• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas

    2022-07-13 00:37:12JixingYANG楊吉星GuoyongFU傅國(guó)勇WeiSHEN申偉andMinyouYE葉民友
    Plasma Science and Technology 2022年6期

    Jixing YANG (楊吉星),Guoyong FU (傅國(guó)勇),Wei SHEN (申偉)and Minyou YE (葉民友),?

    1 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Institute for Fusion Theory and Simulation and Department of Physics,Zhejiang University,Hangzhou 310027,People’s Republic of China

    3 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract A linear simulation study of energetic passing particle-driven low-frequency fishbone instability in tokamak plasmas has been carried out using the global kinetic-MHD(magnetohydrodynamics) hybrid code M3D-K.This work is focused on the interaction of energetic passing beam ions and n=1 mode with a monotonic safety factor q profile and q0<1.Specifically,the stability and mode frequency as well as mode structure of the n=1 mode are calculated for scans of parameter values of beam ion beta,beam ion injection energy,beam ion orbit width,beam ion beta profile,as well as background plasma beta.The excited modes are identified as a low-frequency fishbone with the corresponding resonance of ωφ+ωθ=ω,whereωφ is the beam ion toroidal transit frequency andωθ is the beam ion poloidal transit frequency.The simulated mode frequency is approximately proportional to the beam ion injection energy and beam ion orbit width.The mode structure is similar to that of internal kink mode.These simulation results are similar to the analytic theory of Yu et al.

    Keywords: fishbone,energetic particle,hybrid simulations,tokamak

    1.Introduction

    Energetic particle physics is a key issue for burning plasmas of magnetic fusion reactors such as ITER.In a burning plasma,fusion product alpha particles can resonantly destabilize shear Alfven waves that in turn can lead to redistribution and losses of alpha particles themselves.As a consequence,these alpha-driven instabilities may degrade alpha particle heating and even damage the reactor’s first wall.Therefore,it is important to study energetic particledriven instabilities in tokamak plasmas.

    In this work,we focus on the energetic particle-driven fishbone,particularly the fishbone driven by co-passing energetic beam ions in tokamak plasmas.It is well known that energetic trapped particles can excite the (n,m)=(1,1)fishbone instabilities in a tokamak plasma with a monotonic safety factor q profile and central q value less than unity[1-3].The fishbone can be intrinsically an energetic particle mode (EPM) with mode frequency comparable to precession drift frequencyωd,hof energetic trapped particles [2].The fishbone can be destabilized when the energetic particle density exceeds a threshold.On the other hand,there is also another type of fishbone whose mode frequency is comparable to the diamagnetic drift frequency *ω,iof thermal ions.This fishbone instability,the so-called *ω,ibranch,can also be resonantly destabilized by energetic trapped particles [3].Further work has shown that energetic passing particles can also excite fishbone instabilities [4-6].Betti et al found that theω*,ifishbone can be destabilized by passing energetic particles when the effect of finite orbit width of the energetic particles is taken into account [4].The corresponding wave particle resonance isω=k‖v‖withk‖~being the parallel wave number of the (1,1) mode.More recently,Yu showed that an EPM branch of fishbone can be destabilized by energetic passing particles with mode frequency determined by the wave particle resonanceω=k‖v‖when*ω,iis neglected [5].Finally,Wang showed analytically that energetic passing particles can excite another EPM-type fishbone at a much higher mode frequency [6] satisfying the wave particle resonance ofω=ωφwhereis the toroidal transit frequency of energetic passing particles.

    In this work,energetic co-passing particle-driven n=1 internal modes in tokamak plasmas are investigated numerically using the global kinetic-MHD(magnetohydrodynamics)hybrid simulation code M3D-K [7].The energetic particles are introduced by neutral beam injection(NBI)heating.The q profile monotonically increases with radius with central valueq0<1.A systematic study of key parameter dependence has been carried out.Parameter values of beam ion beta,injection energy and beam ion orbit width are scanned.Our results show that all beam ion-driven modes are low-frequency fishbone modes driven by the wave particle resonanceωφ+ωθ=ω.The simulation results of mode structure,mode frequency and stability are similar to Yu’s theory [5].

    This article is organized as follows.Section 2 gives a brief introduction to the M3D-K code and parameters and profiles used in our simulation studies.In section 3,simulation results are presented.Section 4 provides discussion on comparison between simulation results and analytic theory.Finally,conclusions are reached in section 5.

    2.Simulation model and parameter setup

    In this work,we use the global kinetic-MHD hybrid code M3D-K [7],in which a particle/MHD hybrid model is used to describe the interaction of energetic particles and MHD waves.In this model,the thermal plasma is treated as a single fluid while the energetic particles are described by the driftkinetic equation.The drift-kinetic equation is solved by the particle-in-cell method [7].The M3D-K code has been successfully applied to study energetic particle-driven instabilities,such as fishbone and energetic particle effects on MHD modes [7-15].

