,the effects of nf0/ne0on both growth rate γ and real frequency Ωrof ITG mode are presented in figures 1(a) and (b),respectively.The temperatures of fast helium are at Tf=5Teand Tf=30Te.

    From figure 1(a),it is found that fast ions play a stabilizing role on ITG mode and the growth rate reduces with the increasing nf0/ne0.As shown by the solid blue line in figure 1(a),relative to dilution,fast ions destabilize at Tf=5Te.The dominant effect of fast ions is dilution at Tf=5Te.However,the growth rate is lower than dilution at Tf=30Te.In addition,as shown in figure 1(b),the dilution leads to a reduction in the real frequency of ITG mode.Oppositely,the real frequencies of the two cases with fast helium rise as nf0/ne0increases.A negative value of the real frequency Ωrsignifies a mode propagating in the ion direction.

    The main physical mechanisms can be simply explained.When positively-charged fast ions are added to the background plasmas,the electromagnetic fields will have less response to the main thermal ions[14,18].Consequently,the growth rate arising from the bulk ions is reduced.Compared to the pure dilution case,both the growth rates and real frequencies in the two cases with fast helium are different.This fact demonstrates that there is another kinetic effect of fast ions in addition to dilution.Furthermore,the two cases at different fast-ion temperatures imply that the kinetic effect depends on the temperature of fast ions.Distinctly,this is the resonance mechanism that conforms to the last analysis in section 2.At low temperature (Tf=5Te),two temperaturegradient-driven terms are assumedand waveparticle resonance plays a destabilizing role.However,at relatively high temperature (Tf=30Te),and resonance leads to stabilization of ITG mode.Moreover,the resonant effect is weak at low temperature since only a small fraction of fast ions can resonate with ITG mode.As the temperature of fast ions rises,the fraction of resonant fast ions increases.Thus,the resonant effect of fast ions in the case at Tf=30Teis stronger than that at Tf=5Te.

    3.2.Effects of fast-ion temperature,Tf/Te.

    In this subsection,the effects of Tf/Teon both growth rate γ and real frequency Ωrof ITG mode are given in figures 2(a)and (b),respectively.Subsequently,the results are explained in detail using figures 3-5.The density of fast ion is nf0/ne0=0.07.

    In figure 2(a),it is found that,for Tf/Te<7,wave-fastion resonance leads to destabilization of ITG mode and the dominant effect is dilution.When the temperature of fast ions exceeds a critical value(Tf/Te~7),the growth rate decreases with the increasing Tf/Te.Meanwhile,resonance plays a stabilizing role on ITG mode.At higher temperature,i.e.Tf/Te>30,as the temperature rises,the growth rate changes slowly.In figure 2(b),it can be observed that,as Tf/Terises,the real frequency Ωrincreases and then moves towards the frequency in the dilution case.

    Figure 2.ITG (a) normalized growth rate and (b) normalized real frequency as a function of Tf/Te.

    Figure 3.ITG normalized growth rate as a function of Tf/Te:(a)adiabatic response,(b)response of energy-gradient-driven term,(c)sum of adiabatic response and response of energy-gradient-driven term and (d) response of space-gradient-driven term.

    First,to understand the results,in figures 3(a)-(d) both the adiabatic response and non-adiabatic response driven by energy and space gradients are depicted separately.In figure 3(a),the adiabatic response is shown by solving equation (21) with λ3of fast ions only,namely,let〈λ4〉θ,〈λ5〉θand〈λ6〉θbe zero.As can be seen,the adiabatic part of fast ions stabilizes the ITG,but this stabilizing effect quickly decays to zero as the temperature increases.The effect of the energy-gradient-driven term is shown in figure 3(b) by retaining〈λ41〉θ,〈λ51〉θand〈λ61〉θfor fast ions only.In contrast to the adiabatic response,the energy-gradient-driven term destabilizes the ITG mode.Similarly the destabilizing effect also rapidly weakens to zero with the increasing Tf/Te.Significantly,as shown in figure 3(c),the effects of the adiabatic part and energy-gradient-driven term of fast ions almost cancel each other so that the effect of fast ions mainly results from the space-gradient-driven term,which is shown in figure 3(d).

