• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DAAzF對(duì)DAAF熱性能的影響

    2022-07-13 00:16:30莊思琪付小林陳建波
    含能材料 2022年7期
    關(guān)鍵詞:中國工程物理研究院材料科學(xué)綿陽

    莊思琪,付小林,于 謙,陳建波,劉 渝,金 波,黃 輝,

    (1. 西南科技大學(xué)材料科學(xué)與工程學(xué)院,四川 綿陽 621010;2. 中國工程物理研究院化工材料研究所,四川 綿陽 621999)

    1 Introduction

    Insensitive energetic materials based on furazan rings have received wide attention in the last decade due to their favorable properties including high energy density,good safety,and high nitrogen content[1-3].Among them,3,3'-diamino-4,4'-azoxyfurazan(DAAF)is regarded as one of the most promising explosives due to its good thermal stability,high positive enthalpy,high detonation velocity of 8.02 km·s-1,and detonation pressure of 30.6 GPa[4-5]. DAAF,as an excellent explosive,is expected to be used in place of 1,3,5-triamino-2,4,6-trinitrobenzene(TATB)in insensitive booster explosives and hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)in melt cast explosives[6-7]. However,it is reported that the impurities have a negative effect on the thermal performance of DAAF,as the onset temperature of DAAF measured by differential scanning calorimetry (DSC) is decreased from 250 ℃to 128 ℃by the impurities[8].Therefore,it is necessary to study the change of DAAF's thermal performance in the presence of the impurities.

    For the preparation of nano-explosives and plastic-bonded explosives[7,9],DAAF is mainly synthesized based on the Oxone oxidation method[8],which yields as well various impurities such as unreacted precursors,intermediates,and side-products.In our previous study,we found that the impurities of DAAF could not be ignored with a relatively high content of 6.62% of DAAF final product[10]. It is very difficult to remove 3,3'-diamino-4,4'-azofurazan(DAAzF)from DAAF via common purification due to the similar structure between DAAzF and DAAF.Compared to DAAF,DAAzF only lacks an oxygen atom that bound to the azo group. Therefore,DAAzF is regarded as a major impurity of DAAF[11-12]. Some properties of DAAzF itself have been investigated in the past. The vacuum thermal stability test of DAAzF is 5.87 mL·g-1,which is much higher than that of DAAF(0.69 mL·g-1)[13-15].Besides,the detonation velocity and pressure of DAAzF are 7.42 km·s-1and 26.2 GPa,respectively,which are lower than that of DAAF[16]. However,there is no study about the effect of DAAzF as the coexisting impurity on the thermal performance of DAAF until now.

    In this study, we investigated the effect of DAAzF on the thermal performance of DAAF for the first time. DAAzF was firstly synthesized,and then several composite DAAF@DAAzF explosives were obtained by doping different content of DAAzF into DAAF. Subsequently, the doping process of DAAF@DAAzF explosives was investigated by analyzing the DAAzF content and the characterizing the morphology. Further,the thermal performances of DAAF@DAAzF explosives,including melting point,thermal decomposition temperature,and activation energy,were investigated via simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC). In addition, the thermal stability of DAAF explosives in the presence of DAAzF was obtained through the study of isothermal thermal decomposition.

    2 Experimental Section

    2.1 Reagents and instrumentations

    3,4-Diaminofurazan(DAF),DAAF and DAAzF were synthesized in our laboratory. Analytical reagent(AR)N,N-dimethylformamide(DMF)was purchased from Kelong Chemical(Chengdu,Sichuan).

    High-performance liquid chromatography(HPLC)grade acetonitrile was purchased from Merck Chemicals(Darmstadt,Germany). Ultrapure water was purified by a Millipore-Q system(Bedford,USA)with the resistivity of 18.2 MΩ. Thermal analysis was performed on Mettler Toledo TG-DSC 3+(Zurich, Switzerland). Chromatography analysis was carried out with an Agilent 1260 infinity ultrahigh-performance liquid chromatography(HPLC) system (Waldbronn,Germany). Powder X-Ray diffraction(PXRD)was measured on a Bruker D8 Advance diffractometer(Karlsruhe,Germany).Scanning electron microscopy(SEM)was conducted on a Zeiss high-resolution field emission scanning electron microscopy instrument(Oberkochen,Germany).

    2.2 Sample preparation

    DAF,DAAF and DAAzF were synthesized according to the reported literature[17].

    DAAF(10 g)and different weights of DAAzF(0-1.0 g)were added into DMF(10 mL),and then the mixture was stirred at 60 ℃. After complete dissolution,cool water was added quickly into the above solution,and then the precipitates were filtered, washed, and dried to obtain DAAF@DAAzF explosives.The composite explosives doped with 0.5%,1.0%,2.5%,5.0%,and 10% mass fractions were named as DAAF@DAAzF-1,DAAF@DAAzF-2,DAAF@DAAzF-3,DAAF@DAAzF-4,and DAAF@DAAzF-5,respectively. As a control experiment,raw DAAF without the addition of DAAzF was performed by the above method.

