• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green Synthesis of Nitrogen-to-Ammonia Fixation: Past,Present, and Future

    2022-07-04 09:14:12JianyunZhengLiJiangYanhongLyuSanPingJiangandShuangyinWang
    Energy & Environmental Materials 2022年2期

    Jianyun Zheng* , Li Jiang, Yanhong Lyu, San Ping Jiang, and Shuangyin Wang

    1. Introduction

    Food and energy security and sustainability are the two most grand challenges facing humankind today across the world.Ammonia(NH3)is one of the most critical ingredients in the food supplier chain as NH3is the essential fertilizer for the agricultural and food production sector.[1,2]Since the discovery of Haber–Bosch(HB)process in 1909,the important process has produced a large proportion of global NH3production over 100 years.[3]The world production of NH3by HB process is over $60 billion annually, and nearly, 80% of the produced NH3is used as the fertilizer in agriculture(see Figure 1).The practical NH3production via HB process enables the global population to nearly quadruple since the rapid implementation of the process in the early 20th century. In the energy field, NH3is currently acknowledged as a promising hydrogen energy carrier because of high volume energy density (13.6 GJ m-3) and easy transportation characteristics (boiling temperature of -33.5 °C).[4]However, to drive the rupture of N≡N and hydrogenation reaction, the HB process involves in high temperature (400–500 °C) and pressure (10–20 MPa) reaction conditions, which accounts for around 1.5% of total global carbon dioxide(CO2) emissions and consumes about 2% of the world’s annual energy supply.[5]Therefore,pursuing an alternative, green, and environmentally efficient process for nitrogen (N2)-to-NH3fixation with renewable energy is very significant for sustainable NH3production.[6–8]

    In view of compatibility with renewable energy source, low product cost and potential scalable production, photocatalytic, electrochemical, photoelectrochemical (PEC), and plasma-driven approaches are recognized as the promising and competitive next-generation NH3synthesis technologies.[9–13]These approaches not only carry out the N2-to-NH3fixation under mild conditions like room temperature and atmospheric pressure but also can be powered by renewable energy source such as sun and wind.[14–16]Generally, the photocatalytic process is directly driven by sunlight to propel the activation and hydrogenation of N2. This type of devices is most simple and low-cost, but shows the low chemical utilization of solar energy.Green electrolytic reaction units for N2reduction reaction(NRR) are powered by solar cells and wind turbines, which usually necessitate use of two encapsulation and support structures. The integrated modularity is the most mature and benefit with high technology readiness,but its cost is also highest.In comparison with photocatalytic and electrochemical method,PEC device is an economically viable solution by combining the catalyst and the solar absorbers into a fully integrated system, which has the considerable chemical utilization of solar energy and acceptable cost. The plasma-based processes can generate highly reactive species to activate N2and facilitate NH3synthesis under atmospheric pressure. Although this approach can obtain high NH3production rate,low selectivity,high energy consumption,and expensive devices limit the application of plasma-driven NRR. Furthermore,in addition to the direct fixation of N2to NH3, an indirect conversion route including oxidation of N2to nitrate and reduction in nitrate to NH3has been implemented by the use of the above approaches.[17–19]

    Indeed,the great prospect has inspired a flurry of research activity to increase the NH3production rate and conversion efficiency of the approaches. Important milestones in the research and development of this emerging field are highlighted in Figure 2.[20–25]The research activities in the green conversion of N2to NH3can be constructively divided into three major groups: 1) the selectivity and adjustment of various catalysts;[26–29]2) the type of electrolyte/solvent system;[22]and 3) the investigation of reaction conditions.[25,30]Recently, much effort and progress have been made in green NH3synthesis using photocatalytic and (photo-)electrochemical approaches, and meanwhile,some questions that the detected NH3is derived from the extraneous contamination rather than N2have arisen among some researchers in this field (Figure 1).[31]Herein, we briefly discuss the past advances and recent critical activities in the area of sustainable N2fixation and subsequently provide a perspective for rational and healthy development of this area.

