• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Salp Swarm Algorithm for Solving Optimal Power Flow Problem with Thyristor-Controlled Series Capacitor

    2022-07-08 01:38:32BalasubbareddyMallalaDivyanshiDwivedi

    Balasubbareddy Mallala | Divyanshi Dwivedi

    Abstract—In this paper, a salp swarm algorithm (SSA) is proposed for solving the optimal power flow (OPF)problem of a power system with the incorporation of the thyristor-controlled series capacitor (TCSC).The proposed methodology is implemented for determining the optimal setting of control variables for the OPF problem, which includes the real power of generators buses, voltages of generator buses, reactive power injected by shunt compensators, and tap changing transformer ratios.The performance of the proposed approach is validated and tested on the standard IEEE-30 bus system and single-objective functions, including transmission line losses.The severity factor has been minimized and the result obtained is compared with the existing algorithms.Simulation results achieved with the proposed SSA approach demonstrate that it results in an effective and better solution for the OPF problem.

    1.lntroduction

    The optimal power flow (OPF) is considered to be an imperative problem for energy management in power systems.In simple terms, OPF optimally adjusts the control variables of the power systems to optimize the objective functions, including the transmission line loss and severity factor, while considering both the equality and inequality constraints[1],[2].

    In recent years, a number of classical and metaheuristic optimization algorithms have been developed by researchers to resolve the OPF problem.The conventional techniques used in [3] to [8] include quadratic programming, the Newton method, interior-point methods, gradient methods, and linear and nonlinear programming.However, as observed, these approaches cannot be implemented for large power systems and do not lead to global optimum solutions.Thus, the development of metaheuristic techniques has been undertaken by researchers to overcome the problems faced with the conventional techniques.These metaheuristic optimization techniques include the genetic algorithm (GA)[9], particle swarm optimization(PSO)[10], biogeography-based optimization (BBO)[11], gravitational search algorithm (GSA)[12], simulated annealing (SA)[13], Tabu search algorithm[14], and gray wolf optimizer[15], and are currently being implemented in power systems to resolve the OPF problem.

    The current issues related to energy saving, energy utilization, environmental conditions, and increasing prices have created obstacles in constructing new generating units and transmission networks.So more efficient usage of the present transmission networks is demanded.This can be achieved by the incorporation of flexible alternating current transmission system (FACTS) devices, such as thyristor-controlled series capacitors (TCSCs) within the power systems.Detailed explanations of these devices were provided in [16] to[18]; in simple terms, FACTS devices readjust the power in the lines and bus voltages, and hence, enhance the usage of the present transmission networks.

    In this paper, the salp swarm algorithm (SSA) proposed by Mirjaliliet al.[19]is employed to resolve the OPF problem in power systems by incorporating TCSCs.The standard IEEE-30 bus test system is adopted and the OPF problem is resolved in terms of different objectives, including the transmission line loss and severity factor minimization, under the consideration of constraints which include the power balances, real and reactive power generation, voltages, transmission lines, and physical limits of TCSCs.The optimal location of TCSCs is considered according to that recorded in the existing literature.The obtained results are compared with those of other metaheuristic algorithms to demonstrate the effectiveness and robustness of SSA in terms of resolving the OPF problem.

    2.Steady-State Modeling of TCSC

    In TCSCs, a controllable reactance is inserted in series with the considered transmission line.Fig.1shows a model of a transmission line with one TCSC placed between busmand busn.Under steadystate conditions, TCSC can be represented by a constant reactance, whereas in the power flow equations, the controllable reactanceis directly considered as a control variable.

    Fig.1.TCSC between bus m and bus n.

    The modified real power (P) and reactive power (Q) flows from busmand busnare as follows:

    whereVmandVnare the voltages at busmand busn, respectively;δm,nis the phase angle between busmand busn;can be expressed as

    3.Problem Formulation

    OPF helps in optimizing the steady-state performance of power systems in terms of specific objective functions with the equality, inequality, and device constraints.Mathematically, the OPF problem can be expressed as follows:

    subject to

    whereFp(x,y) is the various optimal power flow functions, such as the transmission line loss and severity factor;randsare the equality and inequality constraints, respectively;xandyare the vectors of the dependent and control variables of the system, respectively;nis the total number of objective functions.