    2.3 The characterization of DAAF@DAAzF

    DAAF@DAAzF explosives were measured by PXRD. The tube current and voltage of PXRD were set at 40 mA and 40 kV,respectively,and the images were scanned in a range of 2θfrom 10° to 40° by using a Vantec detector with Cu Kα as radiation(λ=1.54180 ?). Meanwhile,the morphology and particle size of DAAF@DAAzF were characterized by SEM.

    The solution of DAAF@DAAzF explosives was prepared with the concentration of 1.0 mg·mL-1in acetonitrile and then diluted to the concentration of 1.0 μg·mL-1for chromatographic analysis. The above solution was filtered through a 0.45 μm membrane before the HPLC analysis. Then,the diluted solution of DAAF@DAAzF explosives was analyzed by HPLC with reversed-phase Hypersil Gold C18column (100 mm×2.1 mm,1.9 μm). The mobile phase consisted of acetonitrile and ultrapure water.The flow rate was set at 0.5 mL·min-1. The temperature of HPLC column oven was set at 35 ℃. The detection wavelength of HPLC was set at 230 nm.

    2.4 Thermal analysis of raw DAAF and DAAF@DAAzF explosives

    Thermal analysis of both raw DAAF and DAAF@DAAzF explosives were performed by TG-DSC. All the experiments were measured in encapsulated aluminum pans with a low-sized pinhole.The mass of all explosives was about 1.5 mg for each measurement. Nitrogen was chosen as the shield gas with a flow rate of 30 mL·min-1. For the programmed heating measurements,all explosives were heated from 30 ℃to 350 ℃under different heating rates of 2,5,10 K·min-1and 20 K·min-1,respectively. All data of thermal analysis was processed by using the Netzsch kinetics Neo Trial software[18].

    3 Results and Discussion

    3.1 The doping of DAAzF in DAAF

    It would be more homogeneous to dope DAAzF in DAAF through the dissolution-precipitation method compared to the direct mixing of two different solid powders,because all molecules of DAAF and DAAzF can be homogeneously dispersed in the same solvent(DMF)before the precipitation. With that in mind,DAAF explosives were doped with different mass fractions of DAAzF from 0.5% to 10% to prepare DAAF@DAAzF explosives via the dissolution-precipitation method,which is shown in Fig.1.

    Fig.1 The process of doping DAAzF into DAAF

    3.2 The analysis of DAAzF content

    PXRD was used to characterize the doping of DAAzF in DAAF@DAAzF explosives. PXRD patterns of raw DAAF and DAAF@DAAzF explosives are shown in Fig. 2a. It is shown that the signal of raw DAAF at 27.70° disappears after doping 0.5% DAAzF.When 10% DAAzF is doped in DAAF@DAAzF explosives,two signals of DAAzF at 20.08° and 28.02° are observed obviously, which indicates that DAAF@DAAzF explosives contain DAAzF. To obtain the quantitative analysis of the doping content of DAAzF,the content of DAAzF in DAAF@DAAzF explosives was further analyzed by HPLC in Fig. 2b.Chromatographic peaks of DAAF and DAAzF are separated fully by HPLC,because DAAF and DAAzF have different retention times of 8.70 min and 9.36 min,respectively. Although raw DAAF has a very weak signal of DAAzF due to raw DAAF itself containing tiny DAAzF as a byproduct before the doping(Table 1),the signals of DAAzF in DAAF@DAAzF explosives become stronger gradually with the increase of DAAzF content. After the deduction of background signal of DAAzF in raw DAAF,DAAF@DAAzF explosives including DAAF@DAAzF-1,DAAF@DAAzF-2,DAAF@DAAzF-3,DAAF@DAAzF-4,DAAF@DAAzF-5 were doped with 0.5%,1.0%,2.5%,5.0%,and 10% DAAzF,respectively. Moreover,the SEM images in Fig.2c show the morphology of DAAF@DAAzF explosives is more homogeneous compared to raw DAAF,and the particle size of DAAF@DAAzF explosives is less than 1.0 μm. Therefore,different contents of DAAzF are homogeneously doped in DAAF@DAAzF explosives.