    2. Selectivity and Adjustment of Catalysts

    Catalysts are the core component of both photocatalytic and (photo-)-electrochemical N2-to-NH3fixation and are absolutely vital for the N2absorption,hydrogenation reaction,and NH3desorption dynamic processes to influence the performance of NRR.[32,33]To date, a series of catalysts have been designed and prepared via various theoretical and experimental routes to carry out sustainable NH3production.Currently,the study of catalysts can primarily concentrate on the types of materials and improvement strategies, including noble metal-based materials,non-noble metal-based materials, nonmetal-based materials, and defect engineering. Ruthenium (Ru),[28]gold (Au),[34]and palladium(Pd)[35]are usually explored in photocatalytic and (photo-)electrochemical NRR under mild conditions (see Figure 3a). For example,Han et al. have reported that a catalyst with diatomic Pd-Cu sites dispersed on N-doped carbon show high activity and selectivity with an NH3formation rate of ~69.2 μg?h-1?mg-1and a faradic efficiency of~24.8%.[35]Non-noble metal-based materials such as Bi, Ti, and Cu have been currently explored as efficient catalysts for photocatalytic and(photo-)electrochemical NRR.An Bi4O5I2catalyst with oxygen vacancy and hydroxyl functional group, which can mimic “π back-donation”behavior by the presence of sufficient vacant orbitals, has been used to enhancing NRR activity in neutral media.[36]This catalyst reaches a splendid faradic efficiency of 32.4%superior to most of the other NRR catalysts in mild conditions.[36]Furthermore,nonmetal-based materials can not only offer good mechanical flexibility and electrical conductivity,but also more importantly,have sufficient catalytic active centers by the introduction of defects.[37]To date,some nonmetal-based materials including conducting polymers and organic carbon-based materials have been explored as catalysts for green NRR.[38]In addition to the use of defect engineering,other enhanced routes such as Li+incorporation,[10]aerophilic-hydrophilic heterostructure,[23]and interface engineering[39]have been investigated for green conversion of N2to NH3under mild conditions. Besides, many of theoretical calculations have also showed that these materials can be major active centers to enhance the N2adsorption, decrease the reaction energy barrier and permit the stabilization of hydrogenated N2species.

    3. Type of Electrolyte/Solvent System

    Jianyun Zheng received his Ph.D.degree in Physical Chemistry from Shanghai Institute of Ceramics,Chinese Academy of Sciences in 2015.From September 2015 to September 2019,he successively worked in Lanzhou Institute of Chemical Physics as an assistant research fellow and Hunan University and Curtin University as a united postdoctoral researcher.Currently,he is an associate professor in the College of Chemistry and Chemical Engineering in Hunan University.His main interests focus on the preparation of semiconductor materials,design,and assembly of photoelectrodes and photoelectrochemical devices,and their performance in photo(electro-)catalysis.

    Li Jiang is currently a graduate student in Hunan University,under the supervision of Prof.Jianyun Zheng and Prof.Shuangyin Wang. Her current research interest is photoelectrochemical nitrogen reduction reaction.

    Yanhong Lyu received her Pd.D. degree in Physical Chemistry from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2015.She currently works in Hunan First Normal University as a researcher. Her researches mainly focus on the (photo-)-electrochemistry, nanoscale analysis, and surface engineering of the materials for water splitting and nitrogen reduction.

    San Ping Jiang is a John Curtin Distinguished Professor at the Western Australian School of Mines: Minerals,Energy and Chemical Engineering and Deputy Director of Fuels and Energy Technology Institute, Curtin University,Australia. Dr Jiang obtained his PhD from The City University,London in 1988. Before 2010,Dr. Jiang worked at Nanyang Technological University in Singapore. His research interests encompass fuel cells, water electrolysis, supercapacitors,carbon dioxide reduction, single-atom catalysts, and nanostructured functional materials.

    As important as the catalyst, the electrolyte/solvent system is responsible for sufficient reaction elements or compounds at the solid/liquid interface, efficient conductivity in the overall reaction process, and appropriate pH environment toward targeted production, contributing to outstanding catalytic performance. As mentioned in the section of Catalysts, aqueous electrolytes have drawn attentions of numerous researchers to frequently explore and investigate in green NRR process because of environmental friendliness and rich reserves of water resource. However, a tremendous challenge for the use of aqueous electrolyte is low N2solubility and immediate availability of H+leading to poor NRR selectivity. Thus, an effective way to enhance the NRR performance is changing the electrolyte media, especially ionic liquid.Ionic liquid is a typical non-aqueous electrolyte, which only contains trace of water to offer the proton source and effectively suppresses the H2evolution. Meanwhile, certain ionic liquid can provide a high N2solubility under ambient conditions, as much as 20 times higher than aqueous electrolyte. For instance, MacFarlane group has reported ionic liquids with high N2solubility as electrolytes to obtain a high conversion efficiency of 60% for electrocatalytic NRR on a Fe-based catalyst(Figure 3b).[22]A series of other ionic liquids have been also tested for NRR at room temperature and enhanced the reaction selectivity toward NH3production. The NH3yield rates for NRR are quite low in ionic liquids although high conversion efficiency is achieved.In addition,the ionic liquids are non-green and expensive, not in accordance with the green synthesis requirements.

    Shuangyin Wang received his Ph.D. in 2010 from Nanyang Technological University, Singapore. He was a postdoctoral fellow working with Prof. L.Dai (2010–11) and Prof. A.Manthiram (2011–12). He was a Marie Curie Fellow at the University of Manchester with Prof. K. Novoselov (2012–13).He is currently a Professor of the Key Laboratory for Graphene Materials and Devices and College of Chemistry and Chemical Engineering, Hunan University. His research interests are in novel catalysts, defects in various crystals and their application in electrocatalysis.

