• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超圖自動(dòng)學(xué)習(xí)與最優(yōu)聚類框架結(jié)合的波段選擇

    2022-07-04 03:55:02年米雪汪國(guó)強(qiáng)
    關(guān)鍵詞:工程學(xué)院波段哈爾濱

    年米雪,聶 萍,汪國(guó)強(qiáng)

    (黑龍江大學(xué) 電子工程學(xué)院, 哈爾濱 150080)

    HSI processing has attracted considerable attention in recent years. HSI can provide rich band information from different wavelengths, and gets widely used in various research field, such as biological analysis and medical imaging processing. HSI records the reflectance of electromagnetic waves of different wavelengths, and the reflectance of each electromagnetic wave-lengths and the reflectance of each electromagnetic wave are stored in a 2-D image[1-3]. Hence, an HSI is a data cube containing of hundreds of 2-D images. Though significant successes in the field of HSI application have been obtained, how to deal with the large dimensional data is still a challenging problem so high correlation and dependence among them cause huge computational complexity as well as “Hughes”[4-5]. In view of this, the reduction in HSI is deemed to be a very important work. According to the involvement of the labeled and the unlabeled samples, band selection can be divided into supervised, semisupervised, and unsupervised methods[6- 8]. Supervised and semisupervised methods utilize the labeled samples to guide the selection process. However, the acquisitions of the labeled samples are a difficult task, sometimes they are not very practical in real application. With the development of imaging techniques, hyperspectral sensors are capable of deepening the characterization of various objects with hundreds of contiguous bands. For classification, a wealth of spectral bands not only increase the computational and storage burden of training a classifier but may also degrade the classification accuracy. For instance, due to the lack of labeled pixels, the generalization capability of the classifier is limited when high-dimensional bands are fed back. The problem is namely the curse of dimensionality. In addition, many adjacent bands may be heavily redundant and fail to provide additional discriminative information. Reducing the number of bands, that is, dimensionality reduction, is an effective strategy to solve the aforementioned challenges. In the field of HSI, three techniques are implemented including feature extraction (FE)[9], unmixing, and band selection (BS)[10]. Band selection has three advantages over the other two techniques. First, it only obtains a subset of the original bands and does not generate new features, thereby preserving the physical information from the selected bands. Second, the FE and unmixing techniques typically need all test samples to extract new features,endmembers and corresponding abundances during the test phase[11]. Compared with them, band selection only stores the information related to a few selected bands, which greatly reduces the storage and computational burden. Third, band selection can be combined with the feature extraction and unmixing techniques to improve the efficiency and performance of the latter. For HSI, it is a challenging task to select discriminative bands due to the lack of labeled samples and complex noise. To tackle these issues, we present a band selection method with hypergraph autolearning and optimal clustering framework.

    1 Algorithm description

    1.1 Hypergraph autolearning

    We use the method of randomly dividing band space as defined in the following to obtain subspaces. First, the dimension of thevth subspace is determined by the following formula:

    dv=?[(1-σ1)τmin+σ1τmax]B」

    (1)

    wheredvrepresents the number of available bands for thevth subspace, andσ1∈[0,1] is a uniform random variable. Second, the band associated with this subspace is selected one by one, whose index is determined by the following formula:

    ind=?1+σ2B」

    (2)

    where ind represents the index of the selected band, andσ2∈[0,1] is a uniform random variable. This step is repeated untildvbands selects for thevth subspace. The above-mentioned process of generating subspaces is repeated until all bands appear in one of subspaces at least. In this way, we can get a large number of labeled low-dimensional samples.

    3)Hypergraph-based information sharing: First, subspaces reflect different representations of given training samples. In other words, representations from different subspaces have the same structural distribution. Such as if two representations belong to the same class in one of subspaces, they belong to the same class in other subspaces. Second, the correlation between representations is viewed dependent. For example, the representations of the two training samples in one of LVs are highly correlated; however, this may not be true in other subspaces. Although graph-based methods have been proposed to share information between views from the perspective of preserving local manifold structure, they force the representations from different views to share the same structural distribution and correlation.The method not only reduces the flexibility of information sharing but also is susceptible to unfriendly views and conveys unreliable information.