    Second,the effects of the fast-ion space gradient including density and temperature gradients are investigated in more detail.In figure 4(a),the magnitude of the imaginary part of〈λ42〉θ,which represents the effect of density gradients,is shown.Here,to facilitate analysis,a certain angle is assumed which satisfies κ2=0.6.The imaginary part of-〈λ42〉θis basically positive,which implies that the densitygradient term plays a destabilizing role on ITG mode.Similarly,-Im(〈λ44〉θ)in figure 4(c) is also mainly positive,which suggests that one part of temperature-gradient-driven termsis destabilizing on ITG mode.However,as shown in figure 4(b),another part (-3ηf/2 term) plays a stable role on ITG since-Im(〈λ43〉θ)is mostly negative.Distinctly,both| Im(〈λ43〉θ)|and| Im(〈λ44〉θ)|are much larger than| Im(〈λ42〉θ)|,which conforms to the ordering relationship between〈λ42〉θ,〈λ43〉θand〈λ44〉θ,i.e.1: 3ηf2:Therefore,the temperature gradient of fast ions expressed by〈λ43〉θand〈λ44〉θis mainly responsible for the kinetic effect of fast ions on ITG mode.

    Figure 4.Imaginarypart offastions driven by (a) density-gradient term (〈λ42〉θ),(b) temperature-gradient term (〈λ43〉θ) and (c)temperature-gradientterm(〈λ44〉θ).

    Figure 5.Imaginary part of fast ions:(a)principal part of Bessel function(〈λ4〉θ),(b)finite Larmor radius effect in θ direction(〈5λ〉θ)and(c)finite Larmor radius effect in r direction (〈λ6〉θ).

    Third,the resonant fast-ion stabilizing mechanism is studied.As shown in figures 4(b) and (c),at relatively low temperature,the magnitude of both| Im(〈λ44〉θ)|and| Im(〈λ43〉θ)|is small.As Tf/Terises,the magnitude of| Im(〈λ44〉θ)|and| Im(〈λ43〉θ)|increases and becomes maximum around Tf~12Te.Then,the magnitude of| Im(〈λ44〉θ)|and| Im(〈λ43〉θ)|decreases with increasing Tf/Te.This result conforms to the analysis of resonance.When the temperature of fast ions is low,only a small fraction of fast ions can resonate with ITG mode.Therefore,the resonant effect of fast ions is weak at relatively low temperature.As Tf/Terises,the fraction of resonant fast ions increases,which implies that the fast-ion resonant effect strengthens.When the temperature exceeds a certain value (Tf~12Te),the fraction of resonant fast ions decreases and the resonant effect weakens with increasing Tf/Te.In addition,at relatively low temperature,| Im(〈λ44〉θ)| >| Im(〈λ43〉θ)|,which suggests the destabilizing effect of theterm is stronger than the stabilizing effect of the-3ηf/2 term.When the temperature exceeds a critical value,conversely,the stabilizing effect of the -3ηf/2 term is stronger.This result conforms to the last analysis of resonance in section 2.As the fast-ion temperature increases,decreases.When the threshold condition<3 2is satisfied,stabilization of ITG mode by fast ions realized.

    Finally,the finite Larmor radius effect is studied in figures 5(a)-(c).In figure 5(a),as the principal part from the expansion of,for low temperatures,-Im(〈λ4〉θ)is positive,which suggests the destabilizing effect.When the temperature exceeds a certain value,-Im(〈λ4〉θ)becomes negative and fast ions stabilize ITG via wave-fast-ion resonance.Significantly,as shown in figures 5(b) and (c),the finite Larmor radius effect stabilizes ITG mode since both-Im(〈λ5〉θ)and-Im(〈λ6〉θ)are negative.

