• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)

    2022-07-13 00:36:36DongkuanLIU劉東寬WeixingDING丁衛(wèi)星WenzheMAO毛文哲QiaofengZHANG張喬楓LonglongSANG桑龍龍QuanmingLU陸全明andJinlinXIE謝錦林
    Plasma Science and Technology 2022年6期
    關(guān)鍵詞:衛(wèi)星

    Dongkuan LIU(劉東寬),Weixing DING(丁衛(wèi)星),,?,Wenzhe MAO(毛文哲),Qiaofeng ZHANG(張喬楓),Longlong SANG(桑龍龍),Quanming LU(陸全明) and Jinlin XIE (謝錦林),

    1 CAS Key Lab of Geoscience Environment,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Department of Plasma Physics and Nuclear Engineering,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    Abstract Motivated by the need of the electron density measurement for the Keda Reconnection eXperiment (KRX) facility which is under development,an interferometer system has been designed and tested in bench.The 320 GHz solid-state microwave source with 1 mm wavelength is used to fulfill the high phase difference measurement in such low temperature plasma device.The results of the bench test show that the phase difference is accurately measured.In contrast to tens of degrees of phase shift expected to be measured on the KRX,the system noise (~1°) is low enough for the KRX diagnostics.In order to optimize the system for better performance,we utilize the Terasense sub-THz imaging system to adjust alignment.The interferometer system has also been calibrated via changing of the optical path length controlled by the piezo inertial motor.Simultaneously,high density polyethylene thin film is introduced successfully to change a tiny phase difference and test the sensitivity of the interferometer system.

    Keywords: magnetic reconnection,diagnostics,interferometer

    1.Introduction

    Magnetic reconnection,known as an important physical process,can abruptly convert the stored magnetic energy to particle energy,and is associated with amounts of explosive phenomena in interplanetary space,solar atmosphere,the earth’s magnetosphere,and laboratory experiments [1-10].Understanding the magnetic reconnection mechanism and structure remains a key scientific challenge.Compared with in situ observation and theoretical numerical simulation,the ground experiment in the laboratory has a large amount of advantages in studying magnetic reconnection: (I) controlled conditions,(II) numerous-point measurements,(III) reproducibility,and (IV) authenticity.

    The Keda Reconnection eXperiment device (KRX) has been built for investigating the fundamental reconnection physics.The KRX is a φ3 ×10m cylindrical vacuum chamber facility,as shown in figure 1.The plasma is produced by hot cathode source in the top of the vacuum chamber [11].The electrons emitted from the hot cathode ionize the inert gas(argon or helium) and the uniform plasma can be produced.The axial magnetic field is produced by 10 coils with a maximum value of magnetic fieldB=100 Gauss.The current flows through a pair of drive plates to create the opposed magnetic field,resulting in anti-parallel reconnection.The reconnection magnetic field can be controlled in 0-500 Gauss.The experiment size is 2.5×1 m2,the plasma density(1016-1019m-3) and the electron/ion inertial length(c/ωpe(ωpi))can be controlled via discharge by different inert gases.The overall experimental size is 5-10 times ion inertial lengths which satisfies the electron scale and ion scale reconnection investigation.The facility is housed in the east of Hefei and the first discharge has been completed in 2021.The KRX is expected to start to run formally in 2022.Meanwhile,the plasma diagnostics is also on the way.

    The main diagnostics methods in reconnection experiments are based on the probe measurement (magnetic probes,Rogowski coils,Langmuir probes and speed probes,etc),like the experiments in MRX [4,12],LAPD [13,14] and TREX [15].Nevertheless,the probe diagnostic is difficult to measure the absolute density.In addition,the thin current sheet measurement remains a challenge in laboratory plasma due to disturbance of matter probes.The polarimeter-interferometer diagnostic,known as no perturbation electron/current density and magnetic field measurement means,has been used for plenty of fusion tokamak facilities [16-19],and it also contributes to the feedback control of plasma density.Motivated by the demand of advanced electron density and current measurement for the low temperature plasma,it is necessary for us to develop polarimeter-interferometer diagnostics technology for the KRX facility.

    In this paper,section 2 gives the schematic of the polarimeter-interferometer system for the KRX,section 3 presents the bench test of the interferometer system,the overall summary and the future plan are given in section 4.

