劉欣, 王俊力, 孫亦軒, 張忠文, 梅俊華, 陳國(guó)華, 邵衛(wèi)△
β-淀粉樣蛋白1-42寡聚體對(duì)BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)的影響及機(jī)制研究*
劉欣1, 王俊力2, 孫亦軒1, 張忠文2, 梅俊華2, 陳國(guó)華1, 邵衛(wèi)2△
(1湖北中醫(yī)藥大學(xué)中醫(yī)臨床學(xué)院,湖北 武漢 430065;2武漢市第一醫(yī)院神經(jīng)內(nèi)科,湖北 武漢 430022)
探討β-淀粉樣蛋白1-42寡聚體(amyloid β-protein 1-42 oligomer, oAβ)對(duì)BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)的影響及可能的機(jī)制。制備oAβ,采用不同濃度(0、0.5、1、5、10、20 μmol/L)的oAβ孵育BV2小膠質(zhì)細(xì)胞24 h后,用倒置相差顯微鏡觀察細(xì)胞形態(tài)變化;用CCK-8法檢測(cè)BV2小膠質(zhì)細(xì)胞活力;用ELISA法檢測(cè)細(xì)胞培養(yǎng)上清液中腫瘤壞死因子α(tumor necrosis factor α, TNF-α)、白細(xì)胞介素6(interleukin-6, IL-6)、IL-4和IL-10的分泌水平。隨后將BV2小膠質(zhì)細(xì)胞分成對(duì)照組、模型組和拮抗劑組,模型組選取濃度為5 μmol/L的oAβ處理BV2小膠質(zhì)細(xì)胞,拮抗劑組在模型組基礎(chǔ)上加10 μmol/L Toll樣受體1(Toll-like receptor 1, TLR1)/TLR2拮抗劑CU-CPT22作用于細(xì)胞,應(yīng)用RT-qPCR和Western blot檢測(cè)3組細(xì)胞TLR1、TLR2、髓樣分化因子88(myeloid differentiation factor 88, MyD88)的mRNA和蛋白表達(dá),用ELISA檢測(cè)細(xì)胞培養(yǎng)上清液中TNF-α、IL-6、IL-4和IL-10的分泌水平。BV2小膠質(zhì)細(xì)胞的活力隨著oAβ濃度的增加而降低,TNF-α和IL-6分泌水平隨oAβ濃度的增加而升高,IL-4和IL-10分泌水平隨oAβ濃度的增加而降低,且與0 μmol/L oAβ組比較差異均有統(tǒng)計(jì)學(xué)意義(<0.05)。與對(duì)照組相比,模型組TLR1、TLR2和MyD88的mRNA及蛋白表達(dá)水平均顯著升高(<0.01),TNF-α和IL-6分泌水平顯著升高(<0.01),IL-4和IL-10分泌水平顯著降低(<0.01);與模型組相比,拮抗劑組TLR1、TLR2及MyD88 mRNA和蛋白表達(dá)均顯著降低(<0.05),TNF-α和IL-6分泌水平顯著降低(<0.01),IL-4和IL-10分泌水平無(wú)顯著變化(>0.05)。不同濃度的oAβ刺激BV2小膠質(zhì)細(xì)胞后均出現(xiàn)了炎癥反應(yīng),且oAβ呈濃度依賴性的升高了促炎細(xì)胞因子TNF-α和IL-6的表達(dá)水平,降低了抗炎細(xì)胞因子IL-4和IL-10的表達(dá)水平;oAβ可能通過(guò)TLR1/2-MyD88信號(hào)通路誘導(dǎo)BV2小膠質(zhì)細(xì)胞活化,進(jìn)而上調(diào)其促炎介質(zhì)的水平。
阿爾茨海默病;β-淀粉樣蛋白1-42寡聚體;小膠質(zhì)細(xì)胞;TLR1/2-MyD88信號(hào)通路
