邢睿思 王龍 侯傳濤
錫鉛釬料力學(xué)性能及本構(gòu)模型綜述
邢睿思 王龍 侯傳濤
(北京強(qiáng)度環(huán)境研究所 可靠性與環(huán)境工程技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100076)
錫鉛釬料廣泛用于航天儀器設(shè)備封裝結(jié)構(gòu)中,而隨著儀器設(shè)備向功能多樣化和體積小型化發(fā)展,儀器設(shè)備服役功率更大、溫度更高。為了實(shí)現(xiàn)封裝結(jié)構(gòu)精細(xì)化設(shè)計(jì),提升儀器設(shè)備可靠性與耐久性,需要研究錫鉛釬料本構(gòu)關(guān)系,準(zhǔn)確模擬其力學(xué)行為。本文梳理了錫鉛釬料力學(xué)性能相關(guān)試驗(yàn)研究成果,分析錫鉛釬料塑性變形特征。針對(duì)宏觀唯象本構(gòu)模型,回顧了國(guó)內(nèi)外相關(guān)研究結(jié)果,總結(jié)了模型特征和適用范圍,評(píng)價(jià)了不同模型對(duì)錫鉛釬料力學(xué)性能的預(yù)測(cè)效果,為不同載荷環(huán)境下本構(gòu)模型選取提供支撐。
錫鉛釬料;力學(xué)性能;率相關(guān);本構(gòu)模型
釬料合金廣泛用于航天儀器設(shè)備封裝結(jié)構(gòu)中(如焊點(diǎn)、引腳等結(jié)構(gòu)),主要承擔(dān)信號(hào)聯(lián)通與機(jī)械支撐雙重作用,一旦失效可能造成器件甚至系統(tǒng)整體失效,其可靠性成為影響儀器設(shè)備可靠性的關(guān)鍵因素之一。近年來(lái),國(guó)內(nèi)外專(zhuān)家學(xué)者針對(duì)釬料合金機(jī)械性能[1]、微觀結(jié)構(gòu)[2-4]、本構(gòu)模型[5]、壽命預(yù)測(cè)模型[6-10]、仿真分析方法[11]等諸多方面進(jìn)行回顧與總結(jié),歸納了釬料合金可靠性評(píng)價(jià)相關(guān)問(wèn)題的發(fā)展脈絡(luò)與研究進(jìn)展,提出了相關(guān)技術(shù)理論的優(yōu)勢(shì)與不足,為后續(xù)發(fā)展奠定了基礎(chǔ)。Zhang等[1]回顧了合金元素對(duì)Sn-Ag無(wú)鉛釬料機(jī)械性能、蠕變行為以及微觀結(jié)構(gòu)的影響。Mu等[2]梳理了無(wú)鉛釬料合金金屬間化合物(IMCs)的晶體結(jié)構(gòu)、凝固過(guò)程、界面反應(yīng)及其熱機(jī)械性能的相關(guān)研究成果。MohdSalleh等[3]介紹了Ni含量對(duì)無(wú)鉛釬料IMCs及微觀結(jié)構(gòu)的影響,指出在Sn-Cu釬料合金中添加Ni能夠改善IMCs層的性能及微觀結(jié)構(gòu),降低熱循環(huán)下焊點(diǎn)微裂紋出現(xiàn)的可能性。Yao等[5]總結(jié)了無(wú)鉛釬料機(jī)械性能試驗(yàn)測(cè)試、理論分析和數(shù)值仿真相關(guān)研究成果。詳細(xì)介紹了蠕變、單軸拉伸及循環(huán)載荷條件下相應(yīng)的粘塑性本構(gòu)模型理論框架及發(fā)展歷程。同時(shí),梳理了封裝焊點(diǎn)疲勞壽命預(yù)測(cè)模型及掉落沖擊下的數(shù)值仿真分析方法。Lee等[7]歸納了封裝焊點(diǎn)疲勞壽命預(yù)測(cè)模型特點(diǎn)與應(yīng)用場(chǎng)景,介紹了基于應(yīng)力、塑性應(yīng)變、蠕變應(yīng)變、能量和損傷的壽命預(yù)測(cè)模型的發(fā)展歷程。Wong等[9]介紹了蠕變疲勞基本理論,回顧了蠕變疲勞分析方法在電子封裝領(lǐng)域的應(yīng)用。綜上,相關(guān)的綜述類(lèi)文獻(xiàn)從材料和結(jié)構(gòu)的角度出發(fā)較為全面的總結(jié)了釬料合金可靠性評(píng)定工作,對(duì)材料性能與可靠性評(píng)定方法進(jìn)行了較為充分的討論,然而在釬料本構(gòu)模型方面僅僅介紹了相關(guān)理論的基本框架,缺乏對(duì)比分析,沒(méi)有形成本構(gòu)模型預(yù)測(cè)能力的評(píng)價(jià)方法。因此,本文詳細(xì)梳理了釬料合金粘塑性本構(gòu)模型的發(fā)展歷程,分析模型的特點(diǎn)并評(píng)價(jià)不同本構(gòu)模型的預(yù)測(cè)能力,最終針對(duì)錫鉛釬料給出不同本構(gòu)模型相應(yīng)的適用范圍。