    The state vector can be represented as follows:

    meanwhile, the control vector can be represented by

    wherePg1is the real power of generator 1,Pg2is the real power of bus 2,Vl1is the voltage of load bus 1,Vg1is the generator voltage of the slack bus,Qg1is the reactive power of generator 1,QSH1is the reactive power generated by shunt capacitor 1,Sl1is the apparent power of generator 1, andT1is the tapping setting of transformer.And NPQ is the number of load buses, NGB is the number of generator bus, NTL is the number of transmission lines, NC is the number of shunt compensators, and NT is the number of off-nominal tap transformers.

    3.1.Objective Functions

    In this paper, two single objective functions are minimized, which are mathematically expressed below:

    i) Minimization of the transmission line loss.

    wherePLOSSmis the real power loss in themth transmission line.

    ii) Severity function

    3.2.Constraints

    The equality and inequality constraints can be expressed as follows:

    i) Equality constraints

    wherePgmis the real power of busm,PDis the real power demand, andPLis the real power loss;Qgmis the reactive power of busm,QDis the reactive power demand, andQLis the reactive power loss.

    ii) Inequality constraints

    ? Generators constraints

    whereVgmis the voltage of generatormandQgmis the reactive power of generatorm.

    ? Constraints for voltages at buses and discrete transformer tap settings

    whereVmis the voltage of busmandTmis the tapping setting of the transformer of busm.

    ? Real power generation limits

    wherePgmis the real power generated by generatorm.

    ? Constraints for the reactive power supply from the capacitor banks:

    whereQCmis the reactive power supply from capacitor bankm.

    ? Constraints for transmission line loads:

    whereSlmis the line loading of transmission linem.

    iii) TCSC constraints

    4.SSA

    Salps belong to the Salpidae family and have a similar structure and movement style as a jellyfish, i.e., by contracting, water is pumped through the body to move them forward[19].The salps shown inFig.2(a) form swarms known as “salp chains” (Fig.2(b)) which allow them to change the coordinates for foraging.Basically, the salp swarm optimization algorithm is inspired by the navigation and foraging behaviors of salps in their natural habitats.

    Mathematically, salp chains can be modeled by initially dividing the population into two groups, a leader and followers, where a leader is a salp that presents at the creation of the chain and leads the movement, which is then followed by the followers.Heremstores the position of the salps in two dimensions andFis the food source targeted by the salps.The position of the leader can be updated using the following equations:

    Fig.2.Salp and salp chain: (a) single salp and (b) salp chain.

    where,Fj,lj, andujare the positions of the leader, the food source, and the lower and upper bounds in thejth dimension, respectively, whereasd1,d2, andd3are random numbers, andd1maintains a balance between exploration and exploitation, which can be defined as follows:

    wheretandTrepresent the current and maximum numbers of iterations, respectively.Thereafter, the position of the followers can be updated using the following equation:

    wherei≥2 andis the position of theith follower in thejth dimension.By using (10),(11), and (13), salp chains can be simulated.The pseudo code of SSA is shown asTable 1.The flowchart of SSA is shown inFig.3.

    Table 1: SSA

    5.Results and Analysis

    5.1.lllustrative Example 1

    The proposed SSA is aimed at resolving the OPF problem.To test the effectiveness of the proposed algorithm within a power system, it is evaluated based on the standard IEEE-30 bus system.Generally, the IEEE-30 bus system consists of six generators placed on buses 1,2, 5, 8, 11, and 13; four off-nominal tap ratio transformers placed between buses (6-9), (6-10), (4-12), and(27-28); and two shunt capacitors placed at buses 10 and 24.For each objective, the proposed algorithm performed up to 100 iterations.The system data, including bus data, line data, and generator data, are adopted from [20].