    Table 1 HPLC data of different content of DAAzF doped in DAAF@DAAzF explosives

    Fig.2 PXRD,HPLC and SEM analysis of raw DAAF,raw DAAzF and DAAF@DAAzF explosives

    3.3 Mass loss

    All TG/DTG curves of raw DAAF and DAAF@DAAzF explosives were determined by TG-DSC with the heating rate at 10 K·min-1. According to the TG curves of Fig.3a,DAAF@DAAzF explosives display a mass loss in one step for their thermal decomposition. The mass loss begins at about 244.3 ℃,and then there is about 60% mass loss observed after 10 min. Through the analysis of DTG curves in Fig.3b,an obvious difference is found between raw DAAF and DAAF@DAAzF explosives.The peak temperature in the DTG curve is 256.7 ℃for raw DAAF. The DTG peak temperature of DAAF@DAAzF explosives decreases with the increase of DAAzF content. The peak temperature is 255.8 ℃ for DAAF@DAAzF-2 with 1.0% DAAzF,and 254.8 ℃ for DAAF@DAAzF-4 with 5.0%DAAzF. Meanwhile, the mass loss rate of DAAF@DAAzF explosives increases with the increase of DAAzF content at the initial stage of thermal decomposition. However,the mass loss rate becomes slow under higher content of DAAzF doped in DAAF@DAAzF explosives at the end of thermal decomposition. Therefore,the doping of DAAzF can slightly lower the peak temperature of DAAF-based explosives in DTG curves.

    Fig.3 TG and DTG curves of raw DAAF and DAAF@DAAzF explosives at 10 K·min-1

    3.4 Melting point and melting heat

    The DSC curves of DAAF@DAAzF explosives were investigated under the heating rate of 10 K·min-1in Fig. 4a. An endothermic peak of raw DAAF is observed at 249.0 ℃,which indicates there is an endothermic process before thermal decomposition.Through the endothermic reaction,DAAF melts to provide a liquid phase for its thermal decomposition,which is similar to RDX and HMX[15,19-20]. Meanwhile,melting point of DAAF@DAAzF explosives decreases with increasing DAAzF content,which is shown in Fig.4b. The melting point of raw DAAF is 246.4 ℃. At the heating rate of 10 K·min-1,melting points of DAAF@DAAzF explosives with 0.5%,1.0%,2.5%,5.0%,and 10% DAAzF are 245.9,245.1,244.4,242.9 ℃,and 239.3 ℃,respectively,which indicates that DAAzF as the impurity obviously decreases the melting point of DAAF-based explosives. A linear relationship(y=-0.6862x+246.27)is found between the melting point of DAAF@DAAzF explosives(y)and the content of DAAzF(x)with anR2value of 0.9930,which is in agreement with Raoult's law of colligative property in dilute solution[21]. Compared to solid-phase decomposition,DAAF@DAAzF explosives display much faster thermal decomposition at the initial melting stage due to the decrease of melting points by DAAzF,which is in good agreement with the change of mass loss of DAAF@DAAzF explosives.

    Fig.4 DSC curves and melting points of raw DAAF and DAAF@DAAzF explosives at 10 K·min-1,DSC curves of raw DAAF under different heating rates,and melting heat of raw DAAF and DAAF@DAAzF explosives at 20 K·min-1

    Further,the DSC curves of raw DAAF were measured under different heating rates in Fig.4c. The melting heat of raw DAAF under 5,10,15 K·min-1,and 20 K·min-1is 211.09,184.34,146.93 J·g-1,and 125.59 J·g-1,respectively. Normally,the melting point of raw DAAF keeps constant under different heating rates. However,the decomposition temperature of raw DAAF at a higher heating rate of 20 K·min-1apparently lags behind that at a low heating rate of 5 K·min-1. So,the melting heat of raw DAAF decreases with the increase of the heating rate. As shown in Fig. 4d,the melting heat of DAAF@DAAzF explosives after the doping of DAAzF was also investigated at 20 K·min-1. The melting heat of DAAF@DAAzF explosives increases with the increase of DAAzF content,when the doping content of DAAzF is less than 5.0%.DAAF@DAAzF-4 containing 5.0% DAAzF displays the maximum melting heat with the value of 337.38 J·g-1. The melting heat of DAAF@DAAzF explosives decreases with the increase of DAAzF content,when DAAzF content is higher than 5.0%.Therefore,the change of melting heat indicates the eutectic mixture is formed between 5.0% DAAzF and 95% DAAF.

    Besides,the melting process of DAAF@DAAzF-3 containing 2.5% DAAzF is successfully observed by a microscopic melting point meter in Fig.5. During the melting process,solid samples began to spin and move,and then melted with the bubbles appearing,which indicates that thermal decomposition of DAAF@DAAzF explosives includes solid decomposition,melting,and liquid decomposition.Thus,it is further demonstrated that the thermal process of DAAF-based explosives containing DAAzF includes both melting and thermal decomposition.

