• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping

    2022-07-12 10:28:50XiooMoJinsongLioGuoiYunShZhuXiooLeiLihongHungQinyongZhngChoWngZhifengRen
    Journal of Magnesium and Alloys 2022年4期

    Xioo Mo, Jinsong Lio, Guoi Yun, Sh Zhu, Xioo Lei, Lihong Hung,,*,Qinyong Zhng,**, Cho Wng, Zhifeng Ren

    aKey Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science & Engineering, Xihua University, Chengdu 610039,China

    b Clean Energy Materials and Engineering Center, State Key Laboratory of Electronic Thin Film and Integrated Device, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

    c Department of Physics and TcSUH, University of Houston, Houston, TX 77204, United States

    Abstract Bi2Te3 based alloys have been the most widely used thermoelectric material at low temperature for many decades.Here we report Se doped n-type Mg3Bi2 based materials with a thermoelectric figure-of-meri ZT of 0.82 at 300K and a peak ZT of 1.24 at 498K, which is comparable to the n-type Bi2Te3 and Te doped Mg3Bi1.4Sb0.6.The improved thermoelectric performance is benefite from the high carrier concentration and mobility as well as the thermal conductivity reduction.The reduced resistivity increased the power factor at all measured temperatures, leading to a higher engineering ZT (ZTeng) and engineering power factor (PFeng) for n-type Mg3Bi2.The n-type Mg3Bi1.4Sb0.6 materials are promising for thermoelectric power generation and cooling applications near room temperature.

    ? 2021 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of Chongqing University

    Keywords: Mg3Bi2; Zintl compound; Thermoelectric; Se-doping.

    1.Introduction

    Generally, almost all of the traditional energy sources are converted by thermal energy; however, the energy conversion efficien y is low, and more than half of the energy is discharged in the form of waste heat.Approximately 60% of the unrecovered waste heat is of low-grade (temperature below 500K), and low-temperature waste heat has less thermal and economic values than high-temperature waste heat.Lowgrade waste heat recovery technologies reduce the environmental impacts of fossil fuels and also improve the overall efficien y.Thermoelectric(TE)power generation is one of the most promising technologies for recycling low-quality waste heat and addressing different energy challenges [1].

    The conversion efficien y of thermoelectric materials is determined by the dimensionless figure-of-meriZT=S2σT/(κe+κL), where S is the Seebeck coefficientσis the electrical conductivity,Tis the absolute temperature, andκe,κLare the electronic and lattice components of thermal conductivity, respectively [2,3].High TE property needs high Seebeck coefficient high electrical conductivity,and low thermal conductivity.However, it is very hard to independently optimize those three TE performance parameters because they are intercoupled.N-type Bi2Te3-based alloys (ZT≈1 at 400K) are one of the most widely used room-temperature TE materials [4-8].In 2011, Liu et al.[8]reported that Cu0.01Bi2Te2.7Se0.3had a peakZTvalue of 1.06 near 125 °C.

    While considering the scarcity and high cost of Te in Bi2Te3alloys, one need to develop new alternative TE materials for large-scale applications at room temperature.

    Zintl compound with complex crystal structure is a kind of promising TE materials, meeting the concept of “electron crystal-phonon glass”.Most of the Zintl compounds are ptype intrinsic semiconductor and hard to be doped into ntype.While Mg3Sb2-based materials show prominent n-type TE performance [9-12].In 2016, Tamaki et al.[13]reported that a peak ZT of 1.51 has been obtained for Te doped ntype Mg3.2Sb1.5Bi0.5at 716K, benefite from its multivalley conduction bands with high valley degeneracies.Generally, n-type Mg3Sb2experiences charge scattering by different sources including ionized impurities [11,14,15]and highly-resistive grain boundaries [10,16].Mg3Bi2behaves as a semimetal different from the isomorphic semiconductor Mg3Sb2.Alloying with Mg3Bi2will significantl changes the valence band structure, and also reduce the thermal conductivity[17,18].The effect of alloying on band structure implies that it is possible to adjust the applicable temperature of materials to a lower range by band engineering strategy.In 2019,Liu and co-workers [19]reported that n-type Mg3+δSbxBi2-xexhibited a comparable TE performance of Bi2Te3-xSexmaterials in the temperature range of 50-250 °C, which immediately gravitated many efforts to promote the researches on n-type Mg3+δSbBi based TE materials near room-temperature range [20,21].

    The effective mass of all conduction bands decreases with the increasing Mg3Bi2content in a solid solution because a lighter band mass is favorable for mobility.Imasato et al.[22]reported that the optimum composition is expected to be around 70% of Mg3Bi2, i.e.Mg3Bi1.4Sb0.6, which is the composition with minimum effective mass while maintaining valley degeneracy.Recent studies [10,16]have reported that room-temperature thermoelectric properties can be improved by increasing the grain size to reduce the grain boundary density instead of changing the scattering mechanism, and the increased grain size does not compromise the original low thermal conductivity [22].n-type Te-doped Mg3Sb2and Mg3Bi2are promising thermoelectric materials, while it is necessary to discover new n-type dopants that are richer and cheaper than tellurium for commercial applications.Existing strategies mainly achieve high mobility through effective electron doping and the reasonable control of alloy concentration to simultaneously optimize the band structure and minimizeκL[18,22-24].Previous studies have expounded that excess magnesium helps maximize the electron concentration and also leads to an increased thermal conductivity [25,26].However,due to the high vapor pressure and easy oxidation of magnesium,the loss of magnesium and the generation of magnesium vacancies easily occur during the synthesis process, resulting in poor electronic transport properties and p-type conduction.