    In our simulations,parameters and profiles similar to those of HL-2A tokamak plasmas are used.The main parameters include major radiusR0=1.6 m,minor radius=a0.4 m,magnetic field at magnetic axisB=1.34 T,0 central electron densityne0=1.3 ×1019m-3,Alfven speedvA==5.56 ×106ms-1,Alfven timeτA==2.88 ×10-7s and Alfven frequencyωA==3.7 ×106s-1.Both thermal ion species and energetic ion species are deuterium ion.The thermal plasma and energetic particle beta profile are respectivelyβthermal=βthermal0(1-)2andβhot=βhot0expwith= 0.11 where=(ψ-ψmin) (ψmax-ψmin)is the normalized poloidal magnetic flux function varying from= 0 at the magnetic axis to= 1 at the edge of the plasma.Figure 1 shows these two beta profiles.The q profile is given byq=0.85 +2r2,where r is the normalized minor radius,as shown in figure 2.

    Figure 1.Normalized thermal plasma beta (a) and energetic particle beta (b) as a function of the normalized poloidal flux.

    Figure 2.Safety factor as a function of the minor radius.

    For the energetic beam ions,a slowing-down distribution in velocity is used along with a peaked distribution in pitch angle for deeply co-passing particles.The beam ion distribution F is given by,

    wherecnis an overall normalization coefficient andn0is the central density of particles.,F2(v)andF3(Λ,v)are the distribution in space〈ψ〉,velocityvand pitch angle parameter Λ,respectively.Here,Λ =withμbeing the magnetic moment and E being the energy.is given by,

    where〈ψ〉 is the orbit-averaged value of the normalized poloidal flux defined bywithPφ=eψ+mv‖Rbeing the toroidal canonical angular momentum.Δψ= 0.11 is the width of radial distribution and is the same as in the energetic ion beta profile.F2(v)is given by,

    wherev0is the injection speed of NBI,vc=is the critical velocity,Δv=0.1v0represents the width of the distribution near the injection speed,and erf is the error function.F3(Λ,v)is given by,

    where Λ0= 0is the central pitch angle parameter and ΔΛ = 0.2 is the width of pitch angle distribution,which is fixed.

    For simplicity,the energetic particle pressure is assumed to be isotropic in the equilibrium calculation with the profile given by the energetic particle beta profile,as prescribed above.The equilibria are calculated using the VMEC code[16]with the prescribed total pressure profile and safety factor q profile together with the prescribed plasma boundary shape(circular in this study).The results of the equilibrium calculations are used as initial conditions for the M3D-K simulation.It should be noted that the q profile can be prescribed exactly in the VMEC calculations independent of pressure profile.

    3.Simulation results

    In this section,we present the simulation results of the n=1 mode driven by energetic co-passing beam ions.Key beam ion parameters of beta,injection energy E0and orbit width are varied in our simulation study in order to investigate the dependence of the fishbone instability on key parameters.The simulated linear mode frequencies and growth rates are compared with the analytic theory of Yu et al [5].The analytic results of mode frequencies and growth rates are obtained from the dispersion relation of Yu non-perturbatively without assumption of growth rate being much smaller than mode frequency.

    3.1.Simulation results of the baseline case at q0=0.85,E0=90 keV

    Here,we present the baseline simulation case with parametersq0=0.85,E0=90 keV,βthermal0= 2.13%,βhot0= 2.13%,andΔΛ = 0.2.Figures 3(a) and (b) show the evolution of kinetic energy associated with fluid velocity,and the evolution of mode phase at r/a=0.3,respectively.The results indicate that the mode grows linearly at a growth rate of γ=0.0184ωA.The mode frequency is quite low and is estimated to be ω=0.0195ωAbased on the phase evolution.

    Figure 3(c) shows the mode structure of the plasma velocity’s stream function U (The black circle is the radial position of the q=1 surface).As a comparison,figure 3(d)shows the mode structure of the MHD internal kink mode obtained for the corresponding case without energetic particles.We observe that the mode structure of the baseline case with beam ions is similar to that of the (1,1) internal kink mode,although there is a small but finite m=2 component outside the q=1 surface.

    Figure 3.(a)Evolution of kinetic energy Ek,(b)evolution of mode phase,(c)the mode structure of the plasma velocity’s stream function U for the baseline case and (d) the corresponding mode structure of the internal kink mode at zero energetic particle beta.

    Figure 4.(a)Contour of the normalized perturbed energetic particle distribution in the phase space,(b)locations of simulation markers with the largest values of particle weight (red circles).Black line represents the p=1 resonance line in the phase space.

    Figure 5.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion beta.

    Figure 6.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion injection energyE 0.

    Now,we consider the main wave particle resonance responsible for driving the mode.In general,the wave particle resonant condition is given by [17],

    where n is the toroidal mode number (n=1 in this study),p is an integer denoting the poloidal harmonic,ωis the mode frequency,ωθ≡is the poloidal transit frequency of beam ions andωφ≡is the toroidal transit frequency.