    3.3.Effects of fast-ion density gradient Lne /Lnfand ηf

    In this subsection,the effects of ηfandon both growth rate γ and real frequency Ωrof ITG mode are presented in figures 6(a)-(d) separately.The density of fast ions is nf0/ne0=0.07 and the temperature of fast ions is Tf=30Te.In figures 6(a) and (b),the density gradient of fast ions remains unchanged,i.e.=1.6.In figures 6(c) and (d),ηfis fixed,i.e.ηf=14.4.

    Figure 6.ITG (a) normalized growth rate and (b) real frequency as a function of ηf.ITG (c) normalized growth rate and (d) real frequency versusL neLnf.

    First,from figures 6(a) and (c),it is observed that both increasing ηfandwill reduce the growth rate of ITG mode,which implies that the increasing ηfandwill strengthen the stabilizing effect of fast ions.Second,from figure 6(b),it is found that,as ηfincreases,the real frequency of ITG mode increases and then moves towards the frequency in the dilution case.Finally,as shown in figure 6(d),the real frequency of ITG mode rises with increasing.

    The results in figures 6(a) and (c) can be simply explained.At first,in section 3.2,it is shown that fast-ion resonance leads to the stabilization of ITG mode at Tf=30Te.Bothand ηfare unrelated to the resonance condition.Therefore,wave-particle resonance always plays a stable role at different ηfandIn equation(18),it can be seen that the temperature-gradient-driven terms of fast ions are proportional to ηf,i.e.〈λ43〉θand〈λ44〉θare proportional to ηf.Thus,the increasing ηfwill increase fast-ion resonant stabilization.From equation (18),it is also found that the spacegradient-driven terms including density- and temperaturegradient-driven terms are also proportional to,namely,〈λ42〉θ,〈λ43〉θand〈λ44〉θare proportional to.Therefore,the stabilizing effect of fast ions strengthens asincreases.

    In summary,both the increasing ηfandcan strengthen the stabilization of fast ions on ITG mode.Therefore,there are two ways to improve the stabilizing effect of fast ions on ITG mode.First,keepand increase the ratio of the temperature and density gradients of fast ions,i.e.increase ηf.Second,keep ηfand increase the density gradient of fast ions,i.e.increase.

    3.4.Influence of resonance broadening of wave-particle interaction

    The influence of resonance broadening of wave-particle interaction is discussed in this subsection.As described above,the resonance condition is written as,i.e..However,the resonance is broadened due to the growth rate of ITG mode.

    The growth rate of ITG mode without fast ions is denoted as γITGhere.Assuming γITG=0,and the wave-particle resonance contribution without resonance broadening is then evaluated.The response of the resonant fast ions is calculated by replacing〈λ4〉θwith res〈λ4〉θ.Following Landau’s prescription and res〈λ4〉θis given by,

    Here,the same angle κ2=0.6 is also assumed.

    Figure 7.Imaginary part of fast ions from wave-fast-ion resonance as a function of Tf/Te.

    In figure 7,the magnitude of res〈λ4〉θis depicted as a function of Tf/Te.It is found that wave-particle resonance plays a stabilizing role on ITG mode since-Im (res〈λ4〉θ)is negative.As Tf/Teincreases,the magnitude of-Im (res〈λ4〉θ)decreases rapidly and the fast-ion resonance stabilization effect weakens.At high temperature,i.e.,Tf~40Te,the resonance effect is probably negligible,which implies that fast ions may be modeled by pure dilution [17].

    Comparing figure 5(a) with figure 7,it is found that the resonance broadening (from γITG) actually reduces the resonance effect since the magnitude of-Im(〈λ4〉θ)is smaller than-Im (res〈λ4〉θ).Moreover,in figure 5(a),at Tf/Te>30,-Im(〈λ4〉θ)regains slowly with increasing Tf/Teand the magnitude will not reduce to zero at high temperature(Tf~40Te).The strong resonance broadening effect is the main reason for the difference between our results and the simulation ones[22].The expression of〈λ4〉θin equation(18)can be used to explain this result.Fast ions can resonate with ITG mode when.However,the denominator of〈λ4〉θis not zero since there is an imaginary part,i.e.This imaginary part makes a difference to the resonance effect.In addition,the growth rate (γITG) makes a difference to the adiabatic response of fast ions.When γITG=0,the adiabatic part of fast ions no longer contributes an imaginary part and cannot offset the effect of the energy-gradient-driven term.