    4)We propose a novel hypergraph-based information sharing model to solve the problems by dividing the information carried by subspaces into structure information and view-dependent information. The structure information, such as the label distribution, can be shared to convey reliable information. The view-dependent information, such as the difference between representations in the spectral dimension, can be used to preserve the specificity of subspaces. Considering that all subspaces have the same label distribution and share the common label matrix Y, we use label information to construct hyperedges so that representations from the same class are located in the same hyperedge. Hence, different subspaces share the same set of hyperedgesε={ε,…,εC} and incident matrixH∈Rn×C. The degreeecof the hyperedgeεc(1≤c≤C) is equal to the number of samples belonging to the classC, and the bands of representations from different subspaces are different. That is, although the representations from the same class belong to the same hyperedge, the compactness between them varies for different subspaces and is viewed dependent, which is utilized to preserve the specificity of subspaces. This can be done by automatically assigning different weights to the same hyperedge related to various subspaces. Hence, from the perspective of preserving manifold structure, a hypergraph autolearning-based information sharing model can be modeled as

    (3)

    (4)

    1.2 OCF

    (5)

    Without loss of generality, we assume that functionDsis supposed to be maximized. So our optimization problem turns to be

    (6)

    After the optimization problem is clarified, the solution will be given in two steps, named as problem decomposition and subproblem combination, respectively. Mappingfhere is still a general form, which means that the solution will be available for arbitrary definition off.

    (7)

    Then, by enumerating all the possible value ofsk-1, (7) can be derived into

    (8)

    By substitutingk=1 into (7), we have

    (9)

    (10)

    It is easy to see that there is

    (11)

    For more details about the framework, refer to the pseudocode shown in Algorithm 1.

    Algorithm1OCF(DsIsMaximized)Input:SetofbandsXL1,mappingandclus-ternumberK.1:forl 1toLdo2:M1l=f(Ml1)3:Q1l←04:endfor5:fork 2toKdo6:forl ktoLdo7:M1l←-∞8:p?←09:fork←2toKdo10:ifMkl

    ContinuedAlgorithm1OCF(DsIsMaxi-mized)11:Mkl←Mk-1p+f(Xlp+1)12:p?←p13:endif14:endfor15:Qkl←p?16:endfor17:endfor18:s?K←L19:fork←K-1toldo20:s?k←Qk+1s?k+121:endforOutput:CBIVcorrespondingtoMKL:s?=(s?1,s?2,…,s?K-1)T

    2 Experiment and analysis

    To verify the feasibility and effectiveness, the proposed method is compared with scalable one-pass self-representation learning for hyperspectral band selection(SOP-SRL)[12], local-view-assisted discriminative band selection with hypergraph autolearning(LvaHAI)[13]and a fast neighborhood grouping method for hyperspectral band selection(FNGBS)[14].

    2.1 Experimental data sets

    The experimental environment is the 10th generation intelligent Intel six core processor with the main frequency of 2.60 Hz, and the memory is 16 GB. All the methods are implemented in MATLAB R2016b. Experimental data sets are Salinas Valley, Pavia University and Pavia Center from three public hyperspectral image data sets.

    1)Pavia University image acquired with the Reflective Optics System Imaging Spectrometer (ROSIS) sensor have 1.3 m spatial resolutions. This data set consists of 610×340 pixels with 9 classes, in which each pixel has 115 spectrum bands ranging from 0.43 to 0.86 μm. After removing 12 noisy bands, the remaining 103 bands are used for BS and classification. Table 1 show the number of training samples and test samples on PaviaU.