    2.The layout of conception design of the KRX interferometer system

    As shown in figure 2(a),the KRX has 6 pairs of rectangular windows and dozens of circular windows in the cross section,and each window is allowed for the probes,microwave and optical diagnostics.The size of the rectangular window is 100×25 cm2and the radius of the circular window is 12.5 cm.The conception design of the polarimeter-interferometer measurement for the KRX has been finished.As shown in figures 2(b) and (c),the design applies the heterodyne Mach-Zehnder type polarimetry-interferometer detection method [20].The probing beam passes through the plasma via two long flanged windows horizontally,the longflanged windows are sealed with high density polyethylene(HDPE) so that the microwave can pass through.The diameter of the beam will be smaller than the width of the rectangular window.The reference beam bypasses the vacuum chamber along the gap of the base,the two beams are combined into the mixer to form heterodyne measurement.The line-integrated density can be measured by the phase difference from the interferometer,which is shown

    whereneis the electron density,λis the detection wave wavelength,andlis the path length of plasma.The corresponding magnetic field and current density measurement from the Faraday effect can be expressed as

    wherefθis the measured Faraday rotation angle,B||is magnetic field parallel to the direction of detection wave.The polarimeter-interferometer system will be installed on the fourth rectangular window in 2022,and this optical path can be extended into multiple channels from the middle of the two current plates.Therefore,we can get the electron density and current density profile with the evolution of the reconnection and acquire further understanding of the reconnection physics.

    The polarimeter-interferometer diagnostic requires fast time-resolution for magnetic reconnection experiments.The difficulty in the diagnostics is the phase difference measurement in such low density plasma.For this purpose,the proper wavelength (~1 mm) is selected to ensure there is large enough phase difference to measure [21].The interferometer phase difference evaluated by the working gases is from~π/6 to2πwhich is easily measurable,and thus the density can be accurately determined.Previously,the 650-700 GHz microwaves have been widely and successfully applied in plenty of fusion devices and provide the accurate measurement [16,18,22-24].Nevertheless,for the 320 GHz solidstate sources,the bench test is indispensable to verify measurement feasibility on the KRX.

    3.Bench test of the interferometer system

    The purpose of the bench test is to optimize and verify the feasibility of the system.The noise of the system largely depends on the optical design and alignment the two beams.Due to this motivation,the sub-THz camera,movable mirror and the HDPE films are introduced to optimize the design and examine the measurement vability.

    3.1.Optical path design of the interferometer system

    As shown in figure 3(a),the bench test applies the heterodyne interferometer means [25].Figure 3(b) presents the layout of the optical components on the two 1×0.8×0.8 m3stages with broadband damping for vibration isolation.Two frequency adjustable 320 GHz (316-324 GHz) solid-state Virginia Diodes Inc(VDI)microwave sources S1(ω1)and S2(ω2)are used as the signal sources.The output frequency of the sources can be set with a resolution better than 20 Hz with 15 mW output power.The intermediate frequency (IF) is set to be ~1 MHz(we set the S1(1ω)frequency to 320 GHz,and the S2(ω2) to 320 GHz+IF).The VDI Schottky planardiode mixers with high response (~1300 V W-1) are introduced as the detectors[26].We use the 70 LPI(lines per inch)wire mesh as the beam splitter which is suitable for the budget of the 320 GHz microwave (~50% reflection/transmission).The LABVIEW controlled NI (National Instruments) card with 0-60 MS s-1sampling is utilized as our data acquisition.

    Figure 1.The machine drawing of the KRX device.

    Figure 2.(a) The machine structure of the KRX device.The main diagnostics windows are 6 pairs of rectangular windows and dozens of circular ports in the middle of the vacuum chamber.(b) The conception design of the polarimeter-interferometer diagnostics system for KRX.(c) The optical path design of the interferometer system.The heterodyne detection method is utilized in this design,the signal beam passes through the fourth rectangular window,the reference beam bypasses the vacuum chamber,and the two beams are mixed into detectors on the other side.The system will be upgraded to multi-channels eventually.

    Figure 3.(a) The schematic bench test of the interferometer system and (b) the layout of the optical components on two optical tables.Probing beam is shown as the red,and the reference beam is in blue.

    Figure 4.(a)-(c) The relative power distribution of the probe beam along the propagation direction measured by the Terasense sub-THz camera at z=0.5,1,and 1.5 m,respectively,where z is the distance between the source antenna horn to the camera.(d)-(f)The cuts of the relative power (blue line) of corresponding (a)-(c) along the line y=0 mm,and the red dotted lines represent the Gaussian fitting of the beam relative power.