    4. Investigation of Reaction Conditions

    To further overcome the obstacles of yield rate and conversion efficiency,certain studies have started to control the reaction conditions to change the thermodynamic of NRR.According to Le Chatelier’s principle, the pressurized reaction environment can facilitate the balance toward the NH3production for NRR as a volume-reduced reaction and inhibit the hydrogen evolution owing to a reaction of an increasing volume.[30]In addition, the N2solubility in the electrolytes is directly proportional to the reaction pressure, which can affect the supply and diffusion of N2source. Encouragingly,the recent outstanding research work has revealed that the increased reaction pressure can be beneficial for improving NRR performance,achieving a record-high NH3yield rate of~74.2 μg?h-1?cm-2and a faradaic efficiency of ~20.4%, which exhibit 7.3-and 4.9-fold enhancements than those produced at ambient pressure(Figure 3c).[25]Actually, compared with the improvement of catalysts and electrolytes,the investigation and development of system pressure could be more promising to break the current limitations of NH3yield rate for NRR.

    Figure 1. Schematic diagrams for N2-to-NH3 fixation, including its synthesis methods, current dilemma, and application domain.

    5. Current Dilemma

    Figure 2. Timeline of the key developments in the field of green N2-to-NH3 fixation.

    Figure 3. Short overview of green NRR from three major groups. a) Schematic diagram and NH3 yield rate of electrocatalytic NRR by Ru single. Reproduced from ref. 28 with permission from Elsevier B.V. (Copyright 2019).b) N2 binding energy and NRR performance in the ionic liquids. Adapted from ref. 23 with permission from The Royal Society of Chemistry (Copyright 2017). c) Schematic of the pressurized NRR setup and NH3 yield rate at the different N2 pressures. Panels were reproduced with permission from ref. 25, National Academy of Sciences (Copyright 2020).

    The research field of green NRR still faces various problems in current stage although some achievements have suggested the potential values of this method. The major problem has been discussed as to whether the green N2-to-NH3fixation could be a practical and feasible or fictional and false way. Significant doubt and uncertainty in the NRR research are mainly derived from the various and potential contamination sources.[40]According to the source of contamination, the contamination can be grouped as extra-systematic and intra-systematic contamination.The NH3and labile nitrogen-containing compounds (e.g., NOx)from ambient environment such as the air and rubber gloves are referred to as the extra-systematiccontamination,which can be easily excluded by a closed system and rigorous operation.The intrasystematic contamination present in the catalysts, electrolytes, and feed gas has a significant influence on the true NRR performance.However,such intra-systematic contamination can be identified and eliminated by a series of control experiments and reaction units. Based on the rough calculation, all these contaminations can provide dozens or even hundreds of microgram of NH3production, showing a similar order of magnitude compared with the reported results of green NRR.[41]So far, the NH3yield rate by green NRR process ranges in the value from 1 to 70 μg?h-1?cm-2,which is too low to satisfy the practical production and suppress the interference of contamination. Under the current situation, it is extremely necessary for the researchers to adopt a more cautious attitude to treat all the results of green NRR or contamination. After all, enhancing the accuracy and reliability of the published literatures can be conducive to develop the green synthesis of N2-to-NH3fixation. In addition, the disturbance of contamination only exists in certain conditions and objects and is not of universality. It is confirmed that there is no discernible amount of NH3production detected in many NRR tests by different research groups and reaction methods.In fact,the involved literature reports on the false positives of NRR can be aimed at underlining and eliminating the effect of special contamination. Finally, all of the reported nitrogen-containing contamination can be effectively cleared away via an appropriate reaction unit, a rational experimental process,and a series of useful control experiments to achieve a“genuine” NRR. To improve the current situation of NRR, many of the research groups have proposed several rigorous and complicated protocols on basis of their own experimental routes.[24]Nevertheless, these protocols are too complicated to apply in all of the laboratories,especially for cash-strapped research group, and a complicated experimental process usually involves more experimental steps resulting in the more possibilities to introduce the contamination. In this perspective,we will also describe a facile protocol with a simple reaction unit available for reference purposes in the next section. In a word, the main reason for the difficulty in the NRR or contamination issues is the extremely low NH3yield rate by green methods. Therefore, the top priority of green NRR in future is to increase the yield rate by leaps and bounds.

    Figure 4. Schematic diagrams for increasing the NH3 yield rate, which contributes new opportunities for developing green NRR.

    6. Future Challenge, Strategy, and Prospect

    The major challenges we face in pursuit of practical application of green NRR are the very low NH3production rate with the disturbance of contamination. The low NH3production by green NRR under mild conditions can be attributed to the inherent limitations of reaction process like the rupture of N≡N and low N2solubility.The disturbance of contamination is regarded as the technical puzzles of green NRR in its infancy, which has often happened in creating and exploiting a new reaction or method. When the NH3yield rate still maintains the super low level, the results of NRR not only are difficult to be characterized by the existing NH3detection methods but also are easily affected by the contamination to display the “false positive.” On the other hand, the low NH3production from so-called NRR makes no sense to be reported when the contamination involves in the experiments.