    2) Pavia Center image was also obtained by the ROSIS sensor over Pavia, northern Italy. Hence, it has the same spatial and spectral resolutions as the first data set. In this data set, 1 096×715 pixels from nine classes are included. After noisy spectra are removed, the number of available bands is 102 for the experiments. Table 2 show the number of training samples and test samples on Pavia Center

    Table 1 Number of training samples and test samples on PaviaU

    Table 2 Number of training samples and test samples on Pavia Center

    3)Salinas valley image covers an area located in Salinas Valley, CA, USA. This image was obtained by the Airborne Visible/Infrared Imaging Spectrometer, having 3.7 m spatial resolutions. It consists of 517×217 pixels with 16 classes. When the 20 noise bands (108-112, 154-167, and 224) in terms of water absorption are removed, 204 bands are retained for experimental analysis. The number of training samples and test samples on Salinas are showed as Table 3.

    Table 3 Number of training samples and test samples on Salinas

    2.2 Experimental setup

    K-nearest Neighbor (KNN) classification is adopted for experiment. KNN is the simplest classifier

    in machine learning, which determines the sample category according to the category of K similar training data. The optimal K value is selected through cross-verification. Therefore, the K value is finally selected as 5. Additionally, since we mention that these classifiers are supervised,10% samples from each class based on selected bands are randomly chosen as the training set; the remaining 90% samples are used for test. Moreover, in order to reduce the influence of random selection of 10% samples, the algorithm runs ten times to obtain the average results. Because the desired number of bands that should be selected is unknown, we implement experiments in the range of 5~30 bands to explain the influence of different numbers of bands on classification accuracy. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient are used as evaluation indexes for hyperspectral image classification.

    2.3 Analysis of experimental results

    The whole band space is first randomly divided into several subspaces of different dimensions, then, for different subspaces, a robust hinge loss function for isolated pixels regularized by the row-sparsity is adopted to measure the importance of the corresponding bands. A hypergraph model that automatically learns the hyperedge weights preserves the local manifold structure of these projections, to ensure that samples of the same class have a small distance, and a consensus matrix is used to integrate the importance of bands corresponding to different subspaces resulting in the optimal selection of expected bands from a global perspective. Finally, a simple and effective clustering strategy is proposed to select bands,which is fed into a classifier for classification. Classification performance indexes of different number of bands in three data sets are shown in Fig.1~Fig.3. It can be seen that different number of bands have an impact on the performance of classification results. The method proposed in this paper has achieved satisfactory results on OA, AA and Kappa. When the number of bands selected is small, the accuracy of the algorithm is unstable, and when the number of bands is more than 25, the accuracy of the algorithm tends to be stable.

    Fig.1 Relationship between the number of bands and Kappa coefficient

    Fig.2 Relationship between the number of bands and AA

    Fig.3 Relationship between the number of bands and OA

    In order to better verify the effectiveness and superiority of this method, KNN is used as a classifier, and this method is compared with LvaHAI, SOP-SRL and FNGBS which are three latest algorithms. The experimental results are shown in Fig.4, Fig.5 and Fig.6. As can be seen from Fig.4, for Pavia data set, the OA coefficient of this algorithm on KNN classifier is always higher than that of other algorithms. By selecting different number of bands, the algorithm shows excellent classification performance when the number of bands is small. In the case of selecting 10 bands, the OA of this algorithm on Pavia data set is 84.69%, which has exceeded LvaHAI, SOP-SRL and FNGBS. But, as the number of bands continues to increase, when the number of bands increases to 15, the performance does not increase significantly, which may be related to the fact that the subspace contains fewer and fewer bands, so that the current band cannot be judged and updated with more favorable information, indicating that the method is more effective in low dimension.As can be seen from Fig.5, for the Pavia University data set, the OA performance of this algorithm is always higher than that of other algorithms, which further illustrates the superiority of this algorithm. Compared with LvaHAI and FNGBS, this algorithm has better stability. For Salinas data sets, when the number of bands is small, this algorithm performs better than FNGBS algorithm. To sum up, the overall performance of the algorithm is better than other algorithms, with better robustness, even in the case of small samples can also have a good performance.