    In order to identify the main wave particle resonance,we plot both the contour of the normalized perturbed distribution(figure 4(a)) and the locations of simulation markers with the largest values of particle weightw=(figure 4(b))in the phase space of(Pφ,E)whereδfis the perturbed distribution function of energetic beam ions.We observe that both the contour of the perturbed distribution and the locations of simulation markers with largest values of particle weight are aligned with the p=1 resonant line.This is expected since resonant particles usually have the largest values of particle weight due to secular changes of perturbed distribution function at the resonance.These results indicate that the unstable mode is driven by the p=1 resonance in agreement with the analytic theory of Yu et al [5].It should be pointed out that in this study the beam ions are co-passing particles with negativeωφand positiveωθin the M3D-K convention.Furthermore,the simulated mode frequencyωis negative,indicating that the mode rotates toroidally in the direction of the plasma current.Therefore,it can be shown that our p=1 resonance ofωφ+ωθ=ωis equivalent to the p=?1 resonance ofωφ-ωθ=ωof Yuet al[5]where the values ofωφ,ωθandωare all positive.

    Table 1.Convergence in number of simulation markers.

    The above results and most other simulation results in this work are obtained with the following numerical resolutions:time step sizedt=0.01τA,100 radial grid points,400 poloidal grid points at the plasma edge and about one million simulation markers.A systematic convergence study shows that this set of resolutions is sufficient for obtaining accurate results.In particular,table 1 gives values of the growth rate and mode frequency for several simulation markers.The results indicate that about one million simulation markers are adequate for obtaining accurate results.

    3.2.Dependence on beam ion beta

    Figure 5 shows the simulation results(red lines)of(a)growth rate and(b)mode frequency as a function of central beam ion beta at the fixed value of thermal ion betaβthermal0= 0.135%.All other parameters are the same as in the baseline case.We observe that the mode becomes unstable when beam ion beta exceeds the threshold and the growth rate increases with beam ion betaβhot0.The mode frequency also increases gradually with increasingβhot0.This indicates that the unstable mode is driven by beam ions.The finite mode frequency is due to the kinetic effect of wave particle resonant interaction and beam ion diamagnetic effect.For comparison,the analytic results(black lines)from the fishbone dispersion relation of Yu et al[5] are also plotted.The analytic results are obtained by solving the dispersion relation of Yu non-perturbatively without assuming smallness of growth rate.The comparison indicates that the simulated frequency is close to the analytic results in this case.However,the simulated growth rates are much larger than the analytic values.

    3.3.Dependence on beam ion injection energy

    Here,simulations are carried out to study the dependence of fishbone on beam ion injection energy ranging from 30-90 keV.Other parameters and profiles are fixed and the same as those of the baseline case.In particular,the beam ion beta value is fixed in this scan.This means that the beam ion density physically decreases as the beam ion injection energy increases.Figure 6 shows the comparison between the simulation results(red lines)and analytic results(black lines)of the linear growth rate and frequency.We observe that both the mode frequency and growth rate increase as the beam energy increases.The simulation results agree with analytic theory trend.In particular,the simulated mode frequency increases almost linearly with beam energy,which is consistent with the analytic prediction,although the values are different.It should be noted that,in this case,the thermal beta value ofβthermal0= 2.13%is much larger than that of figure 5.Our simulation results indicate that typically the simulated mode frequencies become closer to the analytic results as the thermal beta becomes smaller.At beam energy of 60 keV,the corresponding mode structure of the instability is shown in figure 7(a) while the contour of the normalized perturbed distribution in phase space is plotted in figure 7(b).We observe that the simulated mode structure is similar to that of the baseline simulation case with dominating(1,1)mode.We also see that the contour of the perturbed distribution is roughly aligned with the p=1 resonance line.This indicates that the main resonance is again given by the p=1 resonance ofω=ωφ+ωθin agreement with the analytic theory.

    Figure 7.(a)Linear mode structure at E0=60 keV and(b)locations of resonant particles(red circles)and the p=1 resonance line(black)in the phase space.

    Figure 8.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion orbit width parameterρ h.

    Figure 9.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion radial profile width Δ.

    3.4.Dependence on beam ion orbit width

    According to the theory of Betti [4] and Yu [5],the lowfrequency fishbone dispersion relation is sensitively dependent on the beam ion orbit width.Therefore,here we fix the ratio of=0.45and scan the beam ion orbit width parameterwhereωhis the cyclotron frequency.This scan is done by varying beam ion mass and beam ion injection energy proportionally at the fixed beam ion injection speed.Figure 8 shows the comparison between the simulation results and analytic theory of the mode growth rate and frequency.The black line represents the theoretical values and the red line the simulated values.We observe that,as above,the simulated frequency increases almost linearly withρhin qualitative agreement with the analytic theory,while the growth rates are much larger than those of analytic theory.

    Figure 10.Comparison between simulation results(red line)and analytic results(black line)of(a)growth rate and(b)mode frequency as a function of thermal plasma beta.