    Figure 5.Schematic propagation of the Gaussian beam of the microwave source and the layout of the Terasense camera.

    Figure 6.The relative power distributions of microwave beam measured by the sub-THz camera in front of the mixer with the camera placed at the same distance as the focal length of lens(15 cm).(a)-(c)The relative power distributions of microwave sources S1,S2,and the mixing of S1 and S2,respectively.(d)-(f)The cuts of the relative power of corresponding(a)-(c)along the line y=-1.65 mm(blue line),the red dotted lines represent the Gaussian fitting of the beam relative power.

    Figure 7.Band-pass filter half bandwidth versus rms phase difference noise for the cases with IF=1.5,2 and 3 MHz,respectively.The sampling is 10 MS s-1.

    Figure 8.The sampling versus system noise with 0.5 MHz bandpass of 1 MHz IF.

    Figure 9.Schematic optical design of the interferometer calibration.A mirror(green)which is perpendicular to the optical path is utilized to adjust optical path difference in the interferometer system.The mirror is mounted on the movable platform which is driven by the piezoelectric inertial actuator.The yellow arrow represents the move direction.

    All of the optical components are mounted on the optical tables.The optical height is 15.6 cm,and the corresponding meshes and the mirrors are also designed as the same height.The entire optical path is ~2 m for the signal (reference)chord.The lens (focal length=20 cm) in front of the microwave source is applied to focusing beams.An additional electromagnetic wave absorbing material (BPUFA-50CV) is added around the mirrors and the meshes to minimize the stray light.

    3.2.Alignment of the interferometer system

    The beam coming from the antenna horn of the sources propagates in Gaussian profile.The radius of the Gaussian beam is approximately 4.8 cm simulated by ZEMAX (an optical design software) after passing through the focal lens.Despite the two beams are firstly aligned by He-Ne lasers,it is not clear how collinear they are.In other words,it is difficult to determine the profile and the location of the propagation because the placement of the sources and the optical components (meshes,mirrors,etc) still cause deviations.It is necessary to measure the power distribution of the Gaussian beam and evaluate the alignment of the interferometer system.

    The Terasense sub-THz camera system (model T15/32/32) is used to image the beams.The camera is sensitive to polarization of incoming power with bandwidth approximately 50-700 GHz.The relative power distributions in figure 4 prove that the probing beam has a Gaussian distribution.The lines fitting show that the waist of the probing beam (~4 cm) is approximately consistent with the result from the simulation of ZEMAX.The error is most likely that we assume the Gaussian beam propagates from the antenna horn,practically,the starting position of the probing beam in the antenna is unknown.

    If the collinearity is not well satisfied in front of the mixer,the two beams will introduce the system errors.In order to check the alignment of the two beams,as shown in figure 5,the camera is placed in front of the mixer and a focal lens (focal length=15 cm) is housed near the camera to increase the intensity of imaging.Figure 6 presents the imaging of the relative power distributions of S1 beam,S2 beam and the mixing of the S1 and S2 in front of the mixer respectively.It can be concluded that the two beams are well overlapped.This indicates that the alignment of the two beams is successfully achieved which is important to optimize the interferometer system.

    3.3.Noise and the error analysis

    Since frequency difference of the two sources commanded by the computer corresponds to the frequency of IF,the IF signal is clean enough and fully controlled.As shown in[21],the IF in 1 MHz with 10 MS s-1sampling is stable and the rootmean-square (rms) phase difference noise level is low.The stability is the key issue to minimize the phase noise.Nevertheless,the phase noise of the IF largely depends on the stray light,optical deviation and the mixer sensitivity,etc.In addition,the frequency of the IF is also important for the noise evaluation.Figure 7 gives the digital band-pass filter half bandwidth versus rms phase difference noise for the cases with different IFs.The noise increases with a larger IF,but the noise is restricted in the level of ~1° with different IFs.This suggests that the minimum line-averaged electron density isne≈1015m-3.