    Fig.5 The melting process of DAAF@DAAzF-3 containing 2.5% DAAzF

    3.5 Kinetic analysis

    Kinetic parameters of thermal decomposition of DAAF explosives in the presence of DAAzF were calculated by Friedman method(Eq.(1))based on TG curves at different heating rates[20]:

    whereEais the apparent activation energy,kJ·mol-1;Ais the pre-exponential(frequency)factor,s-1;αis the conversion fraction;βis the heating rate,K·min-1;R is the gas constant,8.314 J·mol-1·K-1;Tis the absolute temperature,K;f(α)is the differential expression of the reaction model function.The pre-exponential factor(A)can be found by model-free analysis only assumption of known functionf(α),which is often used in the view of reaction ofnthorder in model-free analysis.

    As shown in Fig.6a,a high activation energy((560.9±60.8)kJ·mol-1)of raw DAAF is obtained at the initial thermal decomposition (α<0.30),which may be attributed to several coexisting processes of solid decomposition:melting and liquid decomposition. The doping of DAAzF can decrease the activation energy of DAAF-based explosives,which is similar to the decrease of melting point and mass loss rate of DAAF@DAAzF explosives. After doping with 0.5% DAAzF,the activation energy of DAAF@DAAzF-1 is decreased to(423.2±6.9)kJ·mol-1.The activation energy decreases as the reaction goes on.The change of activation energy of DAAF@DAAzF explosives becomes slow when the conversion is over 0.30. The activation energy values of all DAAF@DAAzF explosives range from (155.3±9.9) kJ·mol-1to(213.2±44.2) kJ·mol-1under high conversion(α≥0.30),which is in agreement with that of the reported DAAF explosive[4,16]. As shown in Fig. 6b,pre-exponential factors(logA)of all DAAF-based explosives show similar trends with their activation energies. Before the doping of DAAzF,raw DAAF shows a high pre-exponential factor with logAof(39.3±3.3)s-1. However,the pre-exponential factor of DAAF@DAAzF explosives is decreased with logAranging from(31.7±1.3)s-1to(23.4±1.5)s-1during the initial decomposition when the doping content of DAAzF is over 0.5%.

    Fig.6 Activation energies and pre-exponential factors of raw DAAF and DAAF@DAAzF explosives under different conversion(α),linear relationship between pre-exponential factor(ln(A))and activation energy(Ea),and isothermal thermal decomposition of raw DAAF and DAAF@DAAzF explosives

    Further,there is a kinetic compensation effect existing between apparent activation energy and pre-exponential factor,which means a linear relationship(lnA=a+bEa)between lnAandEa[22-23]. As shown in Fig.6c and Table 2,different content of DAAzF shows nearly the same slopes of 0.227~0.229 by performing a plot of lnAagainstEawith a good linear relationship ofR2=0.9999,which indicates raw DAAF and DAAF@DAAzF explosives have the same decomposition mechanism. According to Eq.(2)[24],the decomposition rate constant(k)of raw DAAF is(1.11×10-3)s-1at 250 ℃. After the doping of DAAzF,the rate constant of thermal decomposition increases with the increase of DAAzF content,and thekvalue of DAAF@DAAzF-5 containing 10% DAAzF is(3.59×10-3)s-1:

    Table 2 The parameters of linear equations between pre-exponential factors and activation energies

    where dα/dtis the reaction rate,s-1;αis the conversion fraction;k(T)is the rate constant,s-1;tis time,s;Tis temperature,K;f(α)is the reaction model.

    In addition,the isothermal thermal decomposition of DAAF@DAAzF explosives was investigated before the melting. Fig. 6d displays the isothermal DSC curves of all DAAF-based explosives at 230 ℃.It can be found that the decomposition peak time of raw DAAF is located at 41.72 min. After doping with 0.5% and 5.0% DAAzF,the DSC peak time of DAAF@DAAzF-1 and DAAF@DAAzF-4 is decreased to 27.09 min and 21.75 min,respectively. Compared to raw DAAF,isothermal thermal decomposition of DAAF@DAAzF explosives occurs in advance due to the doping of DAAzF. Therefore,the doping of DAAzF decreases the thermal stability of DAAF-based explosives.

    4 Conclusions

    (1)The effect of DAAzF on the thermal performance of DAAF@DAAzF explosives were studied comprehensively by TG-DSC after doping different content of DAAzF from 0.5% to 10% in DAAF explosives.

    (2) DAAzF decreases the melting points of DAAF@DAAzF explosives,with the largest decline of 7.1 ℃in the presence of 10% DAAzF. The doping of 5.0% DAAzF in DAAF can lead to the formation of the eutectic mixture between them.

    (3)The coexistence of DAAzF also decreases the activation energies and pre-exponential factors of DAAF@DAAzF explosives during the initial decomposition. Meanwhile,DAAzF can increase the rate constant of thermal decomposition of DAAF-based explosives.

    (4) Through isothermal thermal decomposition,the decomposition peak time of DAAF@DAAzF explosives is advanced clearly due to the presence of DAAzF. Therefore,DAAzF as an impurity accelerates the thermal decomposition of DAAF-based explosives and decreases their thermal stability.