    Fig.4 OA metrics of the PaviaC dataset

    Fig.5 OA metrics of the PaviaU dataset

    Fig.6 OA metrics of the Salinas dataset

    In order to verify the effectiveness and superiority of the algorithm, 15 bands are taken as examples to classify the ground objects in three data sets respectively, and the classification results are shown in Table 4. As can be seen from Table 2, OA index of this algorithm is higher than other algorithms in Pavia and Pavia University data sets, with an increase of 1.04% and 1.05% respectively compared with LvaHAI algorithm. In the Pavia University data sets, the Kappa index of this algorithm is 4.73% higher than that of SOP-SRL. For Salinas and Pavia University data sets, compared with SOP-SRL and LvaHAI algorithms, AA and Kappa in this paper have certain advantages.

    Table 4 Classification results of different methods on three data sets

    3 Conclusions

    A band selection method with hypergraph autolearning and optimal clustering framework is proposed. The whole band space is randomly divided into several subspaces of different dimensions, each subspace denotes a set of low-dimensional representations of training samples consist of bands associated with it. A hypergraph model that automatically learns the hyperedge weights preserves the local manifold structure of these projections to ensure that samples of the same class have a small distance, and a consensus matrix is used to integrate the importance of bands corresponding to different subspaces. Finally, a simple and effective clustering strategy is proposed to select bands. Through experimental comparison and analysis on three public hyperspectral image data sets, the proposed method has good performance in OA, AA and Kappa, thus verifying the feasibility and effectiveness of the proposed band selection method.