    Since the phase difference of the interferometer measurement assessment on the KRX is tens of degrees [21],the interferometer system resolution is sufficient to investigate the accurate density measurement.However,the small noise is essential demand for the investigation of the plasma fluctuation and transport [17].The sampling versus noise in the figure 8 implies that we can also reduce the noise by increasing the sampling because the noise level is effectively improved with the increase of the sampling from 5 MS s-1to 20 MS s-1.However,the noise reduces slowly with higher sampling.Given the above results,the sampling should be reasonably considered.Furthermore,other factors that affect the noise should also be investigated which is significant for the further optimization of the noise.

    3.4.Interferometer calibration

    In order to calibrate the interferometer system on bench,a piezoelectric inertial actuator with typical step size of 20 nm has been utilized to change optical path length (phase change).As shown in figure 9,a movable mirror (green) is introduced in the optical design to change the optical path.The piezoelectric inertial actuator drives the movable stage to move the mirror,and the move direction follows the direction of the beam as the yellow arrow points to in figure 9.Since the mirror is located far away from the microwave source,the output power reflected back to the source is small and will not damage the microwave source.

    The piezo inertial motor controller is used to control the movement of the mirror for continuous jogging.Due to the reflection of the beam,theoretically,the phase difference of the two IFs caused by the jogging of the mirror can be presented as

    whereΔLis the jogging distance,λis the wavelength.Figure 10 gives the calibration results of the interferometer system.After ensemble average,the measured results are pretty well close to the theoretical values which are based on the ideal wave phase theory.The errors in the interferometer system are most likely caused by the installation and optical components deviations.

    Figure 10.The interferometer calibration.The move distance of the mirror and the measured phase difference,with the red line being the theoretical value and the dots being the measured values.

    Because the KRX device is being optimized,the HDPE thin film is used to simulate as the uniform plasma.The key issue of measuring plasma is refractive index measurement.The HDPE thin film is placed in signal beam path as an additional optical offset,as shown the grey ‘plasma’ area in figure 3(a).The phase difference of the reference chord and the signal chord caused by the optical path difference of thin film can be expressed as

    whereNis the refractive index of the thin film,dis the thin film width,andλis the beam wavelength.Here,we assume the air refractive index is 1,and the refractive index of the thin film can be expressed as

    Benefiting from optimization of the system,the refractive index measured is 1.60 (the theoretical value is 1.52),which suggests that the measurement error of our interferometer system is negligible.

    4.Conclusion

    In conclusion,the 320 GHz(1 mm wavelength)probing beam is selected to ensure the sensitivity of the interferometer measurement for KRX facility.The bench tests of solid-state microwave sources show that the IF is stable,and the phase noise (<1°) of the system is low enough for electron density diagnostics on the KRX.Besides,to optimize the system,the Terasense sub-THz imaging camera has been introduced to check the propagation of the Gaussian beam and has successfully improved the optical alignment.The interferometer system has been well calibrated by changing the optical path length with the help of precision movement of piezo motor with minimum 20 nm step.The HDPE thin film experiment has also verified that the system is capable of the MHD and turbulence fluctuation measurement.Meanwhile,benefiting from the interferometer system,the development of polarimeter diagnostics system based on Faraday effect for the magnetic field and current measurement will be achieved in the near future.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (No.11975231).