    In this work, the thermoelectric performances of n-type Mg3.2Bi1.4Sb0.6-based material were researched and optimized, using selenium as an effective electron dopant.In order to ensure high carrier mobility,non-oxidized coarse grains were formed by direct current (DC) hot-pressing technology at 1053K.Finally, Se-doped Mg3Bi2-Mg3Sb2alloy shows a high electron concentration of 3×1019cm-3and an ultrahigh mobility of 150 cm2V-1s-1at 300K.In addition, the as-prepared alloy is an environment-friendly and sustainable high-performance thermoelectric material for low-temperature applications.

    2.Experimental details

    High-purity magnesium powder(Mg,99.98%,Alfa Aesar),bismuth pieces (Bi, 99.99%, Alfa Aesar), antimony shots (Sb,99.99%, Alfa Aesar), and selenium powder (Se, 99.99%, Alfa Aesar) were weighed according to the nominal composition of Mg3.2Bi1.4Sb0.6-xSex(x=0, 0.005, 0.01, 0.02, 0.04).Small amount of excess Mg was added to compensate the evaporation of Mg.All the elements were weighed in an argonfille glove box, then loaded into a stainless-steel jar, mixed for 0.5h without grinding balls, and then ball-milled continuously for 10h by a SPEX 8000M Mixer/Mill.The obtained powder was loaded into a graphite die with an inner diameter of 12.7mm and consolidated by a direct-current hot pressing under an axial pressure of 45MPa at 1053K for 2min to obtain a disk sample.

    The thermal diffusivity (D) was measured on a laser flas system (LFA 457, Netzsch, Germany).The specifi heat capacity(Cp)was measured on a differential scanning calorimetry thermal analyzer (DSC 404 C, Netzsch, Germany).The thermal conductivityκwas calculated viaκ=dDCp, wheredis sample density estimated by the Archimedes method.The electrical conductivity (σ) and Seebeck coefficien (S)from 300 to 623K were measured simultaneously on a ZEM-3 system (ZEM-3, ULVAC Riko, Japan).A four-probe Van der Pauw method was used for Hall coefficien (RH) measurement under a magnetic fiel of 1.5 T.The Hall carrier concentration(nH)was obtained bynH=1/(eRH),and the Hall mobility (μH) was estimated byμH=σRH.

    The phase characterization was performed by X-ray diffraction (XRD, D2 PHASER, Bruker) under Cu-Kαradiation.The freshly broken surface of the sample Mg3.2Bi1.4Sb0.59Se0.01was observed by a scanning electron microscope (SEM, Quanta 250G, FEI, USA) to show the particle size.Energy dispersive spectroscopy(EDS)mapping was used to characterize the compositional homogeneity.

    Density functional theory (DFT) calculations were performed using the Vienna ab initio simulation package (VASP)with the projector augmented wave (PAW) method [27,28].The Perdew-Burke-Ernzerhof (PBE) [29]was used as the exchange-correlation, Monkhorst-Packkmesh was used to optimize the structural parameter and calculate the electronic structures.The energy convergence criterion was set at 10-5eV.The spin-orbit coupling (SOC) effect and the modifie Becke-Johnson (mBJ) [30,31]potential were adopted for more accurate electronic structures.In addition,effective band structures of Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125were calculated by unfolding the band structures of supercells with 40 atoms (2×2×2 unit cell) into the primitive cells as implemented in BandUP code [32,33].

    Fig.2.Calculated electronic band structure of (a) Mg3Bi2 and (b) Mg3Sb2 by PBE functional with SOC and mBJ.Calculated effective band structure of (c)Mg3Bi1.375Sb0.625 and (d) Mg3Bi1.375Sb0.5Se0.125 by PBE functional.

    3.Results and discussion

    The Zintl compound Mg3Sb2crystallizes in a layered Mn2O3-type structure (space group=P3?m1, Number=164),where each unit cell has three Mg atoms and two Sb atoms,and Mg atoms occupy two distinct crystallographic sites(Fig.1a).XRD patterns of all polycrystalline samples with a nominal composition of Mg3.2Bi1.4Sb0.6-xSex(x=0, 0.005,0.01, 0.02, 0.04) are displayed in Fig.1b.All indexed peaks could be described by the crystal structure of Mg3Sb2phase,and all the samples are single-phase without any impurity within the detection limitation of XRD.