神經(jīng)炎癥作為中樞神經(jīng)系統(tǒng)內(nèi)的炎癥反應(yīng),曾被認(rèn)為是阿爾茨海默?。ˋlzheimer disease, AD)的晚期后果,但現(xiàn)在越來(lái)越多的研究表明其是AD病理學(xué)的驅(qū)動(dòng)力,它不僅能夠加劇β-淀粉樣蛋白(amyloid β-protein, Aβ)沉積和神經(jīng)原纖維纏結(jié)的病理改變,與之形成惡性循環(huán),還能直接導(dǎo)致突觸功能障礙和神經(jīng)元的凋亡,是AD神經(jīng)退行性變的重要因素[1]。而小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)的常駐免疫細(xì)胞,反應(yīng)性增生且聚集在Aβ斑塊周圍,其被Aβ激活引起的大量促炎細(xì)胞因子的釋放則被認(rèn)為是大腦神經(jīng)炎癥的主要來(lái)源[2]。因此抑制Aβ誘導(dǎo)的小膠質(zhì)細(xì)胞過(guò)度活化導(dǎo)致的神經(jīng)炎癥將成為改善和治療AD的重要手段。雖然目前眾多研究者已使用脂多糖誘導(dǎo)BV2小膠質(zhì)細(xì)胞激活建立體外神經(jīng)炎癥模型,用于包括AD在內(nèi)的大多數(shù)神經(jīng)系統(tǒng)退行性疾病研究[3],但對(duì)能更好代表AD特征的Aβ體外神經(jīng)炎癥模型的建立及相關(guān)機(jī)制方面的研究較少。本項(xiàng)工作擬觀察不同濃度β-淀粉樣蛋白1-42寡聚體(amyloid β-protein 1-42 oligomer, oAβ)對(duì)BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)的影響,并進(jìn)一步從mRNA和蛋白水平分析oAβ誘導(dǎo)BV2小膠質(zhì)細(xì)胞發(fā)生神經(jīng)炎癥反應(yīng)的潛在分子機(jī)制,為AD的防治提供實(shí)驗(yàn)依據(jù)。
高糖DMEM培養(yǎng)液、青霉素和鏈霉素均購(gòu)于HyClone;胰酶-EDTA購(gòu)于吉諾生物醫(yī)藥技術(shù)有限公司;胎牛血清購(gòu)于杭州天杭生物科技有限公司;Aβ1-42購(gòu)于Abcam;Cu-CPT22購(gòu)于Selleck;CCK-8試劑盒購(gòu)于Biosharp;腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)、白細(xì)胞介素6(interleukin-6, IL-6)、IL-4和IL-10 ELISA試劑盒,以及EntiLink? 1st Strand cDNA Synthesis Kit逆轉(zhuǎn)錄試劑盒和EnTurbo? SYBR Green PCR SuperMix PCR試劑盒均購(gòu)于ELK Biotechnology;BCA蛋白質(zhì)濃度測(cè)定試劑盒和ECL化學(xué)發(fā)光檢測(cè)試劑盒均購(gòu)于ASPEN;兔來(lái)源Toll樣受體1(Toll-like receptor 1, TLR1)、TLR2和GAPDH單克隆抗體均購(gòu)于Abcam;兔來(lái)源髓樣分化因子88(myeloid differentiation factor 88, MyD88)多克隆抗體購(gòu)于武漢三鷹生物技術(shù)有限公司;HRP標(biāo)記的山羊抗兔IgG Ⅱ抗購(gòu)于ASPEN。
2.1oAβ的制備oAβ制備參考文獻(xiàn)[4]的實(shí)驗(yàn)步驟。將Aβ1-42溶解于六氟異丙醇,室溫條件重懸,分裝,待六氟異丙醇揮發(fā)獲得Aβ1-42肽膜,-20 ℃凍存。DMSO溶解肽膜,應(yīng)用PBS稀釋后,37 ℃寡聚化24 h成oAβ,然后4 ℃,13 700×離心10 min去除非水溶性纖維多肽雜質(zhì),取上清液轉(zhuǎn)移到新管用于后續(xù)實(shí)驗(yàn)。