    猜你喜歡
    衛(wèi)星
    把衛(wèi)星甩上天
    miniSAR遙感衛(wèi)星
    如何確定衛(wèi)星的位置?
    軍事文摘(2021年16期)2021-11-05 08:48:58
    滿(mǎn)天都是小衛(wèi)星
    靜止衛(wèi)星派
    科學(xué)家(2019年3期)2019-08-18 09:47:43
    衛(wèi)星掠影
    咣當(dāng)! 天上掉衛(wèi)星
    Puma" suede shoes with a focus on the Product variables
    競(jìng)射導(dǎo)航衛(wèi)星為哪般
    太空探索(2015年6期)2015-07-12 12:48:29
    我國(guó)成功發(fā)射遙感衛(wèi)星二十五號(hào)
    河北遙感(2014年4期)2014-07-10 13:54:59
    亚洲一区二区三区欧美精品| 日韩一区二区三区影片| 内地一区二区视频在线| 日韩国内少妇激情av| 日韩av不卡免费在线播放| 亚洲国产精品专区欧美| 能在线免费看毛片的网站| 成人二区视频| 十八禁网站网址无遮挡 | 亚洲真实伦在线观看| 18禁裸乳无遮挡动漫免费视频| 嫩草影院入口| 97在线人人人人妻| 久久女婷五月综合色啪小说| 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 国产精品伦人一区二区| 国产一区二区三区综合在线观看 | 久久久久久久大尺度免费视频| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 大片电影免费在线观看免费| 熟女人妻精品中文字幕| 夜夜爽夜夜爽视频| 国内少妇人妻偷人精品xxx网站| 国产欧美另类精品又又久久亚洲欧美| 在线 av 中文字幕| 人妻 亚洲 视频| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 18禁在线无遮挡免费观看视频| 免费黄网站久久成人精品| 久久久久国产网址| 精品一区二区免费观看| 日韩免费高清中文字幕av| 极品少妇高潮喷水抽搐| 男女免费视频国产| 亚洲国产欧美人成| 建设人人有责人人尽责人人享有的 | 老司机影院毛片| 精品国产三级普通话版| 一区二区三区乱码不卡18| 久久精品国产鲁丝片午夜精品| 女性生殖器流出的白浆| 中国三级夫妇交换| 国产精品99久久99久久久不卡 | 国产 一区 欧美 日韩| 久久国产精品大桥未久av | av国产久精品久网站免费入址| 成年av动漫网址| 亚洲av二区三区四区| 一区二区av电影网| 日本欧美国产在线视频| 日韩欧美一区视频在线观看 | 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 国产毛片在线视频| 街头女战士在线观看网站| 欧美一区二区亚洲| 国产欧美日韩一区二区三区在线 | kizo精华| 精品国产乱码久久久久久小说| 91久久精品国产一区二区成人| 久久久久久久国产电影| 高清午夜精品一区二区三区| 国产亚洲欧美精品永久| 在线 av 中文字幕| 免费黄网站久久成人精品| 国产av一区二区精品久久 | 久久综合国产亚洲精品| 国产91av在线免费观看| 少妇高潮的动态图| 一级毛片 在线播放| 一本久久精品| 另类亚洲欧美激情| 免费播放大片免费观看视频在线观看| 国产精品久久久久成人av| 国产成人精品一,二区| 在线看a的网站| 少妇的逼好多水| a 毛片基地| 午夜视频国产福利| 日本午夜av视频| 日日摸夜夜添夜夜爱| 蜜桃久久精品国产亚洲av| 久久久久国产网址| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| av福利片在线观看| 亚洲精品日韩av片在线观看| 久久国产亚洲av麻豆专区| av线在线观看网站| 国产高潮美女av| 黑人猛操日本美女一级片| 99热全是精品| 女性生殖器流出的白浆| 九色成人免费人妻av| 97精品久久久久久久久久精品| 亚洲欧美成人精品一区二区| 久久久久精品久久久久真实原创| 中文字幕精品免费在线观看视频 | 天美传媒精品一区二区| 丝瓜视频免费看黄片| 免费av不卡在线播放| 色吧在线观看| 少妇熟女欧美另类| 免费大片黄手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美精品免费久久| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| freevideosex欧美| 久久综合国产亚洲精品| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载| 日韩av免费高清视频| 久久精品夜色国产| 人人妻人人澡人人爽人人夜夜| 成人国产av品久久久| 国产精品秋霞免费鲁丝片| 激情 狠狠 欧美| 亚洲va在线va天堂va国产| 久久久久久久国产电影| 久久久久久久久久成人| 高清黄色对白视频在线免费看 | 在线观看av片永久免费下载| 