    In summary,the growth rate of ITG mode brings resonance broadening which reduces the effect of the resonance and makes a difference.As a result,the stabilizing effect of fast ions on ITG mode is underestimated in our work,since γITGin our background model is much larger than the actual growth rate of ITG mode.

    4.Conclusion

    The stabilizing effect of trapped fast ions on ITG mode has been studied,based on both analytical and numerical calculations.The relevant physics mechanisms have been explained.

    It is found that fast ions can strongly affect ITG mode through a wave-particle resonance mechanism when the precession frequency of trapped fast ions is close enough to the frequency of ITG mode.The fast-ion stabilizing effect depends on density,temperature,and the density and temperature gradients of fast ions.

    Fast-ion resonance destabilizes ITG mode at very low temperature,but is stabilizing as soon as the fast-ion temperature exceeds a certain value.By investigating the effect of the fast-ion temperature in more detail,it is found that the effects of the adiabatic part and energy-gradient-driven term of fast ions almost cancel each other.Thus,the effect of fast ions mainly results from the space-gradient-driven term.The space-gradient-driven term is derived from density and temperature gradients.The density-gradient term of fast ions plays a destabilizing role on ITG mode.Moreover,one part of the temperature-gradient-driven term (?Eηfterm) is destabilizing on ITG mode,but another part (-3ηf/2 term) plays a stable role on ITG.When the threshold conditionis satisfied,stabilization of ITG mode by fast ions is realized.Increasing the density of fast ions can enhance their effects.In addition,both increasing ηfandcan strengthen the fast-ion resonant stabilization effect.

    These findings contribute to the understanding of stabilization of ITG mode by trapped fast ions and suggest a means for improving ion energy confinement in fusion devices.However,in our analytic model,the growth rate of ITG mode without fast ions,i.e.γITGis large since the resonant effect of background main ions is ignored.This large γITGweakens the wave-fast-ion resonant effect in our work.The improvement of this issue will be shown in our future work.In addition,the electromagnetic effect is different to the resonance effect.It will be complex if the mode coupling effect is considered.In this work,the electromagnetic effect is not considered,which is left for future research.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11822505,11835016 and 11675257),the Youth Innovation Promotion Association CAS,the Users with Excellence Program of Hefei Science Center CAS (No.2019HSC-UE013),the Fundamental Research Funds for the Central Universities (No.WK3420000008) and the Collaborative Innovation Program of Hefei Science Center CAS(No.2019HSC-CIP014).