    Figure 11.Comparison between simulation results(red line)and analytic results(black line)of(a)growth rate and(b)mode frequency as a function of beam ion orbit width parameterρ h.

    3.5.Dependence on beam ion radial profile

    Figure 9 shows the dependence of (a) simulated growth rate(red line) and (b) mode frequency (red line) on the beam ion radial profile width Δ.For comparison,the analytic results(black lines) are also plotted.The results show that the simulated mode frequency is not sensitive to the profile width,which is similar to that of analytic theory.

    3.6.Dependence on thermal plasma beta

    Finally,we study the dependence on thermal plasma beta at the fixed value of beam ion betaβhot0= 2.13%and the beam energyE0=60 keV.Figure 10 shows the simulation results(red circles)and analytic results (black triangles)of(a)mode growth rates and (b) mode frequency.We observe that the simulation results are consistent with analytic theory trend.First,the growth rates increase linearly with thermal beta.Second,the mode frequencies are not sensitive to thermal beta.

    3.7.Results with smaller ΔΛ and larger aspect ratio

    In order to explore the influence of the inverse aspect ratio and the width of pitch angle distribution on the fishbone,here we consider a larger aspect ratio of=10.Figure 11 gives the comparison between simulation results and analytical results as a function of beam ion orbit width at=0.53,=10,βhot0= 0.8%andβthermal0=0.008%.From the results shown in figure 11,the simulated frequencies agree quite well with analytical theory,while the growth rates are much larger than the analytical values.It should be pointed out that the good quantitative agreement between the frequencies is mainly due to the small value of thermal plasma beta rather than the larger value of=10,as will be discussed in section 4.

    We also consider the effects of the pitch angle distribution.Figure 12 shows the simulated growth rates and frequencies as a function of beam ion beta for two values ofΔΛ:ΔΛ = 0.1 (blue line) andΔΛ = 0.2 (red line).We observe that the results are nearly independent ofΔΛ.

    Figure 12.Comparison between simulation results with fixed ΔΛ = 0.2 (red line)and simulation results with fixed ΔΛ = 0.1(blue line)of(a) growth rate and (b) mode frequency as a function of beam ion beta.

    4.Discussion

    In the above sections,simulation results are presented for energetic co-passing beam ion-driven n=1 mode in tokamak plasmas with a monotonic q profile andq0<1.The linear simulation results show that a low-frequency EPM-type fishbone is driven unstable by energetic co-passing particles via the wave particle resonance ofωφ+ωθ=ω.Our numerical results are similar to the analytic theory of Yu et al[5]with respect to mode structure and mode frequency as well as the wave particle resonance responsible for the low-frequency fishbone.Specifically,the simulated mode structure is similar to that of the(1,1)internal kink mode.The simulated unstable mode is driven by energetic beam ions via the p=1 wave particle resonance ofωφ+ωθ=ω.The calculated mode frequency increases almost linearly with beam ion energy and beam ion orbit width.To our knowledge,this work is the first numerical demonstration of energetic co-passing particle-driven low-frequency fishbone with mode features similar to those of the analytic theory of Yu et al.

    It should be pointed out there are quantitative differences between the simulation results and Yu’s theory.Specifically,the simulated mode frequencies are typically lower than those of analytic theory at finite values of thermal plasma beta,although the agreement in mode frequency is quite good at low thermal plasma beta values.The simulated growth rates are much larger than those of analytic theory.The simulated mode has a finite extension beyond the q=1 radius.These discrepancies may come from the simple approximations used in deriving the analytic dispersion relation of the low-frequency fishbone.In particular,the analytic theory assumes that the mode is a pure (1,1) harmonic whereas our simulation results show a finite m=2 component beyond the q=1 surface.Second,the analytic theory assumes large aspect ratio tokamak equilibria with low plasma beta whereas our simulations use numerical equilibria with finite beta and finite aspect ratio.We have carried out simulations to investigate the effect of finite aspect ratio.Our simulation results show that a larger value of aspect ratio=10 does reduce the frequency discrepancy somewhat,but it is not enough to explain the frequency discrepancy at finite values of thermal ion beta.For example,we have carried out simulations for parameters ofβthermal0= 0.6%,βhot0= 0.8%,=10,=0.15and=0.53.The simulated mode frequency is= 0.037,which is still lower than the analytic value of 0.062.

    Finally,we note that for the parameters and profiles considered in this work,only the low-frequency fishbone is found.The energetic passing particle-driven high-frequency fishbone of Wang [6] is not found in our simulations.Future work will investigate the reasons for the absence of the high-frequency fishbone and results will be reported elsewhere.Nonlinear dynamics of the low-frequency fishbone will also be investigated in future work.