日韩不卡一区二区三区视频在线| 色哟哟·www| 亚洲婷婷狠狠爱综合网| 欧美 日韩 精品 国产| 国产伦精品一区二区三区四那| 在线播放无遮挡| 黑丝袜美女国产一区| 成人毛片a级毛片在线播放| 国内揄拍国产精品人妻在线| 男女边吃奶边做爰视频| 嫩草影院入口| 成人二区视频| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久丰满| kizo精华| 男人舔奶头视频| 久久久久久久精品精品| 精品一区二区三卡| 26uuu在线亚洲综合色| av国产久精品久网站免费入址| 男人添女人高潮全过程视频| 久久精品国产自在天天线| 国产在视频线精品| 欧美激情国产日韩精品一区| 啦啦啦在线观看免费高清www| 日韩一区二区三区影片| av.在线天堂| 亚洲精品国产色婷婷电影| 国产v大片淫在线免费观看| 色网站视频免费| 一级片'在线观看视频| 久久久久性生活片| 夜夜看夜夜爽夜夜摸| 国产精品一区二区在线不卡| 狠狠精品人妻久久久久久综合| 熟女电影av网| 一级毛片久久久久久久久女| 免费少妇av软件| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产色婷婷电影| 亚洲av不卡在线观看| 天堂中文最新版在线下载| 久久影院123| 亚洲图色成人| 午夜福利在线在线| 六月丁香七月| 80岁老熟妇乱子伦牲交| 日本色播在线视频| 黄色视频在线播放观看不卡| 免费av不卡在线播放| 免费av中文字幕在线| 国产91av在线免费观看| 午夜福利高清视频| 好男人视频免费观看在线| 成人一区二区视频在线观看| 精品国产三级普通话版| 在线免费观看不下载黄p国产| www.av在线官网国产| av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 网址你懂的国产日韩在线| 国产亚洲欧美精品永久| 伊人久久国产一区二区| 亚洲精品日韩av片在线观看| 高清欧美精品videossex| 91精品一卡2卡3卡4卡| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 日本免费在线观看一区| 少妇裸体淫交视频免费看高清| 老女人水多毛片| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲网站| 1000部很黄的大片| av国产久精品久网站免费入址| 人人妻人人看人人澡| 日韩制服骚丝袜av| 性色av一级| 国产精品久久久久久久电影| 国产精品女同一区二区软件| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 日韩强制内射视频| 亚洲婷婷狠狠爱综合网| 天天躁日日操中文字幕| 国产爽快片一区二区三区| 国产白丝娇喘喷水9色精品| 99久久中文字幕三级久久日本| 人妻少妇偷人精品九色| 午夜免费观看性视频| 婷婷色麻豆天堂久久| 噜噜噜噜噜久久久久久91| 成人二区视频| 一区二区三区精品91| 久久综合国产亚洲精品| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 久久久久久久久久久丰满| 1000部很黄的大片| 一级毛片久久久久久久久女| 亚洲不卡免费看| 最近中文字幕2019免费版| 亚洲精品色激情综合| 国产美女午夜福利| 高清视频免费观看一区二区| 少妇人妻 视频| 国产精品嫩草影院av在线观看| 国产日韩欧美在线精品| 午夜福利在线在线| 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 日韩,欧美,国产一区二区三区| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| 国产精品国产av在线观看| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 香蕉精品网在线| 制服丝袜香蕉在线| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 嫩草影院新地址| 午夜免费观看性视频| 国产成人91sexporn| 久久99热6这里只有精品| 大话2 男鬼变身卡| 婷婷色综合www| 日韩,欧美,国产一区二区三区| 国产精品欧美亚洲77777| 老熟女久久久| 成人国产麻豆网| 成年免费大片在线观看| 午夜日本视频在线| 毛片女人毛片| 九九在线视频观看精品| 91精品国产国语对白视频| 97超碰精品成人国产| 亚洲自偷自拍三级| 精品亚洲成国产av| 日韩精品有码人妻一区| 特大巨黑吊av在线直播| av播播在线观看一区| 下体分泌物呈黄色| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 性高湖久久久久久久久免费观看| 久久青草综合色| 国产精品国产av在线观看| 亚洲精品色激情综合| 久久精品国产亚洲av天美| 国产精品福利在线免费观看| 久久人人爽人人片av| 亚洲电影在线观看av| 亚洲,一卡二卡三卡| 日韩在线高清观看一区二区三区| 日韩av免费高清视频| 