    波多野结衣av一区二区av| 亚洲全国av大片| 亚洲国产精品sss在线观看| 欧美激情极品国产一区二区三区| 真人一进一出gif抽搐免费| 国产亚洲欧美精品永久| 天天一区二区日本电影三级 | 在线观看免费午夜福利视频| 9色porny在线观看| 国产成人欧美| 国产精品久久久av美女十八| 亚洲精品中文字幕一二三四区| 国内精品久久久久久久电影| 国产精品野战在线观看| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 男女之事视频高清在线观看| 狂野欧美激情性xxxx| 亚洲欧美日韩高清在线视频| 在线观看免费视频日本深夜| 国产野战对白在线观看| 日韩欧美一区视频在线观看| 波多野结衣高清无吗| 亚洲欧美日韩无卡精品| 久久精品国产清高在天天线| 露出奶头的视频| 国产亚洲精品久久久久5区| 日本 av在线| 久久国产精品男人的天堂亚洲| 日韩精品青青久久久久久| 99国产极品粉嫩在线观看| 丁香欧美五月| av视频免费观看在线观看| 天堂动漫精品| 国产亚洲欧美在线一区二区| 国内毛片毛片毛片毛片毛片| 久久精品成人免费网站| 三级毛片av免费| 女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久| 色老头精品视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲aⅴ乱码一区二区在线播放 | 最新在线观看一区二区三区| 757午夜福利合集在线观看| 一级a爱片免费观看的视频| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 亚洲国产精品成人综合色| 性欧美人与动物交配| 亚洲国产日韩欧美精品在线观看 | 久久久久久免费高清国产稀缺| 两个人免费观看高清视频| 亚洲国产精品成人综合色| 亚洲avbb在线观看| 精品不卡国产一区二区三区| 亚洲,欧美精品.| 在线观看午夜福利视频| 久久午夜综合久久蜜桃| 999精品在线视频| 国产欧美日韩精品亚洲av| 国产色视频综合| 九色国产91popny在线| 久久精品91蜜桃| 久久中文看片网| 成人手机av| 黄色a级毛片大全视频| 国产精品亚洲一级av第二区| 国产午夜精品久久久久久| 午夜精品久久久久久毛片777| 脱女人内裤的视频| 日本五十路高清| 国产精品爽爽va在线观看网站 | 国产激情久久老熟女| 国语自产精品视频在线第100页| 男人舔女人下体高潮全视频| 欧美成人一区二区免费高清观看 | 亚洲性夜色夜夜综合| 性少妇av在线| 成年版毛片免费区| 他把我摸到了高潮在线观看| 麻豆国产av国片精品| 午夜免费鲁丝| 亚洲欧美日韩无卡精品| 久久久久国内视频| 一级毛片精品| 97人妻精品一区二区三区麻豆 | 给我免费播放毛片高清在线观看| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 免费在线观看黄色视频的| 真人做人爱边吃奶动态| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 少妇 在线观看| 午夜免费观看网址| 操出白浆在线播放| av电影中文网址| 亚洲自拍偷在线| 免费女性裸体啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 亚洲第一青青草原| 亚洲人成伊人成综合网2020| 无限看片的www在线观看| 国产精品香港三级国产av潘金莲| 亚洲五月婷婷丁香| 成人精品一区二区免费| 亚洲国产毛片av蜜桃av| 日韩av在线大香蕉| 亚洲avbb在线观看| 日本黄色视频三级网站网址| 日韩三级视频一区二区三区| 99久久国产精品久久久| 岛国在线观看网站| 深夜精品福利| 精品一区二区三区四区五区乱码| 日韩国内少妇激情av| 国产高清激情床上av| 欧美在线一区亚洲| 我的亚洲天堂| 亚洲美女黄片视频| 在线观看免费日韩欧美大片| 丝袜美足系列| 精品人妻在线不人妻| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 亚洲自拍偷在线| av网站免费在线观看视频| 伦理电影免费视频| 久久久久久人人人人人| 1024香蕉在线观看| 长腿黑丝高跟| 一级a爱视频在线免费观看| 亚洲国产日韩欧美精品在线观看 | 757午夜福利合集在线观看| 最好的美女福利视频网| 国产精品日韩av在线免费观看 | 在线观看www视频免费| 日本 av在线| 国产免费av片在线观看野外av| 国产黄a三级三级三级人| 亚洲精品粉嫩美女一区| 日本a在线网址| 18禁黄网站禁片午夜丰满| 91老司机精品| 成人特级黄色片久久久久久久| 一区福利在线观看| 天堂动漫精品| 成人精品一区二区免费| 在线观看免费视频日本深夜| 日本免费一区二区三区高清不卡 | 国产极品粉嫩免费观看在线| 精品久久蜜臀av无| 日韩欧美国产在线观看| 在线观看舔阴道视频| 