    Acknowledgements:This work was financially supported by the National Natural Science Foundation of China(No. 21975235).

    猜你喜歡
    中國工程物理研究院材料科學(xué)綿陽
    中海油化工與新材料科學(xué)研究院
    基于目標(biāo)航跡的引導(dǎo)誤差校正方法研究
    中國工程物理研究院
    軍工文化(2023年3期)2023-04-28 08:39:41
    材料科學(xué)與工程學(xué)科
    CeAuGa3的力學(xué)性質(zhì)及磁性的第一性原理計(jì)算
    四川綿陽卷
    四川綿陽卷
    基于四傳感器的弱信號(hào)源定位方法
    傳感器世界(2019年9期)2019-03-17 18:52:46
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    777米奇影视久久| 超碰av人人做人人爽久久| av国产精品久久久久影院| 最近中文字幕高清免费大全6| 少妇人妻 视频| 欧美xxⅹ黑人| 精品熟女少妇av免费看| 亚洲av欧美aⅴ国产| 黄片无遮挡物在线观看| 成人国产麻豆网| 日韩欧美 国产精品| 婷婷色综合大香蕉| 偷拍熟女少妇极品色| 好男人视频免费观看在线| 国产人妻一区二区三区在| 好男人在线观看高清免费视频| 欧美性猛交╳xxx乱大交人| 久久久久九九精品影院| 一本一本综合久久| 国产亚洲av嫩草精品影院| 国产亚洲一区二区精品| 另类亚洲欧美激情| 国产女主播在线喷水免费视频网站| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 激情 狠狠 欧美| 久久综合国产亚洲精品| 日韩 亚洲 欧美在线| 国产久久久一区二区三区| 欧美日本视频| 男人舔奶头视频| 七月丁香在线播放| 一区二区三区精品91| 婷婷色综合大香蕉| 少妇裸体淫交视频免费看高清| 99久久精品国产国产毛片| 美女视频免费永久观看网站| 国产精品99久久久久久久久| 国产毛片a区久久久久| 午夜日本视频在线| 各种免费的搞黄视频| 国精品久久久久久国模美| 国产精品99久久99久久久不卡 | 欧美成人a在线观看| 亚洲欧美中文字幕日韩二区| 夜夜爽夜夜爽视频| av.在线天堂| 一个人看视频在线观看www免费| 日本黄大片高清| 日本色播在线视频| 久久久久久久午夜电影| 97热精品久久久久久| 国产精品嫩草影院av在线观看| 国国产精品蜜臀av免费| 亚洲一级一片aⅴ在线观看| 欧美精品国产亚洲| 久久精品久久精品一区二区三区| 久久精品夜色国产| 18禁动态无遮挡网站| 国产在线一区二区三区精| 中国美白少妇内射xxxbb| 午夜福利高清视频| 精品久久国产蜜桃| 欧美一区二区亚洲| 亚洲精品国产av成人精品| 大香蕉97超碰在线| av线在线观看网站| 精品酒店卫生间| 汤姆久久久久久久影院中文字幕| 免费不卡的大黄色大毛片视频在线观看| 我要看日韩黄色一级片| 在线免费十八禁| 乱码一卡2卡4卡精品| 精品视频人人做人人爽| 国产有黄有色有爽视频| 99久久精品热视频| 亚洲av一区综合| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| 插逼视频在线观看| 天天躁夜夜躁狠狠久久av| 国产精品一区二区在线观看99| 99久久精品国产国产毛片| 欧美性感艳星| 麻豆国产97在线/欧美| 色哟哟·www| 久久久精品94久久精品| 亚洲av男天堂| 国产成人91sexporn| 成人国产av品久久久| 大片电影免费在线观看免费| 中文字幕av成人在线电影| 久久综合国产亚洲精品| 国产免费视频播放在线视频| 亚洲精品国产色婷婷电影| 国产国拍精品亚洲av在线观看| 一级二级三级毛片免费看| 高清欧美精品videossex| 国产一级毛片在线| 99久久精品一区二区三区| 免费av观看视频| 人人妻人人澡人人爽人人夜夜| 日韩av不卡免费在线播放| 日韩精品有码人妻一区| 国产伦精品一区二区三区视频9| 亚洲一级一片aⅴ在线观看| 久久久午夜欧美精品| 天天躁夜夜躁狠狠久久av| 草草在线视频免费看| 久久精品综合一区二区三区| 国产av国产精品国产| 久久久久久久精品精品| 亚洲av一区综合| 国产亚洲精品久久久com| 一区二区三区四区激情视频| 欧美激情在线99| 少妇人妻 视频| 五月玫瑰六月丁香| 国产精品秋霞免费鲁丝片| 男的添女的下面高潮视频| 国产精品一区二区在线观看99| 成年女人在线观看亚洲视频 | .