中文字幕人妻熟人妻熟丝袜美| 美女主播在线视频| 香蕉精品网在线| 蜜臀久久99精品久久宅男| 久久久久网色| 1000部很黄的大片| 亚洲精品日本国产第一区| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 久久久久久久久久成人| 免费大片18禁| 国产毛片在线视频| 国产精品女同一区二区软件| 亚洲性久久影院| 激情五月婷婷亚洲| 少妇的逼水好多| 高清av免费在线| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 亚洲精品国产色婷婷电影| 黄色欧美视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 日本免费在线观看一区| 日韩免费高清中文字幕av| h日本视频在线播放| 观看美女的网站| 午夜免费男女啪啪视频观看| 日韩强制内射视频| 亚洲精品一二三| 多毛熟女@视频| 欧美97在线视频| 各种免费的搞黄视频| 久久精品国产鲁丝片午夜精品| 最黄视频免费看| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 国产 精品1| 亚洲欧美一区二区三区黑人 | 精品一区二区三卡| 2018国产大陆天天弄谢| 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 日韩视频在线欧美| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 国产成人91sexporn| 熟妇人妻不卡中文字幕| 草草在线视频免费看| 亚洲人成网站在线播| 亚洲精品日韩av片在线观看| 久久久久久久大尺度免费视频| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 国产黄频视频在线观看| 韩国av在线不卡| 久久久午夜欧美精品| 午夜激情福利司机影院| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 亚洲激情五月婷婷啪啪| 免费在线观看成人毛片| 欧美亚洲 丝袜 人妻 在线| 久久精品夜色国产| 亚洲真实伦在线观看| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 男人舔奶头视频| 少妇 在线观看| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 只有这里有精品99| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看| 久久精品国产鲁丝片午夜精品| 99久久精品热视频| 一个人免费看片子| 在线观看三级黄色| 国产成人精品一,二区| 亚洲精品色激情综合| 国产成人a区在线观看| 亚洲自偷自拍三级| 午夜免费观看性视频| 欧美另类一区| 中国美白少妇内射xxxbb| 国产精品精品国产色婷婷| 97超碰精品成人国产| 亚洲av电影在线观看一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲av电影在线观看一区二区三区| 中国美白少妇内射xxxbb| 美女xxoo啪啪120秒动态图| 色5月婷婷丁香| 国产精品女同一区二区软件| www.av在线官网国产| 毛片一级片免费看久久久久| 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 久久久午夜欧美精品| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| 亚洲不卡免费看| 亚洲综合色惰| 中文字幕久久专区| 丰满乱子伦码专区| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| 亚洲经典国产精华液单| 春色校园在线视频观看| 欧美老熟妇乱子伦牲交| 国产精品女同一区二区软件| 少妇高潮的动态图| 最近手机中文字幕大全| 91久久精品电影网| 色视频www国产| 亚洲成人中文字幕在线播放| 直男gayav资源| 亚洲av.av天堂| 国产日韩欧美在线精品| av一本久久久久| 国产成人一区二区在线| 国产免费视频播放在线视频| 插逼视频在线观看| 国产 精品1| 欧美亚洲 丝袜 人妻 在线| 在线免费观看不下载黄p国产| 国产黄频视频在线观看| 内地一区二区视频在线| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| 一级毛片久久久久久久久女| 三级经典国产精品| 热99国产精品久久久久久7| 我的老师免费观看完整版| 日韩 亚洲 欧美在线| 国产精品福利在线免费观看| 免费黄网站久久成人精品| 久久久久久伊人网av| 亚洲第一av免费看| 久久久久人妻精品一区果冻| 国产在线免费精品| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 在线免费观看不下载黄p国产| 国产精品无大码| 99热这里只有精品一区| 五月玫瑰六月丁香| 熟女av电影| 