    Fig.3.Flowchart of SSA.

    The transmission line is validated using the SSA method, and the results are compared with those using the existing methods, such as the artificial bee colony algorithm (ABC).The OPF results for the minimization of the transmission line loss is tabulated inTable 2.It is evident that the transmission line loss are minimized using the SSA method in comparison with the existing methods.The convergence characteristics of the proposed method are also compared with those of the existing methods, as shown inFig.4.It can be observed that the proposed method achieves a better value for the objective functions in question, with an effective convergence obtained with fewer iterations.

    5.2.lncorporation of TCSC

    More analysis is then performed for the transmission line loss and the severity factor with the incorporation of TCSC.In accordance with the existing literature, TCSC was placed between buses (3-4).The results obtained for the considered objectives are presented inTable 3.It is clear that without any FACTS device, the transmission line loss is 2.962 MW and the initial severity factor is 1.436, which are minimized to 2.916 MW and 1.344, respectively, with the incorporation of TCSC.Thus, it can be concluded that the performance of the power system is improved with the incorporation of TCSC.The convergence curves for both the objective functions are shown inFigs.5and6.The effectiveness and improved performance of the proposed algorithm with the incorporation of TCSC can be clearly observed.

    Table 2: OPF results for the minimization of the transmission line loss in the IEEE-30 bus system

    Table 3: OPF results for the transmission line loss and severity factor with and without TCSC

    Fig.4.Convergence curve for transmission line loss.

    Fig.5.Convergence curve for transmission line loss with and without TCSC.

    Fig.6.Convergence curve for severity factor with and without TCSC.

    6.Conclusion

    This paper demonstrated the application of SSA for resolving the OPF problem of power systems with some equality and inequality constraints.It was shown that SSA effectively optimized the transmission line loss and severity factor compared with the existing algorithms and that it also maintained an excellent balance between exploration and exploitation.Following the validation of SSA,TCSC was incorporated within the power system.And it was observed that the considered objective functions were further minimized, which demonstrates that the implementation of SSA with the incorporation of TCSC will provide a better solution for the OPF problem.In the future, multi-objective SSA (MSSA) could be used to resolve the multi-objective problems in power systems.

    Disclosures

    The authors declare no conflicts of interest.