    Fig.2a, b show the calculated band structures of Mg3Bi2and Mg3Sb2with a band gap of 0.29 and 0.64eV respectively,using PBE functional with SOC and mBJ.Fig.2c, d show the calculated effective band structure of Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125, using only PEB functional without considering SOC and mBJ.The calculation method ofPBE will underestimate the band gap of materials, so that Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125seem as metals or semimetals in Fig.2c, d.Actually, Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125are semiconductors, which can be confirme by Fig.S2 in the Supplementary Information.The calculated effective band structures of Mg3Bi1.375Sb0.625and Mg3Bi1.375Sb0.5Se0.125is close to our experimental composition of and Mg3.2Bi1.4Sb0.6and Mg3.2Bi1.4Sb0.59Se0.01.Obviously, the band degeneracy is significantl enhanced after the alloying of Mg3Bi2and Mg3Sb2, as shown in Fig.2c.More importantly, the Fermi energy moves near to the bottom of conduction bands after Se doping, indicating a n-type semiconductor behavior for Mg3.2Bi1.4Sb0.59Se0.01, consistent with our experimental results.And the effective band structure of Mg3Bi1.375Sb0.5Se0.125in Fig.2d displays that alloy Mg3.2Bi1.4Sb0.59Se0.01has a high valley degeneracy including the conduction band minimum located at M, K,Γ, and L points, i.e., there will be a significan improvement in electrical performance for Mg3.2Bi1.4Sb0.6alloy via Se doping.

    Fig.3.(a-b) SEM image, and (c-f) EDS element mappings of the fracture surface of Mg3.2Bi1.4Sb0.59Se0.01 sample.

    Fig.3a, b shows the SEM image of the fracture surface of Mg3.2Bi1.4Sb0.59Se0.01sample, which reveals that the sample was dense and possessed a layered structure.The EDS compositional mappings illustrate that Mg, Sb, Bi, and Se atoms were uniformly distributed in the sample, as shown in Fig.3c-f.

    Undoped Mg3.2Bi1.4Sb0.6is a n-type semiconductor with ultra-high resistivity and low carrier concentration.The temperature dependent Hall carrier concentration (nH) and Hall mobility(μH)of Mg3.2Bi1.4Sb0.6-xSexare presented in Fig.4a,b, respectively.Hall carrier concentration increases signifi cantly with increasing Se doping content.The room temperaturenHof Se-doped samples is in the range of 1.7×1019cm-3to 3.4×1019cm-3, comparable with Te-doped samples[11,34-36].Here, excess Mg (3+0.2 in the formula) is required to ensure the stable acquirement of n-type properties[37].Fig.4b expresses that temperature-dependentμHof all the Se-doped samples follows a decreasing trend with the relationship ofμH~T-p(1≤p≤1.5), implying a dominant charge scattering by acoustic phonons.The mobility starts to drop above 450K can be attributed to the increasing vacancy defect concentration caused by the loss of Mg at high temperature.In the temperature range of 300-450K,μHdeviated fromT-1toT-0.5due to alloy scattering.The relationships of experimentalnHandμHn-Mg3Sb2TE materials with different dopants are compared in Fig.4c, including our results.Basically, the Hall carrier concentration of Sedoped Mg3.2Bi1.4Sb0.6samples in present work is comparable to that of Te-doped Mg3Sb2[17,34], Y doped Mg3SbBi[23]and Sc doped Mg3SbBi [38], also it is higher than that of Se-doped Mg3Sb2[39,40].Moreover, the Hall mobility is also higher than the results reported in the literatures[17,23,34,38].Undoubtedly, Se is an effective n-type dopant that provides optimum carrier concentration and Hall mobility for Mg3.2Bi1.4Sb0.6, leading to the improved power factor.Pisarenko plots ofSversusnHare calculated based on Eqs.(1)-(6) using a single parabolic band (SPB) model, assuming the acoustic phonon scattering mechanism (scattering factorr=-1/2), the results are presented in Fig.4d [41,42].

    Fig.4.Temperature dependent (a) Hall carrier concentration and (b) Hall mobility, (c) Hall carrier concentration as a function of Hall mobility, and (d)Pisarenko plots for Mg3.2Bi1.4Sb0.6-xSex samples at 300, 400 and 500K, data in references are shown for comparison (Se doped Mg3Bi1.5Sb0.5 [39,40], Te doped Mg3Bi1.5Sb0.5 [17,34], Sc doped Mg3BiSb [38]and Y doped Mg3BiSb [23]).The curves are generated by SPB model.

    WhereFn(η) is thenth order Fermi integral,ηthe reduced Fermi energy,ethe electron charge,rthe scattering factor,kBBoltzmann's constant,hPlank's constant,rHthe Hall factor, andxthe variable of integration.Based on the experimental Seebeck coefficient and carrier concentrations, a density of state (DOS) effective massm*~1.2mewas derived for Mg3.2Bi1.4Sb0.6-xSexsamples, slightly larger than that of Mg3Bi1.4Sb0.6(m*~1.1me) [22].

    Fig.5.Temperature dependent (a) resistivity, (b) Seebeck coefficient (c) power factor (d) total thermal conductivity, (e) electrical thermal conductivity, and(f) lattice thermal conductivity of Mg3.2Bi1.4Sb0.6-xSex samples.