    5.Conclusion

    A linear simulation study of the energetic passing particle-driven fishbone instability in tokamak plasmas has been carried out using the global kinetic-MHD hybrid code M3D-K.Key beam ion parameters of beta,injection energy and orbit width are varied to investigate the dependence of mode properties on them.The results show that a low-frequency fishbone is excited when the energetic particle beta exceeds a critical value.The mode structure is similar to that of the(1,1)internal kink mode.The main resonance is found to beωφ+ωθ=ω.The mode frequency is approximately proportional to the beam ion injection energy and beam ion orbit width.These simulation results are similar to the recent analytic theory of passing energetic particle-driven low-frequency fishbone of Yu et al [5].

    Acknowledgments

    We thank Dr Feng Wang for useful discussions and for help with the use of the M3D-K code.This work is supported by the National MCF Energy R&D Program of China (Nos.2019YFE03030004 and 2019YFE03050001) and National Natural Science Foundation of China (Nos.11975232 and 11975270).Numerical simulations were carried out using the CFETR Integration Design Platform (CIDP) with the support of the Supercomputing Center of the University of Science and Technology of China.Part of the numerical simulations were carried out using the Qilin supercomputer #2 of the Institute for Fusion Theory and Simulation,Zhejiang University.

    ORCID iDs

    成人一区二区视频在线观看| 日韩欧美一区二区三区在线观看| 乱码一卡2卡4卡精品| 国产91av在线免费观看| 成年av动漫网址| 久久久久九九精品影院| 国产片特级美女逼逼视频| 99久国产av精品国产电影| 国产精华一区二区三区| 亚洲欧洲日产国产| 国产精品蜜桃在线观看 | 亚洲av成人av| 久久欧美精品欧美久久欧美| 伊人久久精品亚洲午夜| 熟妇人妻久久中文字幕3abv| 精品国内亚洲2022精品成人| 国产亚洲av片在线观看秒播厂 | 看十八女毛片水多多多| 国产伦一二天堂av在线观看| 中文资源天堂在线| 尾随美女入室| 中国美白少妇内射xxxbb| 麻豆乱淫一区二区| 一个人看的www免费观看视频| 欧美激情国产日韩精品一区| 午夜免费男女啪啪视频观看| 搞女人的毛片| 中文亚洲av片在线观看爽| 特级一级黄色大片| 欧美高清成人免费视频www| 亚洲成av人片在线播放无| 可以在线观看毛片的网站| 日韩视频在线欧美| 99热精品在线国产| 又爽又黄a免费视频| 最近最新中文字幕大全电影3| 少妇人妻精品综合一区二区 | 美女高潮的动态| 日本撒尿小便嘘嘘汇集6| 国产单亲对白刺激| 婷婷色av中文字幕| 免费看日本二区| 国产单亲对白刺激| 91精品国产九色| 亚洲欧美精品综合久久99| 亚洲欧美精品综合久久99| 午夜精品国产一区二区电影 | 春色校园在线视频观看| 亚洲四区av| 免费观看的影片在线观看| 日本欧美国产在线视频| 在线免费十八禁| 久久国内精品自在自线图片| 日韩高清综合在线| 69av精品久久久久久| 日本av手机在线免费观看| 天天躁日日操中文字幕| 午夜福利在线观看吧| 亚洲最大成人手机在线| 午夜免费激情av| av卡一久久| 嫩草影院入口| 亚洲精品国产av成人精品| 97热精品久久久久久| 精品免费久久久久久久清纯| 天美传媒精品一区二区| 午夜亚洲福利在线播放| 免费大片18禁| 男女下面进入的视频免费午夜| 91久久精品电影网| 伦理电影大哥的女人| 麻豆成人av视频| 国产在线男女| 大香蕉久久网| 欧美日韩一区二区视频在线观看视频在线 | 欧美高清成人免费视频www| 人人妻人人看人人澡| 