国产精品久久| 纵有疾风起免费观看全集完整版| 日本色播在线视频| 我的女老师完整版在线观看| 3wmmmm亚洲av在线观看| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 97人妻精品一区二区三区麻豆| av免费观看日本| 亚洲电影在线观看av| 国产永久视频网站| 日韩欧美 国产精品| 大话2 男鬼变身卡| 国产精品一区二区三区四区免费观看| 久久鲁丝午夜福利片| 国产成人a区在线观看| 日本黄色片子视频| 亚洲人成网站在线播| 狠狠精品人妻久久久久久综合| 欧美成人精品欧美一级黄| 在现免费观看毛片| 激情 狠狠 欧美| 免费观看无遮挡的男女| 一级毛片电影观看| 精品久久久久久电影网| 狂野欧美激情性xxxx在线观看| 日韩免费高清中文字幕av| 最近2019中文字幕mv第一页| 又爽又黄无遮挡网站| 欧美日韩亚洲高清精品| 亚洲av在线观看美女高潮| 男女无遮挡免费网站观看| 日韩在线高清观看一区二区三区| 国产精品国产av在线观看| 欧美激情久久久久久爽电影| 免费大片黄手机在线观看| 日本-黄色视频高清免费观看| 天堂网av新在线| 亚洲av中文字字幕乱码综合| 不卡视频在线观看欧美| 亚洲三级黄色毛片| av在线亚洲专区| 制服丝袜香蕉在线| 国产精品一区二区在线观看99| 色网站视频免费| 欧美最新免费一区二区三区| 老司机影院毛片| 老司机影院毛片| 三级经典国产精品| 观看免费一级毛片| 亚洲av在线观看美女高潮| 久久99热6这里只有精品| 免费大片18禁| 久久影院123| 国产精品福利在线免费观看| 80岁老熟妇乱子伦牲交| 午夜免费男女啪啪视频观看| av黄色大香蕉| 在现免费观看毛片| 欧美激情在线99| 亚洲av免费高清在线观看| 久久久久国产精品人妻一区二区| 免费观看性生交大片5| 最近中文字幕高清免费大全6| 久久久久网色| 中文字幕制服av| 下体分泌物呈黄色| 又爽又黄a免费视频| 91精品一卡2卡3卡4卡| 又黄又爽又刺激的免费视频.| 在线精品无人区一区二区三 | 又粗又硬又长又爽又黄的视频| 一级二级三级毛片免费看| 噜噜噜噜噜久久久久久91| 国产精品一二三区在线看| 可以在线观看毛片的网站| 22中文网久久字幕| 精品一区二区免费观看| 一本久久精品| 九色成人免费人妻av| 久久国内精品自在自线图片| 看黄色毛片网站| 国产黄频视频在线观看| 听说在线观看完整版免费高清| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲图色成人| 男女啪啪激烈高潮av片| 91久久精品国产一区二区成人| av在线app专区| 亚洲欧美一区二区三区黑人 | 国产男女内射视频| 秋霞在线观看毛片| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 亚洲国产色片| 国产一区二区三区综合在线观看 | 欧美潮喷喷水| 日韩欧美精品v在线| 99九九线精品视频在线观看视频| 中文字幕制服av| 欧美区成人在线视频| 日韩av免费高清视频| 久久精品久久久久久久性| 国产白丝娇喘喷水9色精品| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 男女无遮挡免费网站观看| 亚洲欧美精品专区久久| 中文乱码字字幕精品一区二区三区| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 国产久久久一区二区三区| 国内精品美女久久久久久| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 亚洲精品久久久久久婷婷小说| 国产高清有码在线观看视频| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 天天一区二区日本电影三级| 精品午夜福利在线看| 五月天丁香电影| 亚洲人成网站高清观看| 国产一区二区三区综合在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久午夜电影| 91精品伊人久久大香线蕉| 男人狂女人下面高潮的视频| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 在线观看一区二区三区| 十八禁网站网址无遮挡 | 久久热精品热| 大码成人一级视频| 水蜜桃什么品种好| 伦精品一区二区三区| 亚洲美女视频黄频| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| 最近最新中文字幕免费大全7| 国产美女午夜福利| 国产成人a区在线观看| 亚洲欧美精品专区久久| 国产在视频线精品| 中文资源天堂在线| 精品午夜福利在线看| 欧美丝袜亚洲另类| 成年版毛片免费区| 精品午夜福利在线看| 成人二区视频| 国产精品一区二区性色av| 一区二区av电影网| 激情 狠狠 欧美| av女优亚洲男人天堂| 伦精品一区二区三区| 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| av国产免费在线观看| 最近中文字幕高清免费大全6| 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 男插女下体视频免费在线播放| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影| 91精品伊人久久大香线蕉| 久久99热6这里只有精品| 黄色怎么调成土黄色| 有码 亚洲区| 