    With respect to the breakthrough of NH3yield rate, there are several points in the NRR system should be considered in priority (see Figure 4). There is no doubt about the significance of the catalysts for NRR, but the routine improvements of the catalysts hardly break through the bottleneck of green NRR. The composite catalysts with different active sites to adsorb, activate, and hydrogenate N2and desorb NH3in series will be the inevitable development direction of NRR, but how to precisely synthesize and characterize the catalysts and testify the tandem and coupling mechanism can be the key points.In comparison with the catalysts, we can pay more attention to the selection and control of methods, electrolytes, and reaction conditions.Current technology for green NRR basically uses a single method,such as photocatalysis or electrocatalysis, which shows a poor NRR efficiency. In fact, utilizing the complementarity between methods, a few efforts on coupling the different methods can effectively enhance the performance of NRR, possibly involving the field enhancement effect and multi-step reaction chains (e.g., electrochemistry-photoelectrochemistry tandem device). On the other hand, developing novel and characteristic electrolytes has drawn the attentions of the researchers. We think that the future electrolytes may be neither single aqueous electrolytes nor ionic liquid electrolytes and can be a kind of mixed electrolytes with multiple phase to integrate the required functions (e.g., the mixture of metal-organic framework (or covalent organic frameworks) to adsorb and dissociate N2and aqueous electrolyte to provide protons). Finally, the reaction conditions like temperature and pressure should be changed to promote the N2-to-NH3fixation in the infancy of green NRR field. As everyone knows, high temperature and pressure can facilitate the NRR toward NH3production. Thus, to dramatically improve the NRR performance, rationally increasing the reaction temperature (e.g., 100 °C) or pressure (e.g.,1 MPa) can be a most fast and effective route, which establishes indepth understanding of green NRR and smart integration of comprehensive theories.

    For the protocol, we firstly emphasize that NRR is carried out in a clean and isolated room at least. The researchers in the NRR process should be careful and patient to well treat all the experimental details. The laboratory rookie for NRR should be accompanied by the master to guide the normative operation. It will be best to usually use a buddy system for NRR, which can enhance the accuracy of the results and reduce the occurrence of false positive. In addition, some facile and advanced experimental conditions and setups can be employed to exclude the disturbance of nitrogen-containing contamination. A series of cells to assemble a gas-tight reaction unit are used to carry out NRR, where each cell can play the different functions including the purification of N2gas, the NRR, the reabsorption of NH3production, and the effect of liquid seal. The rational design of control experiments is vitally important, which can confirm the N source of NH3from N2and check the composition of the catalysts, reaction reagents, and reaction gas to exclude the effect of contamination.

    Exploitation of a sustainable process N2-to-NH3fixation for both agriculture and energy industry can give rise to a massive global impact in the food and energy security and supply field in this century,as done at 100 years ago by Haber–Bosch process. In the face of great social and economic profit, we should keep confidence and strive to fundamental understanding and innovation in the NRR process for NH3production. We enthusiastically recommend the standard operational practices and new reaction modes to pursue such important task. We believe that all positive attempts and comments can make a good contribution to developing the green NRR.

    Acknowledgements

    The authors are grateful to the National Natural Science Foundation of China(51402100,21573066,21825201,22075075,21805080,and U19A2017),the Provincial Natural Science Foundation of Hunan (2016JJ1006, 2020JJ5044, and 2016TP1009),and Australian Research Council(DP180100568 and DP180100731)for financial support of this research.

    Conflict of Interest

    The authors declare no conflict of interest.

    Keywords

    current dilemma, enhanced performances, future challenges, green synthesis,nitrogen-to-ammonia fixation

    Received: March 4, 2021

    Revised: March 22, 2021

    Published online: March 23, 2021

    [1] T. N. Ye, S. W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391.

    [2] I. ?Cori′c, B. Q. Mercado, E. Bill, D. J. Vinyard, P. L. Holland, Nature 2015,526, 96.

    [3] W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48,5658.

    [4] L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am.Chem. Soc. 2019, 141, 10677.

    [5] A. J. Mart′?n, T. Shinagawa, J. P′erez-Ram′?rez, Chem 2019, 5, 263.

    [6] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A.Ozin, Joule 2018, 2, 1055.

    [7] R. F. Service, Science 2018, 361, 120.

    [8] D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M.Yan, Q. Jiang, X. B. Zhang, Adv. Mater. 2017, 29, 1604799.

    [9] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.

    [10] G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am.Chem. Soc. 2017, 139, 9771.

    [11] L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 2020, 10, 6870.

    [12] S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, Z. Wang, Y.Weng, T. Zhang, Angew. Chem. Int. Edit. 2020, 60, 2554.

    [13] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. M. Sankaran, J. N. Renner, Sci.Adv. 2019, 5, eaat5778.

    [14] X. Cui, C. Tang, Q. Zhang, Adv. Energy. Mater. 2016, 8, 1800369.

    [15] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N.Waterhouse, T. Zhang, Adv. Energy. Mater. 2020, 10, 2002199.

    [16] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Z. Qiao, ACS Catal. 2019, 9, 2902.

    [17] L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J. A. Martens,Angew. Chem. Int. Edit. 2020, 59, 23825.