久久久久久久久中文| 岛国毛片在线播放| 1000部很黄的大片| 成人特级黄色片久久久久久久| 美女脱内裤让男人舔精品视频 | 美女黄网站色视频| av又黄又爽大尺度在线免费看 | 亚洲成人久久性| 国内少妇人妻偷人精品xxx网站| 亚洲精品日韩在线中文字幕 | 午夜精品在线福利| 男人的好看免费观看在线视频| 99久久精品国产国产毛片| 亚洲av免费高清在线观看| 日本黄色片子视频| 中文字幕免费在线视频6| 在线播放国产精品三级| av专区在线播放| 亚洲最大成人中文| 人人妻人人澡人人爽人人夜夜 | 亚洲自拍偷在线| 国内揄拍国产精品人妻在线| 国产成年人精品一区二区| 色综合站精品国产| 免费观看人在逋| 国产成人影院久久av| 国产亚洲欧美98| 国产综合懂色| 91精品一卡2卡3卡4卡| 在线观看免费视频日本深夜| 只有这里有精品99| 久久久久久久久大av| 精品久久国产蜜桃| 91在线精品国自产拍蜜月| 在现免费观看毛片| 如何舔出高潮| 中文字幕久久专区| 男女啪啪激烈高潮av片| www日本黄色视频网| 亚洲国产欧美在线一区| 国产老妇女一区| 国产淫片久久久久久久久| 99久国产av精品国产电影| 日本黄色片子视频| 99久国产av精品国产电影| 精品一区二区三区视频在线| 男女下面进入的视频免费午夜| 欧美区成人在线视频| 女同久久另类99精品国产91| av在线老鸭窝| 国产在视频线在精品| 日韩一区二区视频免费看| 亚洲人成网站高清观看| 亚洲在线自拍视频| 男女那种视频在线观看| 亚洲美女搞黄在线观看| 看黄色毛片网站| 夫妻性生交免费视频一级片| 黄色日韩在线| 日本免费一区二区三区高清不卡| 久久国产乱子免费精品| 国产三级在线视频| 久久99精品国语久久久| 欧美一区二区精品小视频在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产成人久久av| 九九热线精品视视频播放| 成人毛片a级毛片在线播放| 女同久久另类99精品国产91| 国内精品一区二区在线观看| 91狼人影院| 久久久久久久久久久免费av| 久久久久久久久久久免费av| 免费无遮挡裸体视频| 国产欧美日韩精品一区二区| 久久久精品大字幕| 久久人人爽人人片av| 一区二区三区免费毛片| 青青草视频在线视频观看| 色综合站精品国产| av在线天堂中文字幕| 综合色丁香网| 超碰av人人做人人爽久久| 国产精品爽爽va在线观看网站| av视频在线观看入口| 欧美在线一区亚洲| 99国产精品一区二区蜜桃av| 免费观看的影片在线观看| 69av精品久久久久久| 卡戴珊不雅视频在线播放| 青春草亚洲视频在线观看| 国产高清有码在线观看视频| 好男人视频免费观看在线| 在线观看午夜福利视频| 午夜激情欧美在线| 成人综合一区亚洲| 大香蕉久久网| 久久久午夜欧美精品| 久久久久久伊人网av| 午夜亚洲福利在线播放| 老司机影院成人| 国产一级毛片在线| 成人鲁丝片一二三区免费| 亚洲国产精品成人久久小说 | 日韩在线高清观看一区二区三区| 午夜视频国产福利| 人人妻人人看人人澡| 女同久久另类99精品国产91| ponron亚洲| 国产爱豆传媒在线观看| 国产爱豆传媒在线观看| ponron亚洲| 日本色播在线视频| 亚洲精品日韩av片在线观看| 最好的美女福利视频网| 国产精品福利在线免费观看| 五月伊人婷婷丁香| 国产精品福利在线免费观看| av在线观看视频网站免费| 国产午夜精品久久久久久一区二区三区| 蜜臀久久99精品久久宅男| 久久人人精品亚洲av| 深夜a级毛片| 亚洲精品自拍成人| 日韩av在线大香蕉| 3wmmmm亚洲av在线观看| 边亲边吃奶的免费视频| 亚洲欧美精品自产自拍| 亚洲成人久久性| 精品人妻偷拍中文字幕| 国产av在哪里看| 国产一级毛片七仙女欲春2| 国产亚洲精品av在线| 亚洲欧美日韩东京热| 白带黄色成豆腐渣| 国产毛片a区久久久久| 成人永久免费在线观看视频| 欧美激情国产日韩精品一区| 国产精品永久免费网站| 国产老妇伦熟女老妇高清| 人妻少妇偷人精品九色| 欧美3d第一页| 亚洲av中文字字幕乱码综合| 小蜜桃在线观看免费完整版高清| 成年女人看的毛片在线观看| 一个人看的www免费观看视频| 一个人看的www免费观看视频| 国产高潮美女av| 国内少妇人妻偷人精品xxx网站| 中文精品一卡2卡3卡4更新| 一边摸一边抽搐一进一小说| 国产精品永久免费网站| 特级一级黄色大片| 国语自产精品视频在线第100页| 精品不卡国产一区二区三区| 日韩国内少妇激情av| 蜜臀久久99精品久久宅男| 日韩欧美精品v在线| 国产精品久久久久久精品电影| 久久婷婷人人爽人人干人人爱| 久久精品久久久久久噜噜老黄 | 最近2019中文字幕mv第一页| 免费在线观看成人毛片| 国产精品久久久久久久久免| 国产亚洲av片在线观看秒播厂 | 免费人成在线观看视频色| 99视频精品全部免费 在线| 日本五十路高清| 成人国产麻豆网| 久久精品国产自在天天线| 久久亚洲精品不卡| av免费观看日本| www.