    日本黄色日本黄色录像| 精品国产一区二区三区四区第35| 91麻豆精品激情在线观看国产 | 中文字幕另类日韩欧美亚洲嫩草| 人妻 亚洲 视频| 一级a爱片免费观看的视频| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 久久草成人影院| 亚洲色图综合在线观看| 三上悠亚av全集在线观看| 国产蜜桃级精品一区二区三区 | 老司机在亚洲福利影院| 午夜福利欧美成人| 欧美精品人与动牲交sv欧美| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院 | 人妻久久中文字幕网| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 大陆偷拍与自拍| 日本一区二区免费在线视频| 国产激情欧美一区二区| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕 | 久久精品国产a三级三级三级| 日韩三级视频一区二区三区| 免费在线观看黄色视频的| 高潮久久久久久久久久久不卡| 曰老女人黄片| 人妻 亚洲 视频| 免费人成视频x8x8入口观看| 黑人猛操日本美女一级片| 下体分泌物呈黄色| 国产91精品成人一区二区三区| 精品福利永久在线观看| www.熟女人妻精品国产| 国产精品1区2区在线观看. | 欧美成人免费av一区二区三区 | 亚洲av日韩精品久久久久久密| 99香蕉大伊视频| 精品久久久久久久久久免费视频 | 中文字幕制服av| 十八禁网站免费在线| 久久九九热精品免费| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 欧美日韩成人在线一区二区| av国产精品久久久久影院| 超碰97精品在线观看| 一本一本久久a久久精品综合妖精| 久久久久国内视频| 精品少妇久久久久久888优播| 久久久久久免费高清国产稀缺| 亚洲av美国av| 欧美乱妇无乱码| 黄片播放在线免费| ponron亚洲| 久久精品人人爽人人爽视色| 性少妇av在线| 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 老鸭窝网址在线观看| 老司机福利观看| 老司机亚洲免费影院| 国产又爽黄色视频| 天堂中文最新版在线下载| 久久草成人影院| 欧美精品啪啪一区二区三区| 成年动漫av网址| cao死你这个sao货| 欧美中文综合在线视频| 国产亚洲av高清不卡| 国产不卡av网站在线观看| a在线观看视频网站| 成人影院久久| 男人舔女人的私密视频| 精品久久久久久久毛片微露脸| 国产成人免费观看mmmm| 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 日本精品一区二区三区蜜桃| 精品无人区乱码1区二区| 精品卡一卡二卡四卡免费| 国产亚洲精品第一综合不卡| 交换朋友夫妻互换小说| 人人澡人人妻人| 久久婷婷成人综合色麻豆| 19禁男女啪啪无遮挡网站| 操出白浆在线播放| 欧美性长视频在线观看| 国产精品香港三级国产av潘金莲| 国产精品成人在线| 国产成人av激情在线播放| 12—13女人毛片做爰片一| 美女高潮到喷水免费观看| 视频区图区小说| 丝袜美足系列| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 免费在线观看视频国产中文字幕亚洲| 18禁国产床啪视频网站| 精品国产一区二区久久| 亚洲一区中文字幕在线| 80岁老熟妇乱子伦牲交| 美女 人体艺术 gogo| 久久精品国产综合久久久| 村上凉子中文字幕在线| 1024视频免费在线观看| 黄色毛片三级朝国网站| 天天影视国产精品| 国产精品成人在线| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 国产精品久久视频播放| 国产1区2区3区精品| 国产精品影院久久| 最近最新中文字幕大全免费视频| 男女高潮啪啪啪动态图| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 老司机福利观看| 在线观看免费视频日本深夜| 亚洲av美国av| 国产成人av教育| 国产在视频线精品| 日韩欧美三级三区| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 9色porny在线观看| 高清欧美精品videossex| 丁香欧美五月| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 日本欧美视频一区| tocl精华| 免费在线观看日本一区| av中文乱码字幕在线| а√天堂www在线а√下载 | 丝袜美腿诱惑在线| svipshipincom国产片| 精品一区二区三区视频在线观看免费 | 无限看片的www在线观看| 午夜福利乱码中文字幕| 国产成人影院久久av| 国产成人免费无遮挡视频| 涩涩av久久男人的天堂| 男人的好看免费观看在线视频 | 大型黄色视频在线免费观看| 亚洲av日韩精品久久久久久密| 精品久久蜜臀av无| 999精品在线视频| 久久中文字幕人妻熟女| www.