    猜你喜歡
    工程學(xué)院波段哈爾濱
    春日暖陽(yáng)
    我平等地嫉妒每一個(gè)去哈爾濱的人
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    奇妙的哈爾濱之旅
    《老哈爾濱的回憶》國(guó)畫(huà)
    新聞傳播(2016年13期)2016-07-19 10:12:05
    M87的多波段輻射過(guò)程及其能譜擬合
    感受哈爾濱的冬天
    亚洲天堂av无毛| 国产亚洲欧美精品永久| 欧美+日韩+精品| 国产精品久久久久久精品古装| 欧美国产精品一级二级三级 | 色94色欧美一区二区| 丝袜在线中文字幕| 校园人妻丝袜中文字幕| 免费观看在线日韩| a级片在线免费高清观看视频| 精品亚洲成a人片在线观看| 少妇人妻精品综合一区二区| 嘟嘟电影网在线观看| 久久狼人影院| 精品国产一区二区三区久久久樱花| 亚洲美女黄色视频免费看| 精品久久国产蜜桃| 美女福利国产在线| 久久久久久久国产电影| 亚洲性久久影院| 午夜福利在线观看免费完整高清在| 又大又黄又爽视频免费| 校园人妻丝袜中文字幕| 亚洲av综合色区一区| 99久久精品一区二区三区| 久久人妻熟女aⅴ| 少妇被粗大猛烈的视频| 国产黄片视频在线免费观看| 另类精品久久| 十八禁网站网址无遮挡 | 在现免费观看毛片| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 最近中文字幕2019免费版| av免费观看日本| 久久人人爽人人爽人人片va| 热99国产精品久久久久久7| 亚洲精品国产av蜜桃| av专区在线播放| 久久久久久久久久久免费av| 日本色播在线视频| 国产高清有码在线观看视频| 亚洲不卡免费看| 99re6热这里在线精品视频| 亚洲精品乱码久久久久久按摩| 免费不卡的大黄色大毛片视频在线观看| 一二三四中文在线观看免费高清| 蜜桃久久精品国产亚洲av| 看免费成人av毛片| av网站免费在线观看视频| 国产精品无大码| 日韩中文字幕视频在线看片| 三级经典国产精品| 日本vs欧美在线观看视频 | 亚洲电影在线观看av| 欧美日韩亚洲高清精品| 国语对白做爰xxxⅹ性视频网站| 久久久久精品久久久久真实原创| 国产在线免费精品| 国产中年淑女户外野战色| 美女福利国产在线| 国产精品女同一区二区软件| 亚洲一级一片aⅴ在线观看| 一级毛片 在线播放| 国产极品天堂在线| 人妻 亚洲 视频| 久久精品熟女亚洲av麻豆精品| 午夜精品国产一区二区电影| videos熟女内射| 久久狼人影院| av有码第一页| 99视频精品全部免费 在线| 高清视频免费观看一区二区| 内射极品少妇av片p| 人妻 亚洲 视频| 免费少妇av软件| 午夜精品国产一区二区电影| 欧美 日韩 精品 国产| 欧美 亚洲 国产 日韩一| 中文乱码字字幕精品一区二区三区| 一级av片app| 青春草国产在线视频| 少妇精品久久久久久久| 少妇精品久久久久久久| 亚洲人成网站在线播| 国产黄片视频在线免费观看| 日本色播在线视频| 亚洲熟女精品中文字幕| 午夜日本视频在线| 99热这里只有精品一区| 9色porny在线观看| 日本wwww免费看| 亚洲欧洲国产日韩| 色网站视频免费| 亚洲av二区三区四区| 亚洲精品国产av蜜桃| 亚洲国产最新在线播放| 成人影院久久| 又大又黄又爽视频免费| 你懂的网址亚洲精品在线观看| 中文字幕人妻熟人妻熟丝袜美| 少妇高潮的动态图| 欧美日本中文国产一区发布| .国产精品久久| 成人毛片a级毛片在线播放| 成人黄色视频免费在线看| 亚洲自偷自拍三级| 国产在视频线精品| 丰满饥渴人妻一区二区三| 妹子高潮喷水视频| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久久久| 亚洲成人av在线免费| 日本-黄色视频高清免费观看| 成人毛片60女人毛片免费| 日本vs欧美在线观看视频 | 国产成人a∨麻豆精品| 久久韩国三级中文字幕| 国产黄色视频一区二区在线观看| 男人狂女人下面高潮的视频| 精品久久久噜噜| 插逼视频在线观看| 插逼视频在线观看| 国产精品99久久久久久久久| 久久久久久久久久久免费av| 中文欧美无线码| 欧美另类一区| 日韩中文字幕视频在线看片| 精品久久久久久久久亚洲| 极品人妻少妇av视频| 少妇被粗大猛烈的视频| 777米奇影视久久| 少妇裸体淫交视频免费看高清| 中文字幕精品免费在线观看视频 | 99久久人妻综合| 91在线精品国自产拍蜜月| √禁漫天堂资源中文www| 亚洲国产精品专区欧美| 99久久中文字幕三级久久日本| 黑人猛操日本美女一级片| 午夜91福利影院| 99热全是精品| 欧美 日韩 精品 国产| 中文资源天堂在线| 日韩大片免费观看网站| 水蜜桃什么品种好| 国产成人一区二区在线| 91aial.com中文字幕在线观看| 国产综合精华液| 久久久久久人妻| 国产精品一区二区在线观看99| 亚洲怡红院男人天堂| 中文字幕精品免费在线观看视频 | 亚洲av综合色区一区| 大香蕉久久网| 高清av免费在线| 久久99热6这里只有精品| av线在线观看网站| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| 丰满饥渴人妻一区二区三| .