    As highly-degenerated multi-valley conduction bands were involved in the charge transportation [13,34,43,44], high mobility and carrier concentration will result in low resistivity and low Seebeck coefficients Fig.5a,b show the temperature dependent resistivity and Seebeck coefficients respectively.Both the resistivity and Seebeck coefficien continuously increase with the increasing temperature, indicating degenerate semiconductor characteristic.With increasing content of Se,the resistivity increases first and reaches the maximum limit whenx=0.01.The significan decrease in resistivity can be attributed to the high carrier concentration and mobility.The room-temperature Seebeck coefficien of Se-doped samples ranged between -175μV K-1and -239μV K-1, which is comparable to the Te-doped samples [13,22].It is evident from Fig.5c that over the entire temperature range, the power factor (PF) of Mg3.2Bi1.4Sb0.6-xSexwas significantl higherthan those of Se-doped samples in the literatures [39,40].The power factor of the sample withx=0.01 was 29μW cm-1K-2at room temperature and decreased to 22μW cm-1K-2at 623K.Such a high power factor was generated from the high Hall mobility, and 70% of Mg3Bi2led to the formation of coarse grains, resulting in ultra-low resistivity [18,22,23].The temperature-dependent total thermal conductivity (κ), electronic thermal conductivity (κe) and lattice thermal conductivity (κL) and bipolar thermal conductivity (κb) of Mg3.2Bi1.4Sb0.6-xSexare presented in Fig.5d-f.κewas estimated according to the Wiedemann-Franz law,κe=LT/ρ, whereLis the Lorenz number.The Lorenz number was determined by the SPB model assuming acoustic phonon scattering [8,45,46].κeshown in Fig.5e increased after Se doping, which mainly due to the reduction of resistivity.As shown in Fig.5f, the sum of the lattice thermal conductivity and bipolar thermal conductivityκL+κbincreases with increasing temperature, this may because the bipolar effect occurs at high temperature (>450K) in the samples.Looking carefully at our experimental data in Fig.4a and 4b, the carrier concentration increases while the mobility decreases at high temperature, and the change trend of Seebeck coeffi cient changes at 450K, these phenomena should be related to bipolar effects.Mg3.2Bi1.4Sb0.595Se0.01shows a very lowκLof 0.6-0.7W m-1K-1at low temperature range, yielding a high room temperature thermoelectric performance.The reduction ofκLcan be ascribed to alloy scattering caused by the compositional change in Mg3Bi2/Mg3Sb2alloys [22].

    Fig.6.(a) Temperature dependent ZT value of Mg3.2Bi1.4Sb0.6-xSex samples, data in references are shown for comparison [8,22], (b) comparison of peak ZT between different material composition [22,24,39,40].

    Fig.7.Calculated (a) PFeng, (b) ZTeng, and (c) maximal conversion efficien y of Mg3.2Bi1.4Sb0.6-xSex samples.The hot side temperature was varied up to 623K while the cold side temperature was kept at 300K.

    TheZTvalues of Mg3.2Bi1.4Sb0.6-xSexsamples are presented in Fig.6a.A peakZTof 1.24 at 498K was obtained for Mg3.2Bi1.4Sb0.59Se0.01, profi from its high power factor and low thermal conductivity.The Mg3.2Bi1.4Sb0.595Se0.005sample shows the highest room temperatureZTof ~0.82, which is comparable with n-Bi2Te3[8], and is significantl higher than that of Te/Se-doped sample in literatures [22,24,39,40],as shown in Fig.6b.

    In addition, as the engineering figur of merit (ZT)engand the engineering power factor (PF)engare widely used to evaluate the conversion efficien y (η) from heat to electricity energy, the (ZT)eng, (PF)eng, andηof Mg3.2Bi1.4Sb0.6-xSexmaterials were calculated by the following equations [47]:

    whereS(T),ρ(T), andκ(T) are temperature-dependent thermoelectric properties,ThandTcare the hot side temperature and the cold side temperature, respectively, andαi(i=0, 1,2) is a dimensionless intensity factor of the Thomson effect.As the temperature gradient in power generation applications is generally very large, the cumulative sum of all of the temperature segments is a more accurate quality factor.The calculated temperature-dependent (PF)eng, (ZT)eng, andηat the cold-side temperature of 300K are presented in Fig.7.(ZT)engandηincreased with the increasing Se concentration fromx=0.005 tox=0.01, while started to decrease slightly fromx=0.02 tox=0.04 at high temperatures.Among all samples,Mg3.2Bi1.4Sb0.59Se0.01had the highest (ZT)engandηof about 0.9 and 12%, respectively.