精华液| 久久婷婷成人综合色麻豆| 黄色视频,在线免费观看| 成人三级做爰电影| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱子伦一区二区三区| av线在线观看网站| 高清毛片免费观看视频网站 | 免费在线观看视频国产中文字幕亚洲| 捣出白浆h1v1| 亚洲一区高清亚洲精品| 美女视频免费永久观看网站| 99国产精品一区二区蜜桃av | 99re6热这里在线精品视频| 免费不卡黄色视频| 亚洲精品中文字幕在线视频| 日韩视频一区二区在线观看| 国产精品一区二区免费欧美| 一级a爱片免费观看的视频| 国产精品偷伦视频观看了| 亚洲精品av麻豆狂野| 村上凉子中文字幕在线| 丝袜人妻中文字幕| netflix在线观看网站| 一a级毛片在线观看| 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频| 国产真人三级小视频在线观看| 香蕉国产在线看| 黑人操中国人逼视频| 精品国产一区二区三区四区第35| 日本wwww免费看| www日本在线高清视频| 久久精品熟女亚洲av麻豆精品| 国产精华一区二区三区| 欧美精品啪啪一区二区三区| 久久香蕉国产精品| 制服人妻中文乱码| 亚洲欧美色中文字幕在线| 青草久久国产| 岛国在线观看网站| 国产91精品成人一区二区三区| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| 亚洲av日韩精品久久久久久密| 午夜久久久在线观看| 午夜精品国产一区二区电影| 亚洲aⅴ乱码一区二区在线播放 | 男女午夜视频在线观看| 后天国语完整版免费观看| 国产在视频线精品| 国产精品.久久久| 多毛熟女@视频| 韩国精品一区二区三区| 成人黄色视频免费在线看| 国产精品乱码一区二三区的特点 | 日韩欧美一区视频在线观看| 国产亚洲欧美98| 亚洲熟女毛片儿| 久久中文字幕人妻熟女| 黄色毛片三级朝国网站| 99热只有精品国产| 国产精品久久电影中文字幕 | 在线观看免费日韩欧美大片| 国产乱人伦免费视频| 美女高潮到喷水免费观看| 国产精品欧美亚洲77777| 伊人久久大香线蕉亚洲五| 一级,二级,三级黄色视频| 午夜91福利影院| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| 999久久久国产精品视频| 91av网站免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产高清国产av | 免费不卡黄色视频| 看片在线看免费视频| 99国产极品粉嫩在线观看| 日韩视频一区二区在线观看| 亚洲精品乱久久久久久| 超碰成人久久| 免费少妇av软件| 亚洲av欧美aⅴ国产| 日韩欧美在线二视频 | 久久久久久久精品吃奶| 美女扒开内裤让男人捅视频| 欧美不卡视频在线免费观看 | 少妇粗大呻吟视频| 亚洲人成电影观看| 国产免费男女视频| 黄色视频,在线免费观看| 国产精品一区二区免费欧美| 他把我摸到了高潮在线观看| 老司机福利观看| 丝瓜视频免费看黄片| 久久精品成人免费网站| av电影中文网址| 亚洲av成人av| 国产在线精品亚洲第一网站| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9 | 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 亚洲一码二码三码区别大吗| 免费在线观看视频国产中文字幕亚洲| 黄色视频,在线免费观看| 人人妻人人添人人爽欧美一区卜| 国产精品久久久人人做人人爽| 成年人黄色毛片网站| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 国产国语露脸激情在线看| 午夜91福利影院| 十八禁网站免费在线| 在线av久久热| 亚洲精品在线观看二区| 午夜老司机福利片| 三上悠亚av全集在线观看| 最新的欧美精品一区二区| 757午夜福利合集在线观看| 一个人免费在线观看的高清视频| 黄色毛片三级朝国网站| 国产精品二区激情视频| 国产日韩一区二区三区精品不卡| 日本欧美视频一区| 精品久久蜜臀av无| 亚洲国产精品sss在线观看 | 亚洲精品国产色婷婷电影| 天天影视国产精品| 精品久久蜜臀av无| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 欧美日韩黄片免| a级毛片在线看网站| 欧美性长视频在线观看| 男女之事视频高清在线观看| 美国免费a级毛片| av有码第一页| 久久国产亚洲av麻豆专区| 深夜精品福利| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 亚洲国产看品久久| 欧美另类亚洲清纯唯美| 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 免费看a级黄色片| 国产极品粉嫩免费观看在线| 欧美 日韩 精品 国产| 男人的好看免费观看在线视频 | 午夜免费观看网址| www.