国产精品久久| 有码 亚洲区| 另类精品久久| 色94色欧美一区二区| 大片电影免费在线观看免费| 啦啦啦啦在线视频资源| 高清午夜精品一区二区三区| 偷拍熟女少妇极品色| 亚洲精品一区蜜桃| 男女免费视频国产| 天堂8中文在线网| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 成人影院久久| 97在线人人人人妻| 国产高清不卡午夜福利| 成人18禁高潮啪啪吃奶动态图 | 国产爽快片一区二区三区| 99视频精品全部免费 在线| 亚洲av中文av极速乱| 亚洲欧洲精品一区二区精品久久久 | 成人午夜精彩视频在线观看| 日韩av在线免费看完整版不卡| 久久精品久久精品一区二区三区| 日韩电影二区| 久久99精品国语久久久| 国产高清国产精品国产三级| tube8黄色片| 中文天堂在线官网| 久久6这里有精品| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 国产美女午夜福利| 日韩,欧美,国产一区二区三区| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区| 欧美成人精品欧美一级黄| 人人妻人人看人人澡| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 国产av精品麻豆| 国产高清国产精品国产三级| 国产色婷婷99| 少妇人妻久久综合中文| 人妻系列 视频| 插逼视频在线观看| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 七月丁香在线播放| 亚洲成人一二三区av| 精品国产露脸久久av麻豆| 亚洲国产精品一区三区| av专区在线播放| 少妇人妻 视频| 最近2019中文字幕mv第一页| 成年美女黄网站色视频大全免费 | 久久久久网色| 精品少妇黑人巨大在线播放| 蜜臀久久99精品久久宅男| 天堂8中文在线网| 国内精品宾馆在线| 国产精品蜜桃在线观看| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 久久ye,这里只有精品| 久久人人爽人人片av| 免费人成在线观看视频色| 观看av在线不卡| 午夜福利影视在线免费观看| 日韩一区二区三区影片| 国产一区二区三区综合在线观看 | 性色av一级| 久久久久久久久久久免费av| 777米奇影视久久| 国产老妇伦熟女老妇高清| 一个人免费看片子| 免费看光身美女| 亚洲精品亚洲一区二区| 女人精品久久久久毛片| 日韩成人av中文字幕在线观看| 麻豆成人午夜福利视频| 国产精品国产av在线观看| 黄色一级大片看看| 亚洲第一区二区三区不卡| 欧美三级亚洲精品| 亚洲国产日韩一区二区| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 亚洲av成人精品一区久久| 我的老师免费观看完整版| 日日啪夜夜撸| 亚洲av男天堂| 亚洲精品久久午夜乱码| 秋霞在线观看毛片| 老熟女久久久| 亚洲中文av在线| 一级毛片 在线播放| 国模一区二区三区四区视频| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 精华霜和精华液先用哪个| 啦啦啦视频在线资源免费观看| 99热这里只有精品一区| 精品国产一区二区三区久久久樱花| 日韩制服骚丝袜av| 色哟哟·www| 高清av免费在线| 中国国产av一级| 简卡轻食公司| 成年女人在线观看亚洲视频| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 国产日韩欧美视频二区| 免费看光身美女| 日韩大片免费观看网站| 午夜激情福利司机影院| 久久狼人影院| 国产精品无大码| 插阴视频在线观看视频| 如何舔出高潮| 欧美精品国产亚洲| 午夜福利视频精品| 高清毛片免费看| 国产视频首页在线观看| 午夜91福利影院| 免费在线观看成人毛片| 老熟女久久久| 中文字幕人妻丝袜制服| 最黄视频免费看| av天堂久久9| 老熟女久久久| 天天操日日干夜夜撸| 国产视频首页在线观看| 女的被弄到高潮叫床怎么办| 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 最近的中文字幕免费完整| 亚洲国产日韩一区二区| 日韩中文字幕视频在线看片| 