久久婷婷成人综合色麻豆| 男女下面进入的视频免费午夜 | 精品一品国产午夜福利视频| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 国产激情久久老熟女| 美女国产高潮福利片在线看| 村上凉子中文字幕在线| 午夜福利免费观看在线| 好男人在线观看高清免费视频 | 亚洲av成人av| 69av精品久久久久久| 色尼玛亚洲综合影院| 亚洲精品在线美女| 日韩av在线大香蕉| 亚洲午夜理论影院| 国产真人三级小视频在线观看| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 国产99白浆流出| 日韩视频一区二区在线观看| 国产av一区在线观看免费| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 看片在线看免费视频| 99re在线观看精品视频| 日韩有码中文字幕| 久久国产精品影院| 久久精品人人爽人人爽视色| 午夜久久久久精精品| 亚洲全国av大片| 免费人成视频x8x8入口观看| 国产熟女xx| 精品国产美女av久久久久小说| 无人区码免费观看不卡| 亚洲欧美激情在线| 99国产综合亚洲精品| 多毛熟女@视频| 亚洲专区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 精品高清国产在线一区| 国产一卡二卡三卡精品| 可以免费在线观看a视频的电影网站| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 两个人看的免费小视频| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 午夜两性在线视频| 久久人妻福利社区极品人妻图片| 欧美久久黑人一区二区| 日本欧美视频一区| 女警被强在线播放| 亚洲欧美激情在线| av网站免费在线观看视频| 波多野结衣巨乳人妻| 久久婷婷人人爽人人干人人爱 | 中文字幕人成人乱码亚洲影| 热99re8久久精品国产| 亚洲午夜精品一区,二区,三区| 久久久水蜜桃国产精品网| 可以免费在线观看a视频的电影网站| 久久精品91蜜桃| 18禁美女被吸乳视频| 黄色a级毛片大全视频| 美女免费视频网站| 美女 人体艺术 gogo| 国产亚洲av高清不卡| 久久中文字幕一级| 99国产精品99久久久久| 亚洲激情在线av| 性欧美人与动物交配| 999精品在线视频| 久久久久久久精品吃奶| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 欧美中文日本在线观看视频| 999久久久国产精品视频| 一个人观看的视频www高清免费观看 | 精品国内亚洲2022精品成人| 欧美午夜高清在线| 午夜久久久在线观看| 99国产极品粉嫩在线观看| 成人手机av| 色老头精品视频在线观看| 久久久国产精品麻豆| 国产高清videossex| 人人妻,人人澡人人爽秒播| 满18在线观看网站| 亚洲一区二区三区不卡视频| 久久香蕉国产精品| 国产av一区在线观看免费| 午夜福利18| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片 | 精品不卡国产一区二区三区| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 日韩三级视频一区二区三区| 国产成人av激情在线播放| avwww免费| 操出白浆在线播放| 亚洲电影在线观看av| cao死你这个sao货| 欧美国产精品va在线观看不卡| 国产黄a三级三级三级人| 亚洲精品国产色婷婷电影| 人人妻人人澡欧美一区二区 | 日本五十路高清| 波多野结衣一区麻豆| 日韩精品中文字幕看吧| 国内毛片毛片毛片毛片毛片| 亚洲国产日韩欧美精品在线观看 | 女警被强在线播放| 成人av一区二区三区在线看| 一本久久中文字幕| 欧美日韩精品网址| 免费观看人在逋| 精品高清国产在线一区| 琪琪午夜伦伦电影理论片6080| 久久人妻av系列| 久久人人精品亚洲av| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 久久久久久久久久久久大奶| 一边摸一边抽搐一进一出视频| 嫩草影院精品99| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 国产亚洲欧美精品永久| 亚洲人成网站在线播放欧美日韩| 自线自在国产av| 搞女人的毛片| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 国内精品久久久久久久电影| 国产精品一区二区精品视频观看| 岛国视频午夜一区免费看| 在线av久久热| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 亚洲天堂国产精品一区在线| 成年版毛片免费区| avwww免费| 桃红色精品国产亚洲av| 久久 成人 亚洲| 亚洲欧美日韩无卡精品| 69av精品久久久久久| 两个人看的免费小视频| 国产精品影院久久| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 乱人伦中国视频| 国产成人精品久久二区二区91| www.