2.2細(xì)胞培養(yǎng)及干預(yù)將BV2小膠質(zhì)細(xì)胞(Procell)培養(yǎng)于含有10%胎牛血清、1×105U/L青霉素和100 mg/L鏈霉素的高糖DMEM培養(yǎng)液中,放置于37 ℃、5% CO2細(xì)胞培養(yǎng)箱中培養(yǎng),每1~2 d更換1次培養(yǎng)液。取對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞,隨機(jī)分為6組,分別用不同濃度(0、0.5、1、5、10和20 μmol/L)的oAβ孵育BV2小膠質(zhì)細(xì)胞24 h后進(jìn)行后續(xù)實(shí)驗(yàn)。取對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞,隨機(jī)分為3組:對(duì)照(control)組(不用任何藥物干預(yù))、模型組(oAβ處理組)和拮抗劑組(CU-CPT22+oAβ組),其中oAβ的濃度根據(jù)上述研究結(jié)果選擇,CU-CPT22濃度為10 μmol/L。模型組以適宜濃度的oAβ作用24 h;拮抗劑組先用10 μmol/L TLR1/TLR2拮抗劑CU-CPT22孵育2 h,再加適宜濃度的oAβ繼續(xù)培養(yǎng)24 h后進(jìn)行后續(xù)實(shí)驗(yàn)。
2.3CCK-8法檢測(cè)細(xì)胞活力取對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞,以每孔1×104個(gè)接種到96孔板中,每孔100 μL培養(yǎng)液。待細(xì)胞貼壁后,分別加入不同濃度(0、0.5、1、5、10和20 μmol/L)的oAβ,24 h后棄去上清液,PBS清洗3次,向每孔中加入100 μL含10% CCK-8溶液的無(wú)血清高糖DMEM,37 ℃孵育2 h后,用多功能酶標(biāo)儀檢測(cè)溶液吸光度(450 nm處的值),根據(jù)吸光度計(jì)算各組相對(duì)細(xì)胞活力。
2.4ELISA試劑盒檢測(cè)細(xì)胞炎癥因子取對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞,以每孔1×104個(gè)接種到96孔板中培養(yǎng),每孔100 μL培養(yǎng)液。待細(xì)胞貼壁后分別加入不同濃度(0、0.5、1、5、10和20 μmol/L)的oAβ孵育24 h后收集細(xì)胞培養(yǎng)上清液;將對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞隨機(jī)分為對(duì)照組、模型組和拮抗劑組,待細(xì)胞貼壁后予以相應(yīng)干預(yù),24 h后收集細(xì)胞培養(yǎng)上清液。按照ELISA試劑盒說(shuō)明書(shū)檢測(cè)每組的TNF-α、IL-6、IL-4和IL-10含量。
2.5RT-qPCR檢測(cè)細(xì)胞TLR1、TLR2和MyD88的mRNA表達(dá)取對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞,以每孔1×105個(gè)的密度接種到6孔板中培養(yǎng)。待細(xì)胞貼壁后,按對(duì)照組、模型組和拮抗劑組予以相應(yīng)干預(yù),24 h后棄去上清液,PBS清洗3次。按總RNA提取試劑盒說(shuō)明書(shū)提取各孔細(xì)胞總RNA,檢測(cè)濃度后按照逆轉(zhuǎn)錄試劑盒說(shuō)明書(shū)合成cDNA,以cDNA為模板根據(jù)PCR試劑盒說(shuō)明書(shū)方法檢測(cè)各組細(xì)胞TLR1、TLR2和MyD88 mRNA水平,所用引物序列見(jiàn)表1。
表1 引物序列
F: forward; R: reverse.