    [18] G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu,H. Wang, Nat. Energy 2020, 5, 605.

    [19] J. Wang, L. Ling, Z. Deng, W. X. Zhang, Sci. Bull. 2020, 65, 926.

    [20] C. J. Pickett, J. Talarmin, Nature 1985, 317, 652.

    [21] T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Edit. 2016, 55, 3942.

    [22] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energy Environ. Sci. 2017,10, 2516.

    [23] J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y. Li, H.Zhou, S. P. Jiang, S. Wang, Chem 2019, 5, 1.

    [24] S. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M.McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr,M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M.Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I.Chorkendorff, Nature 2019, 570, 504.

    [25] H. Zou, W. Rong, S. Wei, Y. Ji, L. Duan, Proc Natl Acad Sci USA 2020,117, 29462.

    [26] J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang,G. C. Schatz, M. G. Kanatzidis, Proc Natl Acad Sci USA 2016, 113, 5530.

    [27] C. Liu, K. K. Sakimoto, B. C. Col′on, P. A. Silver, D. G. Nocera, Proc Natl Acad Sci USA 2017, 114, 6450.

    [28] H. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H.Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5,204.

    [29] F. Wang, L. Mao, H. Xie, J. Mao, Small Struct. 2021, 2, 2000075.

    [30] H. Cheng, P. Cui, F. Wang, L. X. Ding, H. Wang, Angew. Chem. Int. Edit.2019, 58, 15541.

    [31] L. Li, C. Tang, D. Yao, Y. Zheng, S. Z. Qiao, ACS Energy Lett. 2019, 9,2111.

    [32] L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi, C. J. Li, Angew. Chem. Int. Edit.2017, 56, 8701.

    [33] P. Li, Z. Jin, Z. Fang, G. Yu, Angew. Chem. Int. Edit. 2020, 59, 22610.

    [34] J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang,Y. Li, A. Huang, S. P. Jiang, S. Wang, Angew. Chem. Int. Edit. 2019, 58,18604.

    [35] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J.Sun, J. Luo, H. L. Xin, Angew. Chem. Int. Edit. 2020, 60, 345.

    [36] C. Lv, L. Zhong, Y. Yao, D. Liu, Y. Kong, X. Jin, Z. Fang, W. Xu, C. Yan,K. N. Dinh, M. Shao, L. Song, G. Chen, S. Li, Q. Yan, G. Yu, Chem 2020,6, 2690.

    [37] J. Zheng, Y. Lyu, B. Wu, S. Wang, EnergyChem 2020, 2, 100039.

    [38] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.

    [39] C. Tang, Y. Zheng, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Edit. 2021.https://doi.org/10.1002/anie.202101522

    [40] C. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166.

    [41] J. Choi, H.-L. Du, C. K. Nguyen, B. H. R. Suryanto, A. N. Simonov, D. R.MacFarlane, ACS Energy Lett. 2020, 5, 2095.