熟女人妻精品国产| 亚洲精品久久成人aⅴ小说| 中文字幕色久视频| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 久久精品亚洲av国产电影网| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说 | 亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 国产色视频综合| 久久香蕉精品热| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 日本a在线网址| 咕卡用的链子| 99国产综合亚洲精品| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| 日本精品一区二区三区蜜桃| 精品少妇久久久久久888优播| 精品乱码久久久久久99久播| 两个人看的免费小视频| 黄片小视频在线播放| 伦理电影免费视频| 国产欧美日韩一区二区三| 国产精品欧美亚洲77777| 久久狼人影院| 国产精品永久免费网站| 在线永久观看黄色视频| 国产高清videossex| 精品一品国产午夜福利视频| 黑人猛操日本美女一级片| 一区福利在线观看| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 伦理电影免费视频| 免费在线观看完整版高清| 国产aⅴ精品一区二区三区波| 一区二区日韩欧美中文字幕| 欧美日韩视频精品一区| 久久精品亚洲精品国产色婷小说| 国产精品久久久人人做人人爽| 欧美成狂野欧美在线观看| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| 成人黄色视频免费在线看| 欧美乱码精品一区二区三区| av欧美777| 欧美乱妇无乱码| 91在线观看av| 国产不卡av网站在线观看| 亚洲人成伊人成综合网2020| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| 欧美人与性动交α欧美精品济南到| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 99久久综合精品五月天人人| www.自偷自拍.com| 午夜福利在线观看吧| 黄色毛片三级朝国网站| 亚洲精品久久成人aⅴ小说| 精品国产一区二区久久| av电影中文网址| 在线天堂中文资源库| 久久精品国产99精品国产亚洲性色 | 国产免费av片在线观看野外av| 亚洲免费av在线视频| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| www.熟女人妻精品国产| 国产亚洲av高清不卡| 一级,二级,三级黄色视频| 国产成+人综合+亚洲专区| 在线永久观看黄色视频| 热99re8久久精品国产| 黑人巨大精品欧美一区二区mp4| 日韩三级视频一区二区三区| 高清av免费在线| 91字幕亚洲| 中亚洲国语对白在线视频| netflix在线观看网站| 捣出白浆h1v1| 久久久国产成人精品二区 | 国产精品综合久久久久久久免费 | 亚洲一区二区三区不卡视频| 欧美黑人精品巨大| 国产欧美日韩综合在线一区二区| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区久久久樱花| 两个人看的免费小视频| 亚洲欧美色中文字幕在线| 中文字幕人妻熟女乱码| 变态另类成人亚洲欧美熟女 | 999精品在线视频| 国产成人精品久久二区二区91| 99国产精品99久久久久| 两个人免费观看高清视频| 两人在一起打扑克的视频| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 亚洲精品在线美女| bbb黄色大片| 久久精品国产a三级三级三级| e午夜精品久久久久久久| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区 | 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 大片电影免费在线观看免费| 80岁老熟妇乱子伦牲交| xxxhd国产人妻xxx| 极品教师在线免费播放| www日本在线高清视频| 国产精品久久视频播放| 黄色 视频免费看| 很黄的视频免费| 免费少妇av软件| 男女高潮啪啪啪动态图| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 叶爱在线成人免费视频播放| 少妇的丰满在线观看| 老熟妇乱子伦视频在线观看| 他把我摸到了高潮在线观看| 大码成人一级视频| 999久久久国产精品视频| 香蕉丝袜av| 99国产精品99久久久久| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 黄色女人牲交| www.