2.6Western blot檢測(cè)細(xì)胞TLR1、TLR2和MyD88蛋白的表達(dá)取對(duì)數(shù)生長(zhǎng)期的BV2小膠質(zhì)細(xì)胞,以每孔1×105個(gè)的密度接種到6孔板中培養(yǎng)。待細(xì)胞貼壁后,按對(duì)照組、模型組和拮抗劑組予以相應(yīng)干預(yù),24 h后棄去上清液,PBS清洗3次。每孔加入適量RIPA裂解液,置于冰上裂解30 min,刮下細(xì)胞,將細(xì)胞與裂解液一起轉(zhuǎn)移到1.5 mL離心管中,置于4 ℃離心機(jī)中13 700×離心5 min,收集上清液,使用BCA蛋白質(zhì)濃度測(cè)定試劑盒檢測(cè)蛋白濃度后加入5×蛋白上樣緩沖液,95 ℃水浴5 min,冰上驟冷,然后上樣40 μg進(jìn)行SDS-PAGE分離,濕法轉(zhuǎn)膜,然后用100 mL/L脫脂牛奶室溫封閉1 h,TBST洗凈牛奶,Ⅰ抗4 ℃孵育過(guò)夜。次日棄Ⅰ抗,TBST洗滌3次,每次5 min,然后Ⅱ抗室溫孵育30 min,棄Ⅱ抗,TBST洗滌4次,每次5 min,然后用ECL化學(xué)發(fā)光檢測(cè)試劑盒顯影,凝膠成像系統(tǒng)采集圖像,ImageJ軟件定量分析圖像。
采用SPSS 25.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析,GraphPad Prism 8.0軟件作圖。所有實(shí)驗(yàn)數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。符合正態(tài)分布且滿足方差齊性的多組間數(shù)據(jù)比較采用單因素方差分析(one-way ANOVA),兩兩比較采用LSD-檢驗(yàn);符合正態(tài)分布但不符合方差齊性則采用Welch近似檢驗(yàn),兩兩比較采用Games-Howell檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
如圖1所示,倒置相差顯微鏡下,對(duì)照組細(xì)胞呈靜息狀態(tài),胞體小,呈圓形或橢圓形,突觸細(xì)長(zhǎng);模型組細(xì)胞經(jīng)oAβ(5 μmol/L)刺激后細(xì)胞多數(shù)呈激活狀態(tài),胞體肥大,呈梭形或桿狀,突起減少且回縮變短,形態(tài)如類阿米巴樣。
Figure 1. The morphological changes of BV2 cells observed under inverted microscope. The resting BV2 cells were round or oval, and the synapses were long and thin. After 5 μmol/L oAβ stimulation, the activated BV2 cells showed amoeba-like and shortened synapses.
CCK-8實(shí)驗(yàn)結(jié)果顯示,用不同濃度(0.5、1、5、10和20 μmol/L)的oAβ干預(yù)BV2小膠質(zhì)細(xì)胞24 h后,隨著oAβ濃度的增加細(xì)胞活力逐漸降低,與0 μmol/L oAβ組比較差異均有統(tǒng)計(jì)學(xué)意義(<0.05),見(jiàn)圖2。
Figure 2. Effect of oAβ on the viability of BV2 cells. Mean±SD. n=5. *P<0.05,**P<0.01 vs 0 μmol/L oAβ group.
如圖3所示,BV2小膠質(zhì)細(xì)胞經(jīng)不同濃度(0.5、1、5、10和20 μmol/L)的oAβ刺激后,細(xì)胞培養(yǎng)上清液中促炎細(xì)胞因子TNF-α和IL-6的分泌隨著oAβ濃度的增加而升高,而抗炎細(xì)胞因子IL-4和IL-10的分泌隨著oAβ濃度的增加而降低,且與0 μmol/L oAβ組比較差異均有統(tǒng)計(jì)學(xué)意義(<0.05或<0.01)。
Figure 3. Secretion levels of TNF-α, IL-6, IL-4 and IL-6 in BV2 cells induced by oAβ at different concentrations. Mean±SD. n=3. *P<0.05,**P<0.01 vs 0 μmol/L oAβ group.
根據(jù)上述不同濃度oAβ對(duì)BV2細(xì)胞活力及炎癥因子表達(dá)的影響結(jié)果,選擇5 μmol/L為模型組oAβ濃度進(jìn)行后續(xù)實(shí)驗(yàn)。如圖4、5所示,與對(duì)照組相比,模型組TNF-α和IL-6分泌水平顯著升高,IL-4和IL-10分泌水平顯著降低(<0.01);與模型組相比,拮抗劑組TNF-α和IL-1β分泌水平顯著降低(<0.01),IL-4和IL-10分泌水平無(wú)顯著變化(>0.05)。
Figure 4. Effect of Cu-CPT22 on TNF-α and IL-6 secretion levels in oAβ-induced BV2 cells. Mean±SD. n=3.**P<0.01 vs control group;##P<0.01 vs oAβ group.
Figure 5. Effect of Cu-CPT22 on IL-4 and IL-10 secretion levels in oAβ-induced BV2 cells. Mean±SD. n=3. **P<0.01 vs control group.