精华液| 国产视频一区二区在线看| 美女午夜性视频免费| 色播亚洲综合网| 黄色毛片三级朝国网站| 国产主播在线观看一区二区| 久久天躁狠狠躁夜夜2o2o| 9色porny在线观看| 91字幕亚洲| 久久精品人人爽人人爽视色| 热99re8久久精品国产| 丁香六月欧美| 在线观看一区二区三区| 午夜免费激情av| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 老鸭窝网址在线观看| 日韩欧美国产在线观看| 亚洲精品国产区一区二| 成在线人永久免费视频| 亚洲一区高清亚洲精品| 欧美不卡视频在线免费观看 | 免费女性裸体啪啪无遮挡网站| www.精华液| 午夜视频精品福利| 久久中文字幕一级| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡 | 亚洲色图综合在线观看| av中文乱码字幕在线| cao死你这个sao货| 国产成人av激情在线播放| 亚洲全国av大片| 欧美成人性av电影在线观看| 国产99久久九九免费精品| 国产xxxxx性猛交| 好男人在线观看高清免费视频 | 精品久久久久久久人妻蜜臀av | 亚洲无线在线观看| av福利片在线| 欧美不卡视频在线免费观看 | 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 亚洲欧美一区二区三区黑人| 精品日产1卡2卡| 国产一级毛片七仙女欲春2 | 天堂动漫精品| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av在线| 久久天躁狠狠躁夜夜2o2o| 中文字幕av电影在线播放| 人人妻,人人澡人人爽秒播| 久久人妻熟女aⅴ| 看免费av毛片| 91成人精品电影| 久久久久久久久久久久大奶| 两个人看的免费小视频| 精品人妻1区二区| 亚洲黑人精品在线| 中文字幕高清在线视频| 国产真人三级小视频在线观看| 中文字幕人妻熟女乱码| 亚洲欧美日韩另类电影网站| 美女高潮喷水抽搐中文字幕| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜 | 99国产精品免费福利视频| 免费在线观看黄色视频的| 国语自产精品视频在线第100页| 露出奶头的视频| 亚洲天堂国产精品一区在线| 国产亚洲精品第一综合不卡| 久久亚洲真实| netflix在线观看网站| 亚洲熟妇中文字幕五十中出| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影| 黄色毛片三级朝国网站| 18禁国产床啪视频网站| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 熟妇人妻久久中文字幕3abv| 一二三四社区在线视频社区8| 久久午夜综合久久蜜桃| avwww免费| 亚洲欧美激情综合另类| www日本在线高清视频| 国产私拍福利视频在线观看| 麻豆国产av国片精品| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜爽天天搞| 国产成人av激情在线播放| 人人妻人人澡欧美一区二区 | 9热在线视频观看99| 亚洲男人天堂网一区| 成年女人毛片免费观看观看9| 老司机靠b影院| cao死你这个sao货| 黄片播放在线免费| 日本 av在线| 女人被狂操c到高潮| 999久久久精品免费观看国产| 一级,二级,三级黄色视频| 精品国产国语对白av| 色综合站精品国产| 欧美大码av| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 国语自产精品视频在线第100页| 午夜福利免费观看在线| 国产片内射在线| 午夜影院日韩av| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 日本五十路高清| 久久久久国内视频| 中文字幕精品免费在线观看视频| 国产成年人精品一区二区| 欧美黄色淫秽网站| 免费在线观看影片大全网站| 中国美女看黄片| 成人永久免费在线观看视频| 国产午夜精品久久久久久| 久久热在线av| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 午夜免费观看网址| 亚洲人成电影观看| 久久久久久久久中文| 久久中文看片网| 亚洲精品国产一区二区精华液| 大型黄色视频在线免费观看| 嫁个100分男人电影在线观看| 少妇熟女aⅴ在线视频| 国产精品av久久久久免费| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 久久草成人影院| 