国产男人的电影天堂91| 亚洲精品影视一区二区三区av| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| 国产精品一区二区性色av| 国产精品一及| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 国产淫语在线视频| 99精国产麻豆久久婷婷| 亚洲国产精品专区欧美| 亚洲综合精品二区| 国产午夜精品久久久久久一区二区三区| 国产视频首页在线观看| 乱系列少妇在线播放| 看黄色毛片网站| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看 | 久久人人爽av亚洲精品天堂 | 亚洲欧美日韩另类电影网站 | 久久人人爽人人爽人人片va| 亚洲精品国产av成人精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品999| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说 | 亚洲第一区二区三区不卡| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6| 久久久久网色| 亚洲久久久久久中文字幕| 少妇的逼水好多| 欧美日韩综合久久久久久| 少妇的逼水好多| 九九在线视频观看精品| 九九久久精品国产亚洲av麻豆| 欧美精品国产亚洲| 国模一区二区三区四区视频| 精品亚洲乱码少妇综合久久| 欧美极品一区二区三区四区| 久久久久国产网址| 黄色配什么色好看| 深夜a级毛片| 精品久久国产蜜桃| 性插视频无遮挡在线免费观看| 国产 精品1| 内射极品少妇av片p| 久久久久久伊人网av| 久久久久网色| 成人欧美大片| 2022亚洲国产成人精品| 国产精品av视频在线免费观看| 舔av片在线| 婷婷色综合大香蕉| videossex国产| av线在线观看网站| 免费大片黄手机在线观看| 亚洲天堂av无毛| 成人无遮挡网站| 国产精品国产av在线观看| 亚洲经典国产精华液单| 日日啪夜夜撸| 午夜亚洲福利在线播放| 女人十人毛片免费观看3o分钟| 老司机影院成人| 国产欧美日韩一区二区三区在线 | 国产免费福利视频在线观看| 少妇的逼好多水| 国产乱来视频区| 五月开心婷婷网| 美女国产视频在线观看| 国产淫片久久久久久久久| 国产成人午夜福利电影在线观看| 亚洲精品成人久久久久久| 国产黄片视频在线免费观看| 亚洲人成网站高清观看| 三级国产精品欧美在线观看| 亚洲精品久久午夜乱码| 亚洲久久久久久中文字幕| 91久久精品电影网| 亚洲怡红院男人天堂| 综合色丁香网| 免费在线观看成人毛片| 精品酒店卫生间| eeuss影院久久| 国内精品宾馆在线| 国产 一区 欧美 日韩| 国产精品国产三级专区第一集| 偷拍熟女少妇极品色| 黄色视频在线播放观看不卡| 日日摸夜夜添夜夜添av毛片| 日日撸夜夜添| 婷婷色综合www| 99久久精品一区二区三区| 大陆偷拍与自拍| 国产精品一及| 毛片一级片免费看久久久久| 亚洲国产色片| 久久精品国产亚洲av涩爱| 美女国产视频在线观看| 日韩av免费高清视频| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美 | 26uuu在线亚洲综合色| 观看美女的网站| 免费黄网站久久成人精品| 亚洲,欧美,日韩| 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 亚洲精品一区蜜桃| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线观看日韩| 亚洲av电影在线观看一区二区三区 | 高清欧美精品videossex| 亚洲人成网站高清观看| 你懂的网址亚洲精品在线观看| 高清日韩中文字幕在线| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 欧美区成人在线视频| 麻豆国产97在线/欧美| 日本黄色片子视频| 麻豆成人av视频| 久久99热这里只有精品18| 久久久久久久久大av| 成年人午夜在线观看视频| 亚洲av中文字字幕乱码综合| 亚洲性久久影院| 亚洲精品乱码久久久久久按摩| 久久人人爽人人爽人人片va| 国产黄片视频在线免费观看| 六月丁香七月| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 99九九线精品视频在线观看视频| 国产精品一二三区在线看| 99re6热这里在线精品视频| 亚洲欧美精品自产自拍| 免费看a级黄色片| 久久99热这里只频精品6学生| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 丝袜喷水一区| 少妇人妻 视频| 午夜激情福利司机影院| 日本免费在线观看一区| 777米奇影视久久| 成人亚洲精品av一区二区| 欧美日韩在线观看h| 在线观看免费高清a一片| 国产老妇伦熟女老妇高清| 国产成人午夜福利电影在线观看| 亚洲av.av天堂| 一本一本综合久久| 色网站视频免费| 