    4.Conclusions

    A promising n-type Mg3Bi2-based thermoelectric material suitable for the low-temperature TE applications was successfully synthesized by ball milling and hot pressing.Se was found to be an effective and environmentally friendly n-type dopant in comparison with Te.A peakZTvalue of 1.24 at 498K was obtained for Mg3.2Bi1.4Sb0.59Se0.01and a high room temperatureZTof 0.82 was achieved for Mg3.2Bi1.4Sb0.595Se0.005, meaning a good room temperature thermoelectric material attributed to its high power factor and low lattice thermal conductivity.Coarse grains successfully obtained by alloying large amount of Mg3Bi2with Mg3Sb2, which effectively reduces the grain boundary resistance and greatly improves the Hall mobility.Moreover,Mg3.2Bi1.4Sb0.59Se0.01shows high (ZT)engand high (PF)eng,ensuring the possible applications of Se doped Mg3.2Bi1.4Sb0.6materials at low-grade-temperature.

    Declaration of Competing Interest

    The authors declare no competing interests.

    Acknowledgements

    The work performed is supported by Young Scientist Fund of National Natural Science Foundation of China (No.51601152), Chunhui Program from Education Ministry of China,Open Research Subject of Key Laboratory of Fluid and Power Machinery of Ministry of Education (No.SZJJ2017-082), and the Sichuan Science and Technology Program (No.2019JDTD0024).