此物有八面人人有两片| 亚洲人成电影观看| 激情在线观看视频在线高清| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩高清综合在线| 天天一区二区日本电影三级 | 一级毛片女人18水好多| 日本欧美视频一区| 很黄的视频免费| 亚洲精品中文字幕在线视频| 日韩av在线大香蕉| 亚洲国产日韩欧美精品在线观看 | 久久久久国产精品人妻aⅴ院| 精品乱码久久久久久99久播| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| 99精品久久久久人妻精品| 在线观看www视频免费| 禁无遮挡网站| 黄网站色视频无遮挡免费观看| 中亚洲国语对白在线视频| xxx96com| 国产欧美日韩一区二区三| 婷婷丁香在线五月| 午夜福利18| 色综合欧美亚洲国产小说| 神马国产精品三级电影在线观看 | 女人高潮潮喷娇喘18禁视频| 麻豆国产av国片精品| 亚洲电影在线观看av| 中亚洲国语对白在线视频| 手机成人av网站| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费激情av| 国产精品免费视频内射| 天天添夜夜摸| 男男h啪啪无遮挡| 久久久水蜜桃国产精品网| 国产在线精品亚洲第一网站| 欧美午夜高清在线| 黑人欧美特级aaaaaa片| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 亚洲第一av免费看| 性欧美人与动物交配| 人人妻人人澡欧美一区二区 | 日本五十路高清| 性少妇av在线| 神马国产精品三级电影在线观看 | 纯流量卡能插随身wifi吗| 制服诱惑二区| 女人被躁到高潮嗷嗷叫费观| 亚洲五月婷婷丁香| 中文亚洲av片在线观看爽| 中亚洲国语对白在线视频| 国产视频一区二区在线看| 麻豆av在线久日| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 亚洲视频免费观看视频| 伦理电影免费视频| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 人人妻,人人澡人人爽秒播| 午夜福利免费观看在线| 人成视频在线观看免费观看| 亚洲人成网站在线播放欧美日韩| 男人操女人黄网站| 少妇粗大呻吟视频| 女人精品久久久久毛片| 久久国产精品男人的天堂亚洲| 黄色丝袜av网址大全| 99精品欧美一区二区三区四区| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看| 精品国产乱子伦一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产99久久九九免费精品| 亚洲av日韩精品久久久久久密| 成人永久免费在线观看视频| 夜夜爽天天搞| 久久婷婷成人综合色麻豆| 非洲黑人性xxxx精品又粗又长| 欧美在线黄色| 国产日韩一区二区三区精品不卡| 国产一区二区在线av高清观看| 亚洲专区字幕在线| 满18在线观看网站| 黑人巨大精品欧美一区二区mp4| 国产亚洲av嫩草精品影院| 亚洲伊人色综图| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 久久伊人香网站| АⅤ资源中文在线天堂| 无限看片的www在线观看| www.www免费av| 韩国精品一区二区三区| 精品久久蜜臀av无| 亚洲激情在线av| 波多野结衣巨乳人妻| 满18在线观看网站| 国产午夜福利久久久久久| 精品熟女少妇八av免费久了| 久久人人精品亚洲av| 日韩一卡2卡3卡4卡2021年| 亚洲成人久久性| 18禁裸乳无遮挡免费网站照片 | 免费在线观看黄色视频的| 亚洲成人精品中文字幕电影| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 变态另类丝袜制服| 中文字幕高清在线视频| 久久人妻福利社区极品人妻图片| 国产成+人综合+亚洲专区| 大型av网站在线播放| 国产亚洲av高清不卡| av福利片在线| 久久久国产欧美日韩av| 多毛熟女@视频| 美女高潮喷水抽搐中文字幕| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 精品一区二区三区四区五区乱码| 欧美黄色片欧美黄色片| 亚洲最大成人中文| 热99re8久久精品国产| 在线免费观看的www视频| 亚洲国产精品合色在线| 亚洲人成伊人成综合网2020| 88av欧美| 欧美日韩瑟瑟在线播放| x7x7x7水蜜桃| 日韩欧美三级三区| 亚洲av五月六月丁香网| 两人在一起打扑克的视频| 亚洲精品美女久久av网站| 久久国产精品影院| 可以免费在线观看a视频的电影网站| 女生性感内裤真人,穿戴方法视频| 在线观看免费视频日本深夜| 99久久综合精品五月天人人| 国产成人精品在线电影| 欧美日韩黄片免| svipshipincom国产片| 国产亚洲精品久久久久5区|