亚洲av电影在线观看一区二区三区 | 波多野结衣巨乳人妻| 看非洲黑人一级黄片| 国产视频内射| 你懂的网址亚洲精品在线观看| 国产成人免费无遮挡视频| 日本一本二区三区精品| 一区二区三区精品91| 美女内射精品一级片tv| 99re6热这里在线精品视频| 少妇的逼好多水| 热re99久久精品国产66热6| 久久久久久久久久人人人人人人| 色播亚洲综合网| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 色视频在线一区二区三区| 亚洲性久久影院| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 亚洲欧美日韩东京热| 亚洲色图综合在线观看| 久久久久久久久久成人| 国产一区二区亚洲精品在线观看| 国产成人精品一,二区| 亚洲伊人久久精品综合| 国产91av在线免费观看| 亚洲精品,欧美精品| 少妇人妻精品综合一区二区| 交换朋友夫妻互换小说| 国产精品嫩草影院av在线观看| 精品国产一区二区三区久久久樱花 | 国产精品一区二区三区四区免费观看| 欧美一区二区亚洲| 亚洲欧美成人精品一区二区| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 又粗又硬又长又爽又黄的视频| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 97在线人人人人妻| 少妇人妻 视频| 亚洲人成网站在线播| 26uuu在线亚洲综合色| 久久久久久久大尺度免费视频| 欧美日韩在线观看h| 免费看av在线观看网站| 2021天堂中文幕一二区在线观| 亚洲va在线va天堂va国产| 欧美激情在线99| 91狼人影院| 欧美少妇被猛烈插入视频| 免费看不卡的av| 国产精品爽爽va在线观看网站| 97超碰精品成人国产| 亚洲美女视频黄频| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 国产有黄有色有爽视频| 高清欧美精品videossex| 日本黄大片高清| 国产精品嫩草影院av在线观看| 亚洲成人av在线免费| 欧美日韩国产mv在线观看视频 | 亚洲人成网站在线观看播放| 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 色哟哟·www| 波多野结衣巨乳人妻| 国产视频首页在线观看| 看黄色毛片网站| 亚洲精品国产色婷婷电影| 18+在线观看网站| 舔av片在线| av在线亚洲专区| 深爱激情五月婷婷| 国产精品99久久久久久久久| 久久99热这里只频精品6学生| 大香蕉久久网| 91精品伊人久久大香线蕉| 日本-黄色视频高清免费观看| 欧美丝袜亚洲另类| 国产成人免费观看mmmm| 97超碰精品成人国产| 欧美日韩国产mv在线观看视频 | 精品一区在线观看国产| .国产精品久久| 国产中年淑女户外野战色| 菩萨蛮人人尽说江南好唐韦庄| 欧美变态另类bdsm刘玥| 欧美xxxx黑人xx丫x性爽| 婷婷色麻豆天堂久久| 精品人妻一区二区三区麻豆| 久久久精品欧美日韩精品| 国产老妇女一区| 麻豆乱淫一区二区| 丰满人妻一区二区三区视频av| 国产伦在线观看视频一区| 国产亚洲精品久久久com| 深夜a级毛片| 夜夜爽夜夜爽视频| 91久久精品电影网| 免费黄网站久久成人精品| 丰满乱子伦码专区| 国产黄片美女视频| 狂野欧美激情性bbbbbb| 国产成人91sexporn| 国产伦理片在线播放av一区| 2021少妇久久久久久久久久久| 亚洲精品日韩av片在线观看| 在线观看人妻少妇| 黄色怎么调成土黄色| 1000部很黄的大片| 成年av动漫网址| 日韩av免费高清视频| 三级经典国产精品| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女下面进入的视频免费午夜| 国产欧美日韩精品一区二区| 精品久久久久久久末码| 神马国产精品三级电影在线观看| 老师上课跳d突然被开到最大视频| 国产综合精华液| 成人毛片60女人毛片免费| 女的被弄到高潮叫床怎么办| 免费电影在线观看免费观看| 午夜视频国产福利| 久久久久精品久久久久真实原创| videos熟女内射| 精品少妇久久久久久888优播| 国产爱豆传媒在线观看| 日日啪夜夜爽| 日本av手机在线免费观看| 永久网站在线| 九九爱精品视频在线观看| 狂野欧美激情性xxxx在线观看| 亚洲电影在线观看av| 国产精品蜜桃在线观看| 欧美另类一区| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久噜噜| 久久6这里有精品| 两个人的视频大全免费| 久久久久性生活片| 一本色道久久久久久精品综合| 十八禁网站网址无遮挡 | 久久久国产一区二区| .国产精品久久| 又爽又黄无遮挡网站| 国产一区二区亚洲精品在线观看| 美女脱内裤让男人舔精品视频| 晚上一个人看的免费电影| 免费av毛片视频| 在线精品无人区一区二区三 | 欧美日韩国产mv在线观看视频 | 免费av观看视频| 久久久精品欧美日韩精品| 亚洲欧美精品自产自拍| 精品久久久久久久末码|