    国产高清视频在线观看网站| 成人高潮视频无遮挡免费网站| 亚洲av免费在线观看| 在线播放国产精品三级| 日本黄色视频三级网站网址| 18禁黄网站禁片免费观看直播| 亚洲av成人精品一区久久| 成人午夜高清在线视频| 成人特级黄色片久久久久久久| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 亚洲丝袜综合中文字幕| 在线观看午夜福利视频| 我的老师免费观看完整版| 99热这里只有是精品50| 午夜福利在线观看吧| 国产不卡一卡二| 特级一级黄色大片| 三级毛片av免费| 18禁黄网站禁片免费观看直播| 亚洲丝袜综合中文字幕| 熟女人妻精品中文字幕| 欧美性猛交黑人性爽| 在线观看av片永久免费下载| av专区在线播放| 国产精品一区www在线观看| 久久精品影院6| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 九九久久精品国产亚洲av麻豆| 一级黄色大片毛片| 三级毛片av免费| 听说在线观看完整版免费高清| 成人特级黄色片久久久久久久| 亚洲人成网站高清观看| 99riav亚洲国产免费| 久久中文看片网| 成人亚洲欧美一区二区av| 国产又黄又爽又无遮挡在线| 搡老妇女老女人老熟妇| 人人妻人人澡欧美一区二区| 看片在线看免费视频| 午夜激情福利司机影院| 亚洲18禁久久av| 91午夜精品亚洲一区二区三区| 麻豆一二三区av精品| 久久久久九九精品影院| 美女国产视频在线观看| 不卡一级毛片| 啦啦啦观看免费观看视频高清| 在现免费观看毛片| 变态另类丝袜制服| 久久久久久九九精品二区国产| 蜜桃亚洲精品一区二区三区| 国产成人a∨麻豆精品| 欧美色欧美亚洲另类二区| 国产精品三级大全| 久久久久国产网址| 最近的中文字幕免费完整| 国产高清视频在线观看网站| 国产精品久久久久久亚洲av鲁大| 91狼人影院| 美女高潮的动态| 一个人免费在线观看电影| 亚洲精品成人久久久久久| 亚洲人成网站在线播放欧美日韩| 少妇的逼水好多| 国产精品伦人一区二区| 69av精品久久久久久| 97在线视频观看| 欧美日本亚洲视频在线播放| 女同久久另类99精品国产91| 欧美一级a爱片免费观看看| 如何舔出高潮| 日韩欧美精品免费久久| 91久久精品国产一区二区三区| 久久亚洲精品不卡| 日产精品乱码卡一卡2卡三| 白带黄色成豆腐渣| 中文字幕久久专区| 麻豆av噜噜一区二区三区| 久久久久九九精品影院| 一级二级三级毛片免费看| 搡女人真爽免费视频火全软件| 91久久精品电影网| 久久鲁丝午夜福利片| 日本在线视频免费播放| 狂野欧美白嫩少妇大欣赏| 国模一区二区三区四区视频| 嫩草影院精品99| 美女国产视频在线观看| 神马国产精品三级电影在线观看| 女同久久另类99精品国产91| 亚洲性久久影院| 免费av不卡在线播放| 亚洲欧美日韩高清专用| 老熟妇乱子伦视频在线观看| 美女内射精品一级片tv| 国产精品一区二区三区四区免费观看| 精品人妻视频免费看| 夜夜爽天天搞| 亚洲色图av天堂| 我要搜黄色片| 国产综合懂色| 国产伦精品一区二区三区视频9| 最近的中文字幕免费完整| 日韩制服骚丝袜av| 高清午夜精品一区二区三区 | 丰满人妻一区二区三区视频av| 婷婷亚洲欧美| 精品久久久久久成人av| 性插视频无遮挡在线免费观看| 精品人妻视频免费看| 日本一本二区三区精品| 欧美成人a在线观看| 精品久久国产蜜桃| 午夜福利高清视频| 欧美高清成人免费视频www| 中出人妻视频一区二区| 中国美女看黄片| 国产精品爽爽va在线观看网站| 亚洲国产精品sss在线观看| 国语自产精品视频在线第100页| 成熟少妇高潮喷水视频| 久久久久九九精品影院| 一级av片app| 少妇猛男粗大的猛烈进出视频 | av在线老鸭窝| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在视频线在精品| 人体艺术视频欧美日本| 1024手机看黄色片| 国产午夜精品论理片| 精品久久久久久成人av| 一本一本综合久久| 欧美性猛交╳xxx乱大交人| 日韩精品有码人妻一区| 黄色一级大片看看| 久久国内精品自在自线图片| 国产乱人视频| 亚洲美女搞黄在线观看| 九色成人免费人妻av| 国产成人精品一,二区 | 国模一区二区三区四区视频| 亚洲中文字幕日韩| 日韩 亚洲 欧美在线| 3wmmmm亚洲av在线观看| 国内精品久久久久精免费| 国产成人a∨麻豆精品| 久久精品综合一区二区三区| 色综合亚洲欧美另类图片| 亚洲成人中文字幕在线播放| 日韩欧美 国产精品| 一个人看视频在线观看www免费| 国产高清三级在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产亚洲网站| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜爱| 国产一区二区亚洲精品在线观看| 高清日韩中文字幕在线| www.色视频.com| 日韩制服骚丝袜av| 久久婷婷人人爽人人干人人爱| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品456在线播放app| 在现免费观看毛片| 男人和女人高潮做爰伦理| 亚洲欧美日韩卡通动漫| 综合色av麻豆| 国产一区二区亚洲精品在线观看| 国产成人福利小说| АⅤ资源中文在线天堂| 国产国拍精品亚洲av在线观看| 亚洲欧洲国产日韩| 欧美日韩在线观看h| 久久99精品国语久久久| 亚洲国产精品合色在线| 欧美潮喷喷水| 中文字幕免费在线视频6| 麻豆乱淫一区二区| 久久九九热精品免费| 丰满乱子伦码专区| av又黄又爽大尺度在线免费看 | 热99re8久久精品国产| 69人妻影院| 丰满乱子伦码专区| 草草在线视频免费看| 国内精品美女久久久久久| 久久久久国产网址| 亚洲,欧美,日韩| 成人欧美大片| 久久精品国产鲁丝片午夜精品| 日韩一区二区三区影片| 亚洲av免费高清在线观看| 18禁裸乳无遮挡免费网站照片| 在线观看美女被高潮喷水网站| 特大巨黑吊av在线直播| 亚洲四区av| 一级二级三级毛片免费看| 97在线视频观看| 成年女人永久免费观看视频| 哪里可以看免费的av片| 亚洲18禁久久av| 97超视频在线观看视频| 日韩欧美三级三区| 