色视频.com| 精品久久久久久久久av| 精品免费久久久久久久清纯| 春色校园在线视频观看| 在线免费观看不下载黄p国产| 亚洲人成网站在线播| 精品人妻一区二区三区麻豆| 99久国产av精品国产电影| 日韩一区二区三区影片| 欧美日本视频| 91午夜精品亚洲一区二区三区| 日韩强制内射视频| 日韩一区二区三区影片| 亚洲欧美成人精品一区二区| 三级经典国产精品| kizo精华| 欧美高清成人免费视频www| 亚洲av中文av极速乱| 亚洲欧洲日产国产| 免费在线观看成人毛片| 久久久久久久久久久丰满| 小蜜桃在线观看免费完整版高清| 日本熟妇午夜| 国产成人精品久久久久久| 亚洲乱码一区二区免费版| 精品免费久久久久久久清纯| 99久国产av精品国产电影| 久久这里有精品视频免费| 九九在线视频观看精品| 午夜福利在线在线| 国产精品久久久久久精品电影| 国产精品三级大全| 免费在线观看成人毛片| 别揉我奶头 嗯啊视频| 欧美潮喷喷水| 国产精品综合久久久久久久免费| av免费观看日本| 亚洲av第一区精品v没综合| 免费黄网站久久成人精品| 看十八女毛片水多多多| 99国产极品粉嫩在线观看| 日日撸夜夜添| 欧美色视频一区免费| 99久久精品一区二区三区| 岛国毛片在线播放| 男的添女的下面高潮视频| 国国产精品蜜臀av免费| 免费搜索国产男女视频| 国产中年淑女户外野战色| 亚洲国产精品国产精品| 人体艺术视频欧美日本| av免费观看日本| 我要看日韩黄色一级片| 性欧美人与动物交配| 色综合色国产| 男女下面进入的视频免费午夜| 色综合站精品国产| 国产精华一区二区三区| 亚洲欧美日韩高清在线视频| 最近中文字幕高清免费大全6| 插阴视频在线观看视频| 99热这里只有是精品50| 亚洲无线观看免费| 你懂的网址亚洲精品在线观看 | 欧美三级亚洲精品| 人人妻人人澡欧美一区二区| 亚洲自偷自拍三级| 美女xxoo啪啪120秒动态图| 午夜爱爱视频在线播放| 亚洲成av人片在线播放无| 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| 免费搜索国产男女视频| 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 久久欧美精品欧美久久欧美| а√天堂www在线а√下载| 国产精华一区二区三区| 国产精品久久电影中文字幕| 91精品一卡2卡3卡4卡| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| АⅤ资源中文在线天堂| 一级毛片我不卡| 少妇熟女欧美另类| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 三级国产精品欧美在线观看| 青青草视频在线视频观看| 六月丁香七月| 老师上课跳d突然被开到最大视频| 免费看光身美女| 你懂的网址亚洲精品在线观看 | 成人一区二区视频在线观看| 日韩视频在线欧美| 久久99精品国语久久久| 欧美成人一区二区免费高清观看| kizo精华| 丰满的人妻完整版| 久久久久性生活片| 亚洲色图av天堂| 亚洲自拍偷在线| 欧美性猛交╳xxx乱大交人| 极品教师在线视频| 久久这里有精品视频免费| 成年版毛片免费区| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久| 国产精品野战在线观看| 久久精品国产鲁丝片午夜精品| 日韩在线高清观看一区二区三区| 久久久久久久久久成人| 在线观看免费视频日本深夜| 午夜福利在线在线| avwww免费| 亚洲av免费在线观看| 欧美激情在线99| 激情 狠狠 欧美| 少妇猛男粗大的猛烈进出视频 | 日韩欧美 国产精品| 国产精品国产三级国产av玫瑰| 性色avwww在线观看| 在现免费观看毛片| 国产精品一区www在线观看| 国产 一区 欧美 日韩| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清| 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 国产精品久久久久久av不卡| 春色校园在线视频观看| 国产免费男女视频| 国产亚洲欧美98| 看片在线看免费视频| 免费观看在线日韩| 一夜夜www| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产高清国产av| 国产一区二区亚洲精品在线观看| 亚洲精品456在线播放app| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 日韩一区二区三区影片| 免费无遮挡裸体视频| 亚洲第一区二区三区不卡| 欧美性猛交╳xxx乱大交人| 干丝袜人妻中文字幕| 不卡一级毛片| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩卡通动漫| 啦啦啦观看免费观看视频高清| avwww免费| 日日摸夜夜添夜夜爱| 免费看日本二区| 99精品在免费线老司机午夜| 国产熟女欧美一区二区| 国产视频首页在线观看| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在 | 欧美日韩精品成人综合77777| av在线观看视频网站免费| 黄片wwwwww| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 日韩在线高清观看一区二区三区| 男女啪啪激烈高潮av片| 亚洲七黄色美女视频| 欧美丝袜亚洲另类| 成人一区二区视频在线观看| 91av网一区二区| 亚洲国产精品成人久久小说 | 超碰av人人做人人爽久久| 国产亚洲av片在线观看秒播厂 | 天堂√8在线中文| 亚洲自偷自拍三级| 国产精品嫩草影院av在线观看| 亚洲欧美日韩高清在线视频| 1000部很黄的大片| 又粗又硬又长又爽又黄的视频 | 亚洲18禁久久av| 毛片一级片免费看久久久久| 又爽又黄a免费视频| 2021天堂中文幕一二区在线观| 性插视频无遮挡在线免费观看| 亚洲最大成人手机在线| 男女那种视频在线观看| 我的老师免费观看完整版| 99在线人妻在线中文字幕| 日本在线视频免费播放| av.