如圖6所示,模型組5 μmol/L oAβ刺激BV2小膠質(zhì)細(xì)胞后TLR1、TLR2和MyD88的mRNA表達(dá)較對(duì)照組顯著升高(<0.01);而加用TLR1/TLR2拮抗劑CU-CPT22預(yù)處理后,TLR1、TLR2和MyD88的mRNA表達(dá)較模型組顯著降低(<0.05)。
Figure 6. Effects of Cu-CPT22 on mRNA expression of TLR1, TLR2 and MyD88 in oAβ-induced BV2 cells. Mean±SD. n=3. **P<0.01 vs control group;#P<0.05,##P<0.01 vs oAβ group.
如圖7所示,模型組5 μmol/L oAβ刺激BV2小膠質(zhì)細(xì)胞后,TLR1、TLR2和MyD88蛋白的表達(dá)較對(duì)照組顯著升高(<0.01);而加用TLR1/TLR2拮抗劑CU-CPT22預(yù)處理后,TLR1、TLR2和MyD88蛋白的表達(dá)較模型組顯著降低(<0.01)。
Figure 7. Effects of Cu-CPT22 on protein expression of TLR1, TLR2 and MyD88 in oAβ-induced BV2 cells. Mean±SD. n=3. **P<0.01 vs control group;##P<0.01 vs oAβ group.
目前研究表明,AD中的神經(jīng)炎癥與小膠質(zhì)細(xì)胞的活化、腦微循環(huán)中內(nèi)皮細(xì)胞表達(dá)的促炎細(xì)胞因子以及穿透血腦屏障的外周炎癥均有關(guān),其中小膠質(zhì)細(xì)胞活化被認(rèn)為是AD神經(jīng)炎癥的主要來(lái)源[5]。小膠質(zhì)細(xì)胞作為腦內(nèi)常駐巨噬細(xì)胞,能根據(jù)周圍環(huán)境變化采用不同的功能表型,它通過(guò)活化成M1型產(chǎn)生神經(jīng)毒性促炎介質(zhì)損傷神經(jīng)元細(xì)胞表現(xiàn)出有害的一面;或者活化成M2型產(chǎn)生抗炎和神經(jīng)營(yíng)養(yǎng)因子以及增加淀粉樣斑塊的清除表現(xiàn)出有益的一面[6]。研究者已在AD腦切片中觀察到活化的小膠質(zhì)細(xì)胞圍繞著細(xì)胞外的Aβ斑塊[7]。小鼠實(shí)驗(yàn)也證明Aβ斑塊、淀粉樣肽、原纖維、寡聚體甚至分泌的β-淀粉樣前體蛋白的衍生物都可以激活小膠質(zhì)細(xì)胞,導(dǎo)致神經(jīng)毒性細(xì)胞因子的釋放[8]。因此本研究選擇通過(guò)逆轉(zhuǎn)錄病毒轉(zhuǎn)染后獲得永生化且保留有小膠質(zhì)細(xì)胞形態(tài)、表型及各種功能的BV2小膠質(zhì)細(xì)胞系進(jìn)行研究。而選擇可溶性oAβ干預(yù)小膠質(zhì)細(xì)胞,是因?yàn)榕c其他形式相比,oAβ被認(rèn)為對(duì)神經(jīng)細(xì)胞毒性最強(qiáng),與疾病嚴(yán)重程度和認(rèn)知能力下降水平具有更好的相關(guān)性[9]。且眾多研究已經(jīng)證明可溶性oAβ可能通過(guò)干擾突觸功能,改變鈣穩(wěn)態(tài),增加神經(jīng)炎癥和氧化應(yīng)激,抑制神經(jīng)營(yíng)養(yǎng)因子的形成,并在斑塊形成開(kāi)始前抑制突變小鼠的長(zhǎng)時(shí)程增強(qiáng)等眾多機(jī)制影響AD的進(jìn)展[10]。
本研究結(jié)果表明,BV2小膠質(zhì)細(xì)胞促炎細(xì)胞因子TNF-α和IL-6的分泌與oAβ濃度呈正相關(guān),而抗炎細(xì)胞因子IL-4和IL-10的分泌與oAβ濃度呈負(fù)相關(guān),在oAβ為5 μmol/L時(shí)上述變化顯著,同時(shí)oAβ濃度依賴性地降低了BV2小膠質(zhì)細(xì)胞活力,提示隨著oAβ濃度的升高,小膠質(zhì)細(xì)胞M1和M2表型比例可能逐漸失衡,分泌促炎因子的M1型比例可能逐漸增大,分泌抗炎因子的M2型比例可能逐漸減小,從而影響到小膠質(zhì)細(xì)胞的活力。當(dāng)然后期研究中還需要檢測(cè)更多代表小膠質(zhì)細(xì)胞表型的標(biāo)志物來(lái)明確其極化狀態(tài)。劉緒華等[11]在相關(guān)研究中使用了易于聚集且神經(jīng)毒性較強(qiáng)的Aβ1-42的活化片段Aβ25-35誘導(dǎo)大鼠原代小膠質(zhì)細(xì)胞,檢測(cè)到細(xì)胞上清液中TNF-α和IL-1β顯著升高。狄婷婷等[12]通過(guò)對(duì)大鼠海馬CA1區(qū)注射不同濃度的Aβ25-35建立AD動(dòng)物模型的研究也證實(shí)了隨著Aβ劑量的增加,促炎癥因子TNF-α和IL-1β等釋放亦增加。二者涉及體外及體內(nèi)實(shí)驗(yàn),與本研究有類似的結(jié)果,但均未觀察抗炎因子的表達(dá)情況。