    国产淫片久久久久久久久| 99热只有精品国产| 国产国拍精品亚洲av在线观看| 床上黄色一级片| 超碰av人人做人人爽久久| 18禁黄网站禁片午夜丰满| 国产成人aa在线观看| 国产人妻一区二区三区在| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 少妇高潮的动态图| 亚洲一区二区三区色噜噜| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 亚洲男人的天堂狠狠| 伊人久久精品亚洲午夜| 国产精品综合久久久久久久免费| 国产一区二区亚洲精品在线观看| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 国产精品1区2区在线观看.| 色噜噜av男人的天堂激情| 免费大片18禁| 老司机福利观看| 搞女人的毛片| 精品福利观看| 日日撸夜夜添| 给我免费播放毛片高清在线观看| 99热精品在线国产| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 久久久久国内视频| 欧美一级a爱片免费观看看| 日韩中文字幕欧美一区二区| 久久中文看片网| 超碰av人人做人人爽久久| 国产精品久久久久久av不卡| 国产精品久久视频播放| 午夜精品久久久久久毛片777| x7x7x7水蜜桃| 搞女人的毛片| 婷婷六月久久综合丁香| 免费观看的影片在线观看| 黄色丝袜av网址大全| 伦理电影大哥的女人| 男人舔女人下体高潮全视频| 成人午夜高清在线视频| 极品教师在线视频| 波野结衣二区三区在线| 97超视频在线观看视频| 男插女下体视频免费在线播放| 99久久成人亚洲精品观看| 国产白丝娇喘喷水9色精品| 亚洲精品一区av在线观看| 露出奶头的视频| 欧美xxxx性猛交bbbb| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 国产精品1区2区在线观看.| 国产伦精品一区二区三区视频9| 久久亚洲真实| 国产精品一区二区免费欧美| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 非洲黑人性xxxx精品又粗又长| 中文字幕av在线有码专区| 成人国产一区最新在线观看| 嫩草影院新地址| 如何舔出高潮| 久久香蕉精品热| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 亚洲欧美日韩卡通动漫| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 国产美女午夜福利| 国产伦在线观看视频一区| 午夜影院日韩av| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 91午夜精品亚洲一区二区三区 | 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| 男女边吃奶边做爰视频| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| 久久久久久大精品| 九九爱精品视频在线观看| 精品不卡国产一区二区三区| 综合色av麻豆| 国产单亲对白刺激| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 国产日本99.免费观看| 久久久久免费精品人妻一区二区| 久久亚洲精品不卡| 最近在线观看免费完整版| a级一级毛片免费在线观看| 日韩欧美 国产精品| 国产一区二区在线av高清观看| 国产美女午夜福利| 99久久九九国产精品国产免费| 久久久久久伊人网av| 给我免费播放毛片高清在线观看| 国产午夜精品论理片| 日韩欧美精品v在线| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 日本黄大片高清| 国产国拍精品亚洲av在线观看| 少妇人妻精品综合一区二区 | 国产69精品久久久久777片| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 日韩亚洲欧美综合| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 日韩一本色道免费dvd| 免费电影在线观看免费观看| 亚洲最大成人av| 99riav亚洲国产免费| 午夜福利成人在线免费观看| 美女被艹到高潮喷水动态| 欧美区成人在线视频| 97碰自拍视频| 久久人人爽人人爽人人片va| 夜夜爽天天搞| 麻豆精品久久久久久蜜桃| 国产精品一区二区免费欧美| 真人做人爱边吃奶动态| 日本成人三级电影网站| 欧美日本亚洲视频在线播放| 美女高潮喷水抽搐中文字幕| 波多野结衣高清作品| 最后的刺客免费高清国语| 99精品久久久久人妻精品| 精品久久久久久久久久久久久| 久久国产精品人妻蜜桃| 欧美日韩国产亚洲二区| 亚洲av二区三区四区| 动漫黄色视频在线观看| 精品国产三级普通话版| 免费大片18禁| 可以在线观看的亚洲视频| 精品久久久久久久久久久久久| 亚洲最大成人中文| 国内少妇人妻偷人精品xxx网站| 国产高清激情床上av| 深爱激情五月婷婷| 热99re8久久精品国产| 国产成人a区在线观看| 九九在线视频观看精品| 草草在线视频免费看| 天美传媒精品一区二区| 国产视频内射| 亚洲欧美日韩高清在线视频| 黄色一级大片看看| 日本免费一区二区三区高清不卡| 免费无遮挡裸体视频| 国产一区二区三区av在线 | 免费一级毛片在线播放高清视频| 国产亚洲精品久久久久久毛片| 一区福利在线观看| 狂野欧美激情性xxxx在线观看| 久久久国产成人免费| 乱码一卡2卡4卡精品| 国语自产精品视频在线第100页| 久久亚洲精品不卡| 欧美色欧美亚洲另类二区| 成人国产综合亚洲| 十八禁网站免费在线| 久久99热6这里只有精品| .