在线天堂| 少妇被粗大猛烈的视频| 成人性生交大片免费视频hd| 亚洲丝袜综合中文字幕| 国产爱豆传媒在线观看| 嫩草影院精品99| 国产亚洲av片在线观看秒播厂 | 好男人视频免费观看在线| 欧美+日韩+精品| 精品一区二区免费观看| 成熟少妇高潮喷水视频| 亚洲精品国产av成人精品| 亚洲欧美日韩东京热| 精品人妻视频免费看| 99国产精品一区二区蜜桃av| 特级一级黄色大片| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久,| av女优亚洲男人天堂| 女同久久另类99精品国产91| 国产黄a三级三级三级人| 直男gayav资源| 在线a可以看的网站| 亚洲av成人av| 性色avwww在线观看| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 给我免费播放毛片高清在线观看| 在线播放无遮挡| 国产蜜桃级精品一区二区三区| 欧美丝袜亚洲另类| 亚洲无线观看免费| 亚洲精品成人久久久久久| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 最新中文字幕久久久久| 亚洲精品久久国产高清桃花| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 十八禁国产超污无遮挡网站| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 此物有八面人人有两片| 狠狠狠狠99中文字幕| 久久人妻av系列| 中文字幕av成人在线电影| 岛国在线免费视频观看| 免费黄网站久久成人精品| 熟女电影av网| 变态另类丝袜制服| 好男人在线观看高清免费视频| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 亚洲中文字幕一区二区三区有码在线看| 国产黄a三级三级三级人| 精品人妻熟女av久视频| 欧美高清成人免费视频www| 国产一区二区激情短视频| 男人狂女人下面高潮的视频| av福利片在线观看| 国产成人a∨麻豆精品| 少妇熟女aⅴ在线视频| 99热只有精品国产| 男人的好看免费观看在线视频| av专区在线播放| av在线观看视频网站免费| 麻豆一二三区av精品| 国产日韩欧美在线精品| 男的添女的下面高潮视频| 嫩草影院新地址| 成人一区二区视频在线观看| 亚洲av.av天堂| 男插女下体视频免费在线播放| 看片在线看免费视频| 蜜臀久久99精品久久宅男| 最近2019中文字幕mv第一页| 日本成人三级电影网站| 亚洲国产精品成人综合色| 日本一本二区三区精品| av在线观看视频网站免费| 欧美激情在线99| 尾随美女入室| 男女做爰动态图高潮gif福利片| 国产亚洲精品久久久com| 18+在线观看网站| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 插逼视频在线观看| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| av黄色大香蕉| 精品一区二区三区人妻视频| 国产精品女同一区二区软件| 嘟嘟电影网在线观看| 精华霜和精华液先用哪个| 欧美成人a在线观看| 不卡视频在线观看欧美| 久久婷婷人人爽人人干人人爱| 国内精品宾馆在线| 大香蕉久久网| 日韩av在线大香蕉| 亚洲av中文字字幕乱码综合| 五月伊人婷婷丁香| 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 国内精品宾馆在线| 亚洲不卡免费看| 日本黄色视频三级网站网址| 日本免费a在线| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 日韩欧美三级三区| 亚洲精品国产av成人精品| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 伊人久久精品亚洲午夜| 有码 亚洲区| 久久人妻av系列| 久久精品影院6| 国产精品人妻久久久久久| 欧美日韩乱码在线| 免费看光身美女| 色哟哟·www| 国产精品久久久久久久久免| 国产老妇女一区| 免费观看人在逋| 日韩国内少妇激情av| 成年女人永久免费观看视频| 中文字幕av在线有码专区| 日日啪夜夜撸| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 国产精品精品国产色婷婷| 精品人妻一区二区三区麻豆| 色吧在线观看| 成人亚洲精品av一区二区| 日韩制服骚丝袜av| 日本黄色片子视频| 成人特级黄色片久久久久久久| av视频在线观看入口| 人人妻人人看人人澡| 久久中文看片网| 麻豆乱淫一区二区| 精品一区二区三区人妻视频| 熟女人妻精品中文字幕| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 中文字幕人妻熟人妻熟丝袜美| 在线观看一区二区三区| 国产在视频线在精品| 精品国产三级普通话版| av黄色大香蕉| 热99在线观看视频| 日本在线视频免费播放| 国产一区二区在线观看日韩| 久久久久久久久久久丰满| 日本与韩国留学比较| av女优亚洲男人天堂| 一区二区三区高清视频在线| 国产亚洲欧美98| 精品国产三级普通话版| 麻豆乱淫一区二区| 1000部很黄的大片| 国产亚洲精品久久久com| 成人欧美大片| 久久精品国产清高在天天线|