TLR2作為模式識(shí)別受體中的一種主要免疫受體,在誘導(dǎo)機(jī)體對(duì)各種內(nèi)源性和外源性危險(xiǎn)信號(hào)的固有免疫應(yīng)答中發(fā)揮了關(guān)鍵作用,能與TLR1形成二聚體,主要通過(guò)MyD88依賴通路進(jìn)行信號(hào)轉(zhuǎn)導(dǎo),增加促炎細(xì)胞因子的產(chǎn)生、啟動(dòng)絲裂原活化蛋白激酶級(jí)聯(lián)反應(yīng)或刺激干擾素調(diào)節(jié)因子激活[13]。TLR2在AD中存在明顯差異性表達(dá),據(jù)報(bào)道[14],在AD動(dòng)物模型中,暴露于Aβ導(dǎo)致TLR2 mRNA水平的升高,在AD患者的顳葉皮層和培養(yǎng)的小膠質(zhì)細(xì)胞中也檢測(cè)到基因上調(diào)。Zhang等[15]檢測(cè)到AD患者外周血單核細(xì)胞TLR2表達(dá)增加,且AD患者血清中TLR2水平與MMSE評(píng)估的大腦功能成負(fù)相關(guān),因此認(rèn)為血清TLR2水平有助于區(qū)分AD疾病中癡呆的嚴(yán)重程度或跟蹤癡呆的進(jìn)展,有望成為AD的外周血標(biāo)志物。此外已有研究表明TLR2主要在小膠質(zhì)細(xì)胞上表達(dá),且與小膠質(zhì)細(xì)胞的活化同步,在AD的發(fā)病機(jī)制中可能起到有利或有害的雙重作用,一方面誘導(dǎo)小膠質(zhì)細(xì)胞吞噬和清除Aβ并產(chǎn)生抗炎因子,以避免神經(jīng)細(xì)胞的損傷,另一方面誘導(dǎo)炎性細(xì)胞因子的產(chǎn)生,加重AD相關(guān)病理改變[16]。因此特異性靶向TLR2及其下游信號(hào)可能成為AD的潛在治療靶點(diǎn)。
本研究使用RT-qPCR和Western blot檢測(cè)了oAβ誘導(dǎo)小膠質(zhì)細(xì)胞后TLR1/2-MyD88信號(hào)通路相關(guān)分子的變化,為了進(jìn)一步驗(yàn)證該信號(hào)通路的作用,我們還使用了特異性靶向TLR1/2的拮抗劑CU-CPT22對(duì)細(xì)胞進(jìn)行預(yù)處理,結(jié)果說(shuō)明了TLR1/2-MyD88信號(hào)通路可能介導(dǎo)了oAβ誘導(dǎo)的小膠質(zhì)細(xì)胞活化及其促炎介質(zhì)水平的上調(diào),抑制上述通路則可以改善炎癥水平。這與Jana等[17]的早期研究結(jié)果一致,他們顯示無(wú)論是用抗轉(zhuǎn)錄療法沉默或用抗TLR2抗體阻斷BV2小膠質(zhì)細(xì)胞中的TLR2,還是在敲除了基因的小鼠中分離的小膠質(zhì)細(xì)胞,都能抑制Aβ1-42誘導(dǎo)的促炎分子或小膠質(zhì)細(xì)胞表面的整合素蛋白標(biāo)志物的表達(dá),且阻斷TLR2下游的MyD88也出現(xiàn)同樣的結(jié)果,隨后的體內(nèi)實(shí)驗(yàn)也證明了上述結(jié)果,從而充分說(shuō)明了TLR2信號(hào)通路在介導(dǎo)Aβ誘導(dǎo)的小膠質(zhì)細(xì)胞活化及炎癥反應(yīng)中所起的重要作用。然而與本研究的不同之處是他們使用的是Aβ的原纖維形式而非毒性較強(qiáng)的寡聚體形式,另外本研究使用了TLR1/2的二聚體拮抗劑,說(shuō)明TLR2與TLR1共同作用所介導(dǎo)的炎癥改變。此外,研究中使用了TLR1/2拮抗劑后抗炎因子的表達(dá)并無(wú)顯著變化,說(shuō)明抗炎因子的變化可能與TLR1/2信號(hào)通路無(wú)關(guān)。因此,本課題組后期研究中除了深入探索TLR1/TLR2下游分子機(jī)制的同時(shí)將進(jìn)一步探討抗炎因子變化的機(jī)制。