亚洲国产毛片av蜜桃av| 国产成人免费观看mmmm| 伊人久久国产一区二区| 最新中文字幕久久久久| 欧美成人精品欧美一级黄| 自拍偷自拍亚洲精品老妇| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 中文字幕精品免费在线观看视频 | 免费观看的影片在线观看| 黄色一级大片看看| 少妇猛男粗大的猛烈进出视频| 国产精品99久久久久久久久| 色视频在线一区二区三区| 两个人免费观看高清视频 | 亚洲,欧美,日韩| 亚洲欧洲精品一区二区精品久久久 | 免费在线观看成人毛片| 日韩人妻高清精品专区| a 毛片基地| 你懂的网址亚洲精品在线观看| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 久久ye,这里只有精品| 国产欧美日韩精品一区二区| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 免费播放大片免费观看视频在线观看| 久久久久久久大尺度免费视频| 久久99精品国语久久久| 一本久久精品| 成人二区视频| 国产白丝娇喘喷水9色精品| 亚洲欧美精品专区久久| 国产综合精华液| 亚洲人与动物交配视频| kizo精华| 亚洲成人av在线免费| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 亚洲精品久久午夜乱码| .国产精品久久| freevideosex欧美| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看 | 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 少妇的逼好多水| 中文字幕亚洲精品专区| 22中文网久久字幕| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 2021少妇久久久久久久久久久| 久久久久久久久久久免费av| 一边亲一边摸免费视频| 蜜桃久久精品国产亚洲av| 日日啪夜夜撸| 国产片特级美女逼逼视频| 99精国产麻豆久久婷婷| 搡老乐熟女国产| 国产免费又黄又爽又色| 日韩精品有码人妻一区| 高清欧美精品videossex| 久久鲁丝午夜福利片| 精品一区二区免费观看| 国产中年淑女户外野战色| 亚洲国产精品一区二区三区在线| 日日摸夜夜添夜夜爱| h视频一区二区三区| 日韩不卡一区二区三区视频在线| 99热这里只有是精品在线观看| 日韩欧美 国产精品| 一区二区三区免费毛片| 一个人看视频在线观看www免费| √禁漫天堂资源中文www| 在线观看人妻少妇| 亚洲美女黄色视频免费看| 五月天丁香电影| 亚洲成人av在线免费| 久久毛片免费看一区二区三区| 国产极品天堂在线| 亚洲va在线va天堂va国产| 欧美激情极品国产一区二区三区 | 高清毛片免费看| 美女主播在线视频| 久久久久网色| 少妇的逼水好多| 18禁裸乳无遮挡动漫免费视频| 亚洲精品日本国产第一区| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 乱系列少妇在线播放| 亚洲av在线观看美女高潮| 欧美精品一区二区大全| 国精品久久久久久国模美| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性xxxx在线观看| 久久99热6这里只有精品| 曰老女人黄片| 成人综合一区亚洲| 精品国产乱码久久久久久小说| 99久久精品国产国产毛片| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片 | 成人影院久久| 一个人免费看片子| 最新中文字幕久久久久| 韩国av在线不卡| .国产精品久久| 一二三四中文在线观看免费高清| 久久久久久久久久成人| 自拍欧美九色日韩亚洲蝌蚪91 | 久久人妻熟女aⅴ| 久久影院123| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 国产中年淑女户外野战色| 中文字幕人妻丝袜制服| av在线播放精品| 一级爰片在线观看| 国产黄频视频在线观看| 99久国产av精品国产电影| 国产白丝娇喘喷水9色精品| 综合色丁香网| 国产av一区二区精品久久| 亚洲精品色激情综合| 亚洲不卡免费看| 久久久亚洲精品成人影院| 国产 精品1| 中文字幕人妻丝袜制服| 久久 成人 亚洲| 精品视频人人做人人爽| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 国产亚洲5aaaaa淫片| 国产 精品1| 久久99一区二区三区| 卡戴珊不雅视频在线播放| 国产伦在线观看视频一区| 十分钟在线观看高清视频www | 久久鲁丝午夜福利片| 