国产精品久久| 精品久久久久久久久av| 在线播放国产精品三级| 欧美一区二区精品小视频在线| 在线观看美女被高潮喷水网站| 精品久久久久久久久久久久久| 精品人妻偷拍中文字幕| 男女视频在线观看网站免费| 麻豆一二三区av精品| www日本黄色视频网| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 麻豆成人av在线观看| 淫秽高清视频在线观看| 久久国产精品人妻蜜桃| 精华霜和精华液先用哪个| 给我免费播放毛片高清在线观看| 欧美不卡视频在线免费观看| 国产一区二区激情短视频| 成人亚洲精品av一区二区| 两个人的视频大全免费| 性插视频无遮挡在线免费观看| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 精品福利观看| 一个人免费在线观看电影| 精品久久久久久久久久免费视频| 国产主播在线观看一区二区| 在线看三级毛片| 国产视频一区二区在线看| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 91av网一区二区| 最近在线观看免费完整版| 黄色配什么色好看| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 久久精品久久久久久噜噜老黄 | 久久人人精品亚洲av| 日本一二三区视频观看| 黄色一级大片看看| 偷拍熟女少妇极品色| 亚洲在线自拍视频| 少妇被粗大猛烈的视频| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 性插视频无遮挡在线免费观看| 人人妻人人看人人澡| 久久久久久久久大av| 国产视频内射| 日韩,欧美,国产一区二区三区 | 亚洲国产日韩欧美精品在线观看| 哪里可以看免费的av片| 国产大屁股一区二区在线视频| 国产三级在线视频| 人妻少妇偷人精品九色| 日韩中文字幕欧美一区二区| 久久亚洲真实| 国内精品一区二区在线观看| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕大全电影3| 亚洲自拍偷在线| 亚洲av免费高清在线观看| 内射极品少妇av片p| 少妇的逼好多水| 亚洲国产精品久久男人天堂| 深夜a级毛片| 99在线视频只有这里精品首页| 国产精品一区二区三区四区免费观看 | 亚洲18禁久久av| 91麻豆av在线| 最好的美女福利视频网| 精品人妻熟女av久视频| 日本-黄色视频高清免费观看| 日本a在线网址| 99热精品在线国产| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| avwww免费| 麻豆精品久久久久久蜜桃| 色哟哟哟哟哟哟| 岛国在线免费视频观看| 尾随美女入室| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 他把我摸到了高潮在线观看| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| 国产亚洲欧美98| 国产女主播在线喷水免费视频网站 | 精品欧美国产一区二区三| 成年版毛片免费区| 一区二区三区四区激情视频 | 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app | 精品久久久久久成人av| 3wmmmm亚洲av在线观看| 免费看日本二区| 又粗又爽又猛毛片免费看| 日本一二三区视频观看| 国产熟女欧美一区二区| 亚洲精品久久国产高清桃花| 看免费成人av毛片| 一个人免费在线观看电影| 午夜视频国产福利| 久久精品综合一区二区三区| 日日夜夜操网爽| 亚洲综合色惰| 色尼玛亚洲综合影院| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 在线观看av片永久免费下载| 国产精品嫩草影院av在线观看 | 国产高清有码在线观看视频| 伦精品一区二区三区| 精品久久国产蜜桃| 国产伦精品一区二区三区四那| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 老司机福利观看| 午夜影院日韩av| 国产成人av教育| 欧美日韩黄片免| 色精品久久人妻99蜜桃| 婷婷精品国产亚洲av| 91在线精品国自产拍蜜月| 在线播放无遮挡| 久久久久久国产a免费观看| 亚洲在线观看片| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 两个人的视频大全免费| 成人av在线播放网站| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品合色在线| 欧美在线一区亚洲| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 国产精品亚洲美女久久久| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 国产私拍福利视频在线观看| 日本在线视频免费播放| 亚洲综合色惰| 真实男女啪啪啪动态图| 97超视频在线观看视频| 午夜精品一区二区三区免费看| 美女黄网站色视频| 国产大屁股一区二区在线视频| 黄色女人牲交| 日韩欧美在线二视频| 欧美bdsm另类| 蜜桃亚洲精品一区二区三区| 午夜福利欧美成人| 久久精品国产亚洲av天美| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| av国产免费在线观看| 91精品国产九色| 午夜福利18| 色视频www国产| 精品人妻1区二区| 精品一区二区三区视频在线| 国产高潮美女av| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 99热6这里只有精品| 嫩草影视91久久| 国产成人aa在线观看| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 欧美+亚洲+日韩+国产| 乱系列少妇在线播放| 国产免费一级a男人的天堂| 给我免费播放毛片高清在线观看| 两个人的视频大全免费| 国产成人av教育| 亚洲精品亚洲一区二区| 麻豆av噜噜一区二区三区| 午夜影院日韩av| 性欧美人与动物交配| 国产精品福利在线免费观看| 欧美成人免费av一区二区三区| 婷婷色综合大香蕉| 色尼玛亚洲综合影院| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 婷婷六月久久综合丁香| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 久久久久久久亚洲中文字幕| 色哟哟·www| 真人做人爱边吃奶动态| 18禁在线播放成人免费| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 日本-黄色视频高清免费观看| 成年人黄色毛片网站| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 午夜福利高清视频| 色视频www国产| 成人美女网站在线观看视频| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆 | 亚洲av日韩精品久久久久久密| 午夜免费男女啪啪视频观看 | 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 一卡2卡三卡四卡精品乱码亚洲| 午夜a级毛片| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件 | 看片在线看免费视频| 九九热线精品视视频播放| 色综合婷婷激情| 99九九线精品视频在线观看视频| 黄色配什么色好看| 18禁裸乳无遮挡免费网站照片| 九九在线视频观看精品| 国产真实乱freesex| 日韩精品青青久久久久久| 国产视频内射| 国内揄拍国产精品人妻在线| 国产精品一区二区免费欧美| 欧美一区二区国产精品久久精品| 国产精品99久久久久久久久| 色精品久久人妻99蜜桃| 精品一区二区三区人妻视频| 国产美女午夜福利| 美女大奶头视频| 亚洲久久久久久中文字幕| 一进一出好大好爽视频| 免费观看精品视频网站| 99九九线精品视频在线观看视频| 伦理电影大哥的女人| 国产成人影院久久av| 欧美最新免费一区二区三区| 麻豆国产av国片精品| 久久精品人妻少妇| 免费看日本二区| 婷婷六月久久综合丁香| 成人综合一区亚洲| 日本精品一区二区三区蜜桃| 亚洲男人的天堂狠狠| 22中文网久久字幕| 22中文网久久字幕| 欧美在线一区亚洲| 午夜视频国产福利| 精品久久国产蜜桃| 中文字幕久久专区| eeuss影院久久| 午夜激情欧美在线| 免费在线观看影片大全网站| 久久午夜福利片| 久久久久久久午夜电影| 级片在线观看| 日本 av在线| 成人鲁丝片一二三区免费| 在线观看av片永久免费下载| 真人一进一出gif抽搐免费| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品av在线| 久久久久久久午夜电影| 日韩大尺度精品在线看网址| 日日撸夜夜添| 精品久久久久久久久久久久久| 日本 av在线| 十八禁国产超污无遮挡网站| or卡值多少钱| 网址你懂的国产日韩在线| 午夜免费激情av| 欧美一区二区精品小视频在线| 欧美丝袜亚洲另类 | 免费看av在线观看网站| 草草在线视频免费看| 天堂网av新在线| 中文字幕熟女人妻在线| 少妇高潮的动态图| 麻豆国产av国片精品| 最好的美女福利视频网| 色尼玛亚洲综合影院| 天堂√8在线中文| 天堂av国产一区二区熟女人妻| 欧美日韩乱码在线| 亚洲中文字幕日韩| 国产日本99.免费观看| 日韩精品有码人妻一区| 精品国内亚洲2022精品成人| 免费看美女性在线毛片视频| 女同久久另类99精品国产91| 少妇人妻精品综合一区二区 | 变态另类成人亚洲欧美熟女| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 精品人妻一区二区三区麻豆 | 男女视频在线观看网站免费| 免费在线观看影片大全网站| 成年女人毛片免费观看观看9| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 欧美zozozo另类| 不卡一级毛片| 美女高潮的动态| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 欧美成人性av电影在线观看| 日韩中文字幕欧美一区二区| 桃色一区二区三区在线观看| 久久久久久伊人网av| 午夜视频国产福利| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 极品教师在线视频| 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 最后的刺客免费高清国语| 此物有八面人人有两片| 欧美国产日韩亚洲一区| 欧美一区二区国产精品久久精品| 免费无遮挡裸体视频| 99精品久久久久人妻精品| 一级a爱片免费观看的视频| 九色国产91popny在线| 国产精品爽爽va在线观看网站| h日本视频在线播放| 亚洲国产色片| 一a级毛片在线观看| 大又大粗又爽又黄少妇毛片口| 我要搜黄色片| 999久久久精品免费观看国产| 欧美3d第一页| 欧美黑人欧美精品刺激| 亚洲,欧美,日韩| 国产精华一区二区三区| 国产三级在线视频| 国产精品一区二区免费欧美| 一个人免费在线观看电影| 日本-黄色视频高清免费观看| 成年免费大片在线观看| 美女黄网站色视频| 欧美激情国产日韩精品一区| 美女cb高潮喷水在线观看| 亚洲乱码一区二区免费版| 国产大屁股一区二区在线视频| 国产精品精品国产色婷婷| 在线观看66精品国产| 欧美xxxx性猛交bbbb| 久久99热这里只有精品18| 真人做人爱边吃奶动态| 午夜福利在线观看吧| 波多野结衣高清无吗| 亚洲第一电影网av| 极品教师在线免费播放| 免费观看在线日韩| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区久久| 不卡视频在线观看欧美| 国产精品嫩草影院av在线观看 | 两人在一起打扑克的视频| 久久精品国产清高在天天线| 色5月婷婷丁香| 男插女下体视频免费在线播放| 国产一区二区三区av在线 | 午夜久久久久精精品| 俄罗斯特黄特色一大片| 看免费成人av毛片| videossex国产| 国产精品一区二区性色av| x7x7x7水蜜桃| www日本黄色视频网| 中文字幕人妻熟人妻熟丝袜美| 久久这里只有精品中国| 国产av麻豆久久久久久久| 最近最新免费中文字幕在线| 国产av在哪里看| 国产大屁股一区二区在线视频| 日韩欧美免费精品| 亚洲成人久久性| 亚洲精品乱码久久久v下载方式| a级毛片a级免费在线| 一级黄色大片毛片| 免费看av在线观看网站| 九色成人免费人妻av| h日本视频在线播放| 久久久久性生活片| 亚州av有码| 日韩精品中文字幕看吧| 美女 人体艺术 gogo| 美女黄网站色视频| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 国产精品国产三级国产av玫瑰| 亚洲va日本ⅴa欧美va伊人久久| 乱系列少妇在线播放| 亚洲综合色惰| 免费看光身美女| 亚洲人与动物交配视频| 免费电影在线观看免费观看| 亚洲欧美日韩东京热| 国产麻豆成人av免费视频| 久久中文看片网| 亚洲国产精品合色在线| x7x7x7水蜜桃| 精品午夜福利在线看| 国产精品国产高清国产av| 一级黄片播放器| 亚洲国产欧洲综合997久久,| 国产黄片美女视频| 99热这里只有是精品在线观看| 国产亚洲91精品色在线| 亚洲av二区三区四区| 亚洲一区高清亚洲精品| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频| 日本爱情动作片www.在线观看 | 中文字幕av成人在线电影| 亚洲精品456在线播放app | 国产又黄又爽又无遮挡在线| 少妇的逼好多水| 日本熟妇午夜| 欧美色视频一区免费| 精品一区二区免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 精品人妻熟女av久视频| 在线免费观看的www视频| 欧美日韩瑟瑟在线播放|