綜上所述,oAβ誘導(dǎo)的BV2小膠質(zhì)細(xì)胞活化可濃度依賴性地升高促炎因子但降低抗炎因子的表達(dá),應(yīng)用TLR1/2抑制劑則可降低oAβ誘導(dǎo)的BV2小膠質(zhì)細(xì)胞TLR1、TLR2和MyD88的mRNA及蛋白表達(dá),并改善促炎介質(zhì)水平的上調(diào),因此說(shuō)明了TLR1/2-MyD88信號(hào)通路在該過(guò)程中發(fā)揮重要作用。本研究為靶向TLR1/TLR2信號(hào)通路來(lái)調(diào)控小膠質(zhì)細(xì)胞激活及減少炎癥損傷治療AD提供了實(shí)驗(yàn)依據(jù)。
[1] Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease[J]. Nat Rev Neurosci, 2015, 16(6):358-372.
[2] Prinz M, Priller J, Sisodia SS, et al. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration[J]. Nat Neurosci, 2011, 14(10):1227-1235.
[3] An J, Chen B, Kang X, et al. Neuroprotective effects of natural compounds on LPS-induced inflammatory respon-ses in microglia[J]. Am J Transl Res, 2020, 12(6):2353-2378.
[4] Dahlgren KN, Manelli AM, Stine WB, et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability[J]. J Biol Chem, 2002, 277(35):32046-32053.
[5] Uddin MS, Kabir MT, Al Mamun A, et al. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease[J]. Int J Immunopharmaco, 2020, 84:106479.
[6] Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35:441-468.
[7] Serrano-Pozo A, Mielke ML, Gómez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer's disease[J]. Am J Pathol, 2011, 179(3):1373-1384.
[8] Yang T, Li S, Xu H, et al. Large soluble oligomers of amyloid β-protein from alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate[J]. J Neurosci, 2017, 37(1):152-163.
[9] Lue LF, Kuo YM, Roher AE, et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease[J]. Am J Pathol, 1999, 155(3):853-862.
[10] Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of Aβ1-42in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation[J]. J Neurosci, 2000, 20(11):4050-4058.
[11] 劉緒華,王孝慶,王中蘇,等. 姜黃素減弱Aβ25-35致大鼠原代小膠質(zhì)細(xì)胞的神經(jīng)炎癥反應(yīng)[J]. 中國(guó)病理生理雜志, 2016, 32(9):1635-1641.
Liu XH, Wang XQ, Wang ZS,et al. Curcumin reduces neuroinflammation stimulated by Aβ25-35in primary rat microglial cells[J]. Chin J Pathophysiol, 2016, 32(9):1635-1641.
[12]狄婷婷,張美,王瑞婷,等. Toll樣受體-2、核因子-κB在Aβ誘導(dǎo)的阿爾茨海默病中的作用[J]. 中國(guó)老年學(xué)雜志, 2016, 36(23):5780-5782.