亚洲av免费在线观看| 深夜精品福利| 亚洲av免费在线观看| 亚洲综合色惰| 久久婷婷人人爽人人干人人爱| 日韩欧美一区二区三区在线观看| 男人舔女人下体高潮全视频| 黄片wwwwww| 狂野欧美激情性xxxx在线观看| 亚洲最大成人手机在线| 国产精品一区www在线观看| 日韩一区二区三区影片| 老司机福利观看| 欧美成人精品欧美一级黄| 免费黄网站久久成人精品| 国内久久婷婷六月综合欲色啪| 国产av一区在线观看免费| 精品久久久噜噜| 日韩欧美在线乱码| 久久鲁丝午夜福利片| 97超碰精品成人国产| av黄色大香蕉| 国产69精品久久久久777片| 在现免费观看毛片| 国产美女午夜福利| 秋霞在线观看毛片| 成熟少妇高潮喷水视频| 国产探花在线观看一区二区| 亚洲欧美成人精品一区二区| 国产精品一区二区三区四区免费观看| 欧美最新免费一区二区三区| 成人特级黄色片久久久久久久| 两个人的视频大全免费| 亚洲激情五月婷婷啪啪| 久久99蜜桃精品久久| 久久精品夜夜夜夜夜久久蜜豆| 村上凉子中文字幕在线| 日韩欧美一区二区三区在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近手机中文字幕大全| 性插视频无遮挡在线免费观看| 国产片特级美女逼逼视频| 麻豆精品久久久久久蜜桃| 国产v大片淫在线免费观看| 国内久久婷婷六月综合欲色啪| 亚洲国产精品久久男人天堂| 一本精品99久久精品77| 天堂av国产一区二区熟女人妻| 精品久久久久久久人妻蜜臀av| 久久久欧美国产精品| 在线观看66精品国产| 2022亚洲国产成人精品| 波多野结衣高清无吗| 免费看a级黄色片| 男女下面进入的视频免费午夜| 色吧在线观看| 18禁在线播放成人免费| 亚洲欧美日韩卡通动漫| 国产成人a∨麻豆精品| 欧美成人一区二区免费高清观看| 国产成人a∨麻豆精品| 成人特级av手机在线观看| 又粗又硬又长又爽又黄的视频 | 狂野欧美激情性xxxx在线观看| 九九热线精品视视频播放| a级毛片免费高清观看在线播放| 中文字幕熟女人妻在线| 国产精品女同一区二区软件| 麻豆国产97在线/欧美| 最近视频中文字幕2019在线8| 我要搜黄色片| 亚洲精品影视一区二区三区av| 日韩高清综合在线| 亚洲av免费高清在线观看| 乱系列少妇在线播放| 国产真实乱freesex| 国产黄色视频一区二区在线观看 | 亚洲欧美清纯卡通| 亚洲国产色片| 青春草国产在线视频 | 欧美一级a爱片免费观看看| 黄色欧美视频在线观看| 中文字幕av在线有码专区| h日本视频在线播放| 国语自产精品视频在线第100页| 12—13女人毛片做爰片一| 日本色播在线视频| 欧美激情久久久久久爽电影| 不卡视频在线观看欧美| 国产老妇女一区| 22中文网久久字幕| 亚洲精品成人久久久久久| 91麻豆精品激情在线观看国产| 色哟哟·www| 69人妻影院| 男插女下体视频免费在线播放| 午夜激情福利司机影院| 亚洲人成网站在线播| 啦啦啦观看免费观看视频高清| kizo精华| 波野结衣二区三区在线| 男的添女的下面高潮视频| 91av网一区二区| 变态另类丝袜制服| 一夜夜www| 亚洲精品国产av成人精品| 国产成人aa在线观看| 亚洲久久久久久中文字幕| 国产女主播在线喷水免费视频网站 | 欧美另类亚洲清纯唯美| 乱码一卡2卡4卡精品| 国产伦在线观看视频一区| 国产精品国产高清国产av| 午夜福利在线在线| av又黄又爽大尺度在线免费看 | 波野结衣二区三区在线| 日韩av不卡免费在线播放| 亚洲成人中文字幕在线播放| 亚洲av男天堂| 欧美日韩精品成人综合77777| 国产高清激情床上av| 国产精品福利在线免费观看| 变态另类丝袜制服| 97热精品久久久久久| 成年免费大片在线观看| 尤物成人国产欧美一区二区三区| 中文资源天堂在线| 国产精品综合久久久久久久免费| 久久精品国产亚洲av香蕉五月| 成人特级av手机在线观看| 给我免费播放毛片高清在线观看| 高清毛片免费看| 欧美变态另类bdsm刘玥| h日本视频在线播放| 久久99精品国语久久久| 欧美bdsm另类| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 天天躁日日操中文字幕| 国产成人精品久久久久久| 久久久久久九九精品二区国产| 欧美区成人在线视频| 国产乱人视频| 成人国产麻豆网| 淫秽高清视频在线观看| 免费在线观看成人毛片| 亚洲av不卡在线观看| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 亚洲,欧美,日韩| 成年女人看的毛片在线观看| 亚洲真实伦在线观看| 长腿黑丝高跟| 嫩草影院入口| 国产视频内射| 免费观看精品视频网站| 免费无遮挡裸体视频| 久久精品人妻少妇| 国内揄拍国产精品人妻在线| 国产精品精品国产色婷婷| 亚洲欧美日韩高清专用| 最近最新中文字幕大全电影3| 大香蕉久久网| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 国产精华一区二区三区| 国产精品永久免费网站| 色5月婷婷丁香| 人妻夜夜爽99麻豆av| 亚洲综合色惰| 精品免费久久久久久久清纯| 久久精品夜色国产| 久久久a久久爽久久v久久| 成人亚洲欧美一区二区av| 国产三级在线视频| 国国产精品蜜臀av免费| 国产人妻一区二区三区在| 国产成人a区在线观看| 亚洲中文字幕日韩| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久久免| 日韩国内少妇激情av| 自拍偷自拍亚洲精品老妇| 最近视频中文字幕2019在线8| 三级毛片av免费| 中文字幕av在线有码专区| 男女啪啪激烈高潮av片| 一边亲一边摸免费视频| 午夜福利视频1000在线观看| 亚洲美女搞黄在线观看| 少妇高潮的动态图| 国产亚洲精品久久久com| 精品无人区乱码1区二区| 成人欧美大片| 亚洲激情五月婷婷啪啪| 亚洲国产欧美人成| 亚洲成人久久爱视频| 日韩一区二区视频免费看| 边亲边吃奶的免费视频| 色哟哟·www| 国产乱人偷精品视频| 日本五十路高清| 插阴视频在线观看视频| 国产 一区 欧美 日韩| 国产极品精品免费视频能看的| 国产成人精品婷婷| 久99久视频精品免费| 18+在线观看网站| 日本与韩国留学比较| 欧美日韩乱码在线| 成熟少妇高潮喷水视频| 国产黄片美女视频| 美女国产视频在线观看| 亚洲成人久久爱视频| 97超碰精品成人国产| 91aial.com中文字幕在线观看| 成人午夜高清在线视频| 国内久久婷婷六月综合欲色啪| 久久精品91蜜桃| 日韩三级伦理在线观看| 成人av在线播放网站| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 国产精品伦人一区二区| 国产精品1区2区在线观看.