啦啦啦中文免费视频观看日本| 黄色日韩在线| 久久久久网色| 黄片无遮挡物在线观看| 亚洲av在线观看美女高潮| 亚洲自偷自拍三级| 国产精品不卡视频一区二区| 91精品伊人久久大香线蕉| 亚洲av二区三区四区| 99久久精品国产国产毛片| 国产爱豆传媒在线观看| 啦啦啦啦在线视频资源| 国产伦精品一区二区三区视频9| 亚洲国产毛片av蜜桃av| 搡老乐熟女国产| 亚洲最大成人中文| 高清欧美精品videossex| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 亚洲欧洲国产日韩| 成人综合一区亚洲| 国产综合精华液| 黄色日韩在线| av女优亚洲男人天堂| 国产极品天堂在线| 晚上一个人看的免费电影| 亚洲国产精品专区欧美| 亚洲av中文字字幕乱码综合| 亚洲,一卡二卡三卡| 你懂的网址亚洲精品在线观看| 国产精品一区www在线观看| 国产精品av视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频| 伦精品一区二区三区| 久久午夜福利片| 欧美精品一区二区大全| 欧美丝袜亚洲另类| 99久久精品热视频| 日韩一区二区视频免费看| 免费大片18禁| 熟女电影av网| 秋霞在线观看毛片| 视频区图区小说| 在线观看一区二区三区激情| 深爱激情五月婷婷| 亚洲成色77777| 亚洲国产精品成人久久小说| 亚洲天堂av无毛| 国产日韩欧美亚洲二区| 免费av中文字幕在线| 国产欧美亚洲国产| 99久国产av精品国产电影| 亚洲一区二区三区欧美精品| 高清毛片免费看| 国产男女内射视频| 亚洲国产日韩一区二区| 2021少妇久久久久久久久久久| 汤姆久久久久久久影院中文字幕| 亚洲图色成人| 黑人猛操日本美女一级片| 欧美激情极品国产一区二区三区 | 欧美精品一区二区免费开放| 日日啪夜夜爽| 成人影院久久| 国产av精品麻豆| 国产美女午夜福利| 又大又黄又爽视频免费| 青春草视频在线免费观看| 深爱激情五月婷婷| 国产av码专区亚洲av| 秋霞在线观看毛片| 久久99热这里只有精品18| av在线老鸭窝| 国产综合精华液| 夜夜看夜夜爽夜夜摸| 国产精品国产三级国产专区5o| 亚洲怡红院男人天堂| 久久久精品免费免费高清| 女人十人毛片免费观看3o分钟| 高清黄色对白视频在线免费看 | 黄色一级大片看看| 国产老妇伦熟女老妇高清| 欧美日韩在线观看h| 国产日韩欧美亚洲二区| 亚洲av电影在线观看一区二区三区| 国产男女超爽视频在线观看| 久久人人爽人人片av| 精品一区二区免费观看| 蜜桃在线观看..| 欧美日韩国产mv在线观看视频 | 亚洲精品一区蜜桃| 男女国产视频网站| 国产男女超爽视频在线观看| 免费在线观看成人毛片| 七月丁香在线播放| 国产成人一区二区在线| 99久久精品国产国产毛片| 中文欧美无线码| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 欧美 日韩 精品 国产| 久久人人爽人人爽人人片va| 大香蕉久久网| 国产成人aa在线观看| 草草在线视频免费看| 久久久欧美国产精品| 97热精品久久久久久| 国产亚洲5aaaaa淫片| 最近最新中文字幕大全电影3| 久久综合国产亚洲精品| 亚洲欧美一区二区三区黑人 | 网址你懂的国产日韩在线| 国产黄色视频一区二区在线观看| 一区二区av电影网| 日韩在线高清观看一区二区三区| 最近手机中文字幕大全| 亚洲天堂av无毛| 免费人成在线观看视频色| 久久 成人 亚洲| 日韩av不卡免费在线播放| 久久久久久久久久久丰满| 亚洲av电影在线观看一区二区三区| 熟女电影av网| 美女视频免费永久观看网站| 国产精品免费大片| .国产精品久久| 久久久久性生活片| 97超视频在线观看视频| 十八禁网站网址无遮挡 | 久久毛片免费看一区二区三区| 亚洲国产最新在线播放| 欧美日韩在线观看h| 精品一区二区三卡| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 国产一区有黄有色的免费视频| 视频中文字幕在线观看| 永久免费av网站大全| 熟妇人妻不卡中文字幕| 我要看日韩黄色一级片| 精品熟女少妇av免费看| 在线亚洲精品国产二区图片欧美 | 亚洲国产欧美在线一区| 少妇高潮的动态图| 久久精品国产亚洲网站| xxx大片免费视频| 国产在线免费精品| 久久精品国产亚洲网站| 777米奇影视久久| 成人亚洲精品一区在线观看 | 国产爱豆传媒在线观看| 国产日韩欧美亚洲二区| 久久99热这里只频精品6学生| 国产精品一区二区性色av| 蜜桃久久精品国产亚洲av| 舔av片在线| 亚洲欧美精品自产自拍| 亚洲美女搞黄在线观看| 深爱激情五月婷婷| 国产女主播在线喷水免费视频网站| 久久精品国产亚洲av天美| 免费大片18禁| 国产永久视频网站| 高清在线视频一区二区三区| 色视频在线一区二区三区| 精品人妻偷拍中文字幕| 亚洲精品乱码久久久v下载方式| 深爱激情五月婷婷| 成人毛片a级毛片在线播放| 极品少妇高潮喷水抽搐| 久久青草综合色| 婷婷色麻豆天堂久久| 黄色欧美视频在线观看| 一区二区三区免费毛片| 日本色播在线视频| 国产又色又爽无遮挡免|