Di TT, Zhang M, Wang RT, et al. The role of Toll-like receptor-2 and nuclear factor-κB in Alzheimer's disease induced by Aβ[J]. Chin J Gerontol, 2016, 36(23):5780-5782.
[13] Ravari A, Mirzaei T, Kennedy D, et al. Chronoinflammaging in Alzheimer; a systematic review on the roles of toll like receptor 2[J]. Life Sci, 2017, 171:16-20.
[14] Caldeira C, Cunha C, Vaz AR, et al. Key aging-associated alterations in primary microglia response to β-amyloid stimulation[J]. Front Aging Neurosci, 2017, 9:277.
[15] Zhang W, Wang LZ, Yu JT, et al. Increased expre-ssions of TLR2 and TLR4 on peripheral blood mononuclear cells from patients with Alzheimer's disease[J]. J Neurol Sci, 2012, 315(1/2):67-71.
[16] Momtazmanesh S, Perry G, Rezaei N. Toll-like receptors in Alzheimer's disease[J]. J Neuroimmunol, 2020, 348:577362.
[17] Jana M, Palencia CA, Pahan K. Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease[J]. J Immunol, 2008, 181(10):7254-7262.
Effects of amyloid β-protein 1-42 oligomer on inflammatory response of BV2 microglia and its mechanism
LIU Xin1, WANG Jun-li2, SUN Yi-xuan1, ZHANG Zhong-wen2, MEI Jun-hua2, CHEN Guo-hua1, SHAO Wei2△
(1,,430065,;2,,430022,)
To investigate the effect of amyloid β-protein 1-42 oligomer (oAβ) on the inflammatory response of BV2 microglia and its possible mechanism.After oAβ preparation, BV2 microglia were incubated with oAβ at different concentrations (0, 0.5, 1, 5, 10 and 20 μmol/L) for 24 h, and the cell morphological changes were observed by inverted phase-contrast microscopy. The cell viability was detected by CCK-8 method. The secretion levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-4 and IL-10 in supernatant of cell culture were determined by ELISA. Furthermore, the BV2 microglia were divided into control group, model group and antagonist group. The cells in model group were treated with oAβ at 5 μmol/L, and those in antagonist group were supplemented with 10 μmol/L CU-CPT22, a Toll-like receptor 1 (TLR1)/TLR2 antagonist, on the basis of model group. The mRNA and protein expression levels of TLR1, TLR2 and myeloid differentiation factor 88 (MyD88) were detected by RT-qPCR and Western blot. The secretion levels of TNF-α, IL-6, IL-4 and IL-10 in cell culture supernatants were determined by ELISA.The viability of BV2 microglia decreased, the secretion levels of TNF-α and IL-6 increased, and the secretion levels of IL-4 and IL-10 decreased with the increase in oAβ concentration. Compared with 0 μmol/L oAβ group, there were statistically significant differences (0.05). Compared with control group, the mRNA and protein expression levels of TLR1, TLR2 and MyD88 in model group were significantly increased (<0.01), the secretion levels of TNF-α and IL-6 were significantly increased (<0.01), and the secretion levels of IL-4 and IL-10 were significantly decreased (<0.01). Compared with model group, the mRNA and protein expression levels of TLR1, TLR2 and MyD88 in antagonist group were significantly decreased (0.05), the secretion levels of TNF-α and IL-6 were significantly decreased (<0.01), while the secretion levels of IL-4 and IL-10 were not significantly different (>0.05).The oAβ may induce the activation of BV2 microglia through TLR1/2-MyD88 signaling pathway, and then up-regulate the levels of pro-inflammatory mediators.
Alzheimer disease; Amyloid β-protein 1-42 oligomer; Microglia; TLR1/2-MyD88 signaling pathway
R363; R392; R749.1+6
A
10.3969/j.issn.1000-4718.2022.06.004
1000-4718(2022)06-0986-07
2021-10-12
2022-01-06
國(guó)家自然科學(xué)基金面上項(xiàng)目(No. 81673914);2020年武漢市應(yīng)用基礎(chǔ)前沿項(xiàng)目(No. 2020020601012302);武漢市衛(wèi)生健康委青年項(xiàng)目(No. WZ21Q08)
Tel: 15337114645; E-mail: shaowei74@126.com
(責(zé)任編輯:余小慧,李淑媛)