成人影院久久| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 9色porny在线观看| 老熟女久久久| 一级,二级,三级黄色视频| 国产精品久久久久成人av| 老司机影院毛片| 国产成人a∨麻豆精品| 日韩电影二区| 美女国产视频在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲精品日韩在线中文字幕| 久久午夜综合久久蜜桃| 黄色欧美视频在线观看| 国产成人免费观看mmmm| 欧美成人午夜免费资源| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 午夜福利,免费看| 亚洲内射少妇av| 极品教师在线视频| 最近中文字幕2019免费版| 亚洲自偷自拍三级| 天堂俺去俺来也www色官网| 欧美精品一区二区大全| 女性被躁到高潮视频| 国产成人午夜福利电影在线观看| 亚洲精品日韩av片在线观看| 亚洲国产精品成人久久小说| 国产在线免费精品| 青春草亚洲视频在线观看| 91精品一卡2卡3卡4卡| 精品一区二区免费观看| 最近的中文字幕免费完整| 全区人妻精品视频| 人人妻人人添人人爽欧美一区卜| 国产高清三级在线| 最新的欧美精品一区二区| 国产综合精华液| 美女中出高潮动态图| 国产成人免费观看mmmm| 久久久久久久国产电影| 日本与韩国留学比较| 国产成人aa在线观看| 国产男女超爽视频在线观看| 91精品伊人久久大香线蕉| 亚洲国产精品999| 成人漫画全彩无遮挡| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| av在线app专区| av免费在线看不卡| 欧美 日韩 精品 国产| 美女主播在线视频| 亚洲av不卡在线观看| 久久人妻熟女aⅴ| 国产精品熟女久久久久浪| 日本黄色日本黄色录像| 伦理电影免费视频| 国产av一区二区精品久久| 一边亲一边摸免费视频| 高清毛片免费看| 亚洲美女黄色视频免费看| 妹子高潮喷水视频| 国产精品一区二区性色av| 亚洲va在线va天堂va国产| 亚洲经典国产精华液单| 六月丁香七月| 大香蕉久久网| 黄色毛片三级朝国网站 | 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 最后的刺客免费高清国语| 国产极品天堂在线| 高清在线视频一区二区三区| 久久久国产一区二区| 内地一区二区视频在线| 精品一区二区免费观看| 欧美日韩亚洲高清精品| 国内少妇人妻偷人精品xxx网站| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 久久综合国产亚洲精品| 日韩一区二区视频免费看| videos熟女内射| av福利片在线观看| 午夜激情久久久久久久| 久久这里有精品视频免费| 国产精品免费大片| 制服丝袜香蕉在线| 亚洲国产色片| 亚洲成人av在线免费| 午夜老司机福利剧场| 久久鲁丝午夜福利片| 国产成人免费无遮挡视频| 国产精品.久久久| 一区二区三区免费毛片| 亚洲成人av在线免费| 午夜激情福利司机影院| 99久久中文字幕三级久久日本| 亚洲性久久影院| 夜夜骑夜夜射夜夜干| 一区二区三区精品91| 国产精品麻豆人妻色哟哟久久| 狂野欧美激情性xxxx在线观看| 欧美区成人在线视频| 国产69精品久久久久777片| 99热网站在线观看| 亚洲,欧美,日韩| 亚洲四区av| 哪个播放器可以免费观看大片| 久久精品熟女亚洲av麻豆精品| 人人妻人人添人人爽欧美一区卜| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 国产精品欧美亚洲77777| 久久女婷五月综合色啪小说| 99热这里只有是精品在线观看| 亚洲av男天堂| 国产探花极品一区二区| 国产 精品1| 亚洲国产av新网站| 国产精品人妻久久久久久| 高清欧美精品videossex| 午夜日本视频在线| 国产日韩欧美亚洲二区| 国产综合精华液| 边亲边吃奶的免费视频| 久久精品国产鲁丝片午夜精品| 777米奇影视久久| 少妇高潮的动态图| 久久人人爽人人片av| 成人国产av品久久久| 国产伦理片在线播放av一区| 大香蕉97超碰在线| 最新中文字幕久久久久| 在线播放无遮挡| 亚洲欧美清纯卡通| 少妇被粗大猛烈的视频| 国产在线男女| 国语对白做爰xxxⅹ性视频网站| 亚洲天堂av无毛| 秋霞伦理黄片| 一区二区三区乱码不卡18| 亚洲美女黄色视频免费看| 国产色婷婷99| 王馨瑶露胸无遮挡在线观看| 亚洲真实伦在线观看| 国产精品麻豆人妻色哟哟久久| 人人澡人人妻人| 亚洲欧美一区二区三区黑人 | 日韩av免费高清视频| 黄色一级大片看看| 欧美xxxx性猛交bbbb| 亚洲av.av天堂| 国产精品99久久久久久久久| av女优亚洲男人天堂| 美女主播在线视频| 日本91视频免费播放| 天美传媒精品一区二区|