| 爱豆传媒免费全集在线观看| 国产精品一区www在线观看| 久久国内精品自在自线图片| 免费电影在线观看免费观看| 中国美女看黄片| 日韩大尺度精品在线看网址| 亚洲精品日韩在线中文字幕 | 69人妻影院| 国产亚洲欧美98| 一个人看的www免费观看视频| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 国产精品99久久久久久久久| 黄片wwwwww| 欧美成人a在线观看| 国产成人精品一,二区 | 欧美xxxx黑人xx丫x性爽| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 在线观看美女被高潮喷水网站| 亚洲第一电影网av| 麻豆久久精品国产亚洲av| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 成人二区视频| 日本成人三级电影网站| 国产一区二区激情短视频| 又爽又黄无遮挡网站| .国产精品久久| 又粗又硬又长又爽又黄的视频 | 久久亚洲国产成人精品v| 男人舔女人下体高潮全视频| 最后的刺客免费高清国语| 99精品在免费线老司机午夜| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 日本av手机在线免费观看| 成人二区视频| 夫妻性生交免费视频一级片| 国产男人的电影天堂91| 色视频www国产| 熟女电影av网| 听说在线观看完整版免费高清| 国产一级毛片在线| 全区人妻精品视频| 中国国产av一级| 男女那种视频在线观看| 日本与韩国留学比较| 午夜精品在线福利| 免费av观看视频| 男女下面进入的视频免费午夜| 久久久色成人| 久久精品国产亚洲av涩爱 | 亚洲一区高清亚洲精品| 亚洲av二区三区四区| 国产成人福利小说| 久久精品国产99精品国产亚洲性色| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交黑人性爽| 精品久久久久久成人av| 国产女主播在线喷水免费视频网站 | 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av| 又粗又硬又长又爽又黄的视频 | 久久久精品大字幕| 亚洲欧美日韩无卡精品| 男插女下体视频免费在线播放| 日韩欧美在线乱码| 99热网站在线观看| 国产精品一二三区在线看| 亚洲色图av天堂| 一边亲一边摸免费视频| 午夜精品国产一区二区电影 | 欧美xxxx性猛交bbbb| 国产白丝娇喘喷水9色精品| 99久久成人亚洲精品观看| 亚洲国产高清在线一区二区三| or卡值多少钱| 尤物成人国产欧美一区二区三区| 欧美+亚洲+日韩+国产| 色播亚洲综合网| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 99在线视频只有这里精品首页| 天天一区二区日本电影三级| 麻豆国产97在线/欧美| 蜜桃久久精品国产亚洲av| 亚洲精品久久久久久婷婷小说 | 91aial.com中文字幕在线观看| 国产亚洲精品久久久com| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 观看免费一级毛片| 村上凉子中文字幕在线| 亚洲欧美中文字幕日韩二区| 国产精品1区2区在线观看.| 中文字幕熟女人妻在线| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 国产美女午夜福利| 日本黄色视频三级网站网址| 色播亚洲综合网| 麻豆成人av视频| 国产一区二区激情短视频| 级片在线观看| 美女大奶头视频| 国产精品美女特级片免费视频播放器| 插逼视频在线观看| 亚洲七黄色美女视频| 91精品一卡2卡3卡4卡| 变态另类丝袜制服| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 亚洲婷婷狠狠爱综合网| 不卡视频在线观看欧美| 国产视频首页在线观看| 免费观看精品视频网站| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 最好的美女福利视频网| 麻豆国产av国片精品| 三级男女做爰猛烈吃奶摸视频| 少妇裸体淫交视频免费看高清| 国产午夜精品一二区理论片| 中文精品一卡2卡3卡4更新| 国产在视频线在精品| 成人国产麻豆网| 国产精品蜜桃在线观看 | 一边亲一边摸免费视频| 天堂影院成人在线观看| 97人妻精品一区二区三区麻豆| 国产麻豆成人av免费视频| 国产精品一区二区性色av| 一级毛片我不卡| 国产精品一区二区在线观看99 | 少妇丰满av| 欧美3d第一页| 又粗又爽又猛毛片免费看| 久久久国产成人免费| 少妇高潮的动态图| 国产精品人妻久久久影院| 91精品国产九色| 日韩一本色道免费dvd| 国产黄色小视频在线观看| 国产又黄又爽又无遮挡在线| 91av网一区二区| 免费看av在线观看网站| 91午夜精品亚洲一区二区三区| 久久久久网色| 精品一区二区三区人妻视频| 国产亚洲av嫩草精品影院| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| www.av在线官网国产| av在线播放精品| 看免费成人av毛片| 天美传媒精品一区二区| 日日摸夜夜添夜夜添av毛片| 九九热线精品视视频播放| 久久这里有精品视频免费| 亚洲国产欧美在线一区| 国产综合懂色| 免费不卡的大黄色大毛片视频在线观看 | 国产在视频线在精品| 99久久精品热视频| 亚洲国产精品国产精品| 99久久精品热视频| 亚洲第一电影网av| 亚洲av.av天堂| 天堂网av新在线| 亚洲18禁久久av| 欧美最黄视频在线播放免费| 综合色av麻豆| 欧美人与善性xxx|