熟女人妻精品国产| 国产蜜桃级精品一区二区三区 | 国产在视频线精品| 国产有黄有色有爽视频| 国产亚洲欧美精品永久| 99国产极品粉嫩在线观看| 国产成人影院久久av| 在线观看舔阴道视频| videosex国产| 91精品国产国语对白视频| 男女床上黄色一级片免费看| 一级片'在线观看视频| 精品亚洲成国产av| 精品久久久久久电影网| 女人被躁到高潮嗷嗷叫费观| 人成视频在线观看免费观看| 欧美精品啪啪一区二区三区| www.自偷自拍.com| 一级,二级,三级黄色视频| 一本大道久久a久久精品| 国产蜜桃级精品一区二区三区 | 黄色成人免费大全| 亚洲精品国产精品久久久不卡| 国产高清国产精品国产三级| 十八禁高潮呻吟视频| 99香蕉大伊视频| 超碰成人久久| 午夜福利乱码中文字幕| 日本wwww免费看| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 国产精品亚洲一级av第二区| 亚洲av日韩在线播放| 久久久久国产精品人妻aⅴ院 | 欧美乱码精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 黄色片一级片一级黄色片| 久久国产精品影院| 露出奶头的视频| 久久精品国产99精品国产亚洲性色 | 午夜精品久久久久久毛片777| 99国产精品一区二区三区| 五月开心婷婷网| 久久人人爽av亚洲精品天堂| 日韩精品免费视频一区二区三区| 视频区图区小说| 亚洲精品在线美女| 一级片免费观看大全| 咕卡用的链子| 在线天堂中文资源库| 欧美大码av| 国产一区在线观看成人免费| 亚洲一卡2卡3卡4卡5卡精品中文| 色播在线永久视频| 精品一品国产午夜福利视频| 精品欧美一区二区三区在线| 99精品欧美一区二区三区四区| 精品卡一卡二卡四卡免费| 久久亚洲真实| 亚洲全国av大片| 高清av免费在线| 亚洲av美国av| 日日爽夜夜爽网站| 久久99一区二区三区| 国产精品久久久久久精品古装| 99久久精品国产亚洲精品| 丰满的人妻完整版| 免费在线观看日本一区| 久久中文字幕一级| 精品少妇一区二区三区视频日本电影| 无人区码免费观看不卡| 午夜福利乱码中文字幕| 黄色毛片三级朝国网站| av网站免费在线观看视频| 精品一区二区三区视频在线观看免费 | 超色免费av| 又紧又爽又黄一区二区| 天天操日日干夜夜撸| 一级片'在线观看视频| 日日摸夜夜添夜夜添小说| 欧美精品高潮呻吟av久久| 操出白浆在线播放| 一二三四在线观看免费中文在| 中文字幕人妻丝袜制服| 久久精品亚洲熟妇少妇任你| 亚洲国产精品一区二区三区在线| 我的亚洲天堂| 久热这里只有精品99| 国产精品美女特级片免费视频播放器 | 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 久久久国产成人精品二区 | 国产在线观看jvid| 亚洲免费av在线视频| 男女午夜视频在线观看| 久久久精品国产亚洲av高清涩受| 91字幕亚洲| 操出白浆在线播放| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 国产乱人伦免费视频| 久久亚洲真实| 在线观看66精品国产| 免费看十八禁软件| 午夜激情av网站| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 91国产中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 久久人人爽av亚洲精品天堂| 日本a在线网址| 黄色 视频免费看| 国产男女内射视频| 美女高潮到喷水免费观看| 欧美激情久久久久久爽电影 | 国产精品自产拍在线观看55亚洲 | 操美女的视频在线观看| 宅男免费午夜| av电影中文网址| 亚洲色图 男人天堂 中文字幕| 国产真人三级小视频在线观看| 啦啦啦在线免费观看视频4| 亚洲黑人精品在线| 91字幕亚洲| av天堂久久9| 天堂中文最新版在线下载| 欧美 日韩 精品 国产| 欧洲精品卡2卡3卡4卡5卡区| 色94色欧美一区二区| 侵犯人妻中文字幕一二三四区| 亚洲免费av在线视频| 精品人妻熟女毛片av久久网站| 午夜免费鲁丝| 亚洲精品粉嫩美女一区| 亚洲中文日韩欧美视频| 老司机影院毛片| 色婷婷久久久亚洲欧美| 一夜夜www| 欧美日韩精品网址| 久久性视频一级片| 天堂俺去俺来也www色官网| 欧美精品一区二区免费开放| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线 | 亚洲专区中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区| 777久久人妻少妇嫩草av网站| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 操出白浆在线播放| 亚洲av成人不卡在线观看播放网| 色婷婷av一区二区三区视频| 精品久久久久久,| 精品欧美一区二区三区在线| 两个人免费观看高清视频| 久久人妻av系列| 天堂√8在线中文| 在线国产一区二区在线|