航天儀器設(shè)備在服役過(guò)程中既會(huì)面臨較大的振動(dòng)、沖擊等機(jī)械載荷,也會(huì)面臨較長(zhǎng)貯存條件下的溫度循環(huán)及大電流等熱、電載荷。封裝結(jié)構(gòu)處于復(fù)雜、嚴(yán)苛的服役環(huán)境下,對(duì)于一般金屬材料,當(dāng)環(huán)境溫度超過(guò)0.3倍金屬熔點(diǎn)溫度時(shí)(Tm),蠕變對(duì)于材料的影響已經(jīng)不可忽視。釬料合金普遍熔點(diǎn)較低(如63Sn37Pb熔點(diǎn)為456K),在室溫環(huán)境下會(huì)發(fā)生明顯的蠕變變形??紤]到釬料合金在變形過(guò)程中,塑性變形與蠕變同時(shí)產(chǎn)生、相互影響的特性且二者的位錯(cuò)運(yùn)動(dòng)機(jī)制是統(tǒng)一的,采用統(tǒng)一的具有單一內(nèi)變量的本構(gòu)模型更符合物理意義,因此統(tǒng)一粘塑性本構(gòu)模型得到廣泛應(yīng)用。
早在1976年Miller[12]提出了一個(gè)統(tǒng)一粘塑性本構(gòu)模型用以描述金屬材料非彈性變形過(guò)程中的蠕變行為以及短時(shí)塑性現(xiàn)象,并將其命名為MATMOD模型。模型的粘度函數(shù)為雙曲正弦函數(shù)與冪函數(shù)組合的形式,使用單一背應(yīng)力描述隨動(dòng)強(qiáng)化,拖拽應(yīng)力描述各向同性強(qiáng)化。同時(shí),背應(yīng)力與拖拽應(yīng)力均為率相關(guān)函數(shù)且含有恢復(fù)項(xiàng)用以描述初始強(qiáng)化的非線性特征。模型流動(dòng)率方程如式(1)所示
其中,為背應(yīng)力,為拖拽應(yīng)力。’為溫度相關(guān)項(xiàng),其函數(shù)表達(dá)式為
其中,為理想氣體常數(shù),m為金屬熔點(diǎn),、為材料參數(shù)。當(dāng)≥0.6m時(shí),激活能為定值;當(dāng)<0.6m時(shí),激活能隨溫度降低而下降。內(nèi)變量演化方程如式(3)
MATMOD模型能夠預(yù)測(cè)材料短時(shí)塑性變形、長(zhǎng)時(shí)蠕變變形、循環(huán)變形以及靜態(tài)恢復(fù)和動(dòng)態(tài)會(huì)議效應(yīng)。然而模型中各向同性強(qiáng)化率和隨動(dòng)強(qiáng)化率方程相互影響且形式復(fù)雜,不利于理解以及模型參數(shù)確定。基于此,Miller等[13-14]提出了簡(jiǎn)化的MATMOD模型以解決上述問(wèn)題,同時(shí)為了進(jìn)一步提高模型對(duì)于固溶強(qiáng)化材料如鋯合金、鋁合金以及奧氏體不銹鋼的預(yù)測(cè)精度,改進(jìn)的MATMOD模型在各向同性強(qiáng)化率中引入固溶強(qiáng)化項(xiàng)擴(kuò)展模型適用范圍。在隨后的發(fā)展過(guò)程中,包括應(yīng)變軟化等瞬態(tài)現(xiàn)象,溫度、應(yīng)變率、加載方向改變時(shí)載荷歷史效應(yīng)等影響因素,相繼被引入到MATMOD模型中擴(kuò)展模型的預(yù)測(cè)范圍[15-16]。
Anand本構(gòu)模型[24]廣泛地應(yīng)用在電子封裝領(lǐng)域,將形變阻抗與位錯(cuò)密度、固溶體強(qiáng)化及晶粒尺寸等微觀參量進(jìn)行關(guān)聯(lián),用以描述材料應(yīng)力-應(yīng)變關(guān)系。由于Anand本構(gòu)模型數(shù)學(xué)形式簡(jiǎn)單,模型參數(shù)少,且易于確定,因此被嵌入到ANSYS與ABAQUS等有限元軟件中并廣泛地應(yīng)用在電子封裝焊點(diǎn)的力學(xué)分析與壽命預(yù)測(cè)中[25-28]。同時(shí),大量的研究學(xué)者針對(duì)Anand模型不足,考慮環(huán)境溫度影響[29]、動(dòng)態(tài)再結(jié)晶[30]、加工硬化或軟化規(guī)律[31]以及輻照影響[32]等不同影響因素,建立了眾多修正的本構(gòu)模型提升模型預(yù)測(cè)精度,擴(kuò)展模型適用范圍
Krempl和Cernocky認(rèn)為非彈性應(yīng)變率由過(guò)應(yīng)力決定,根據(jù)不銹鋼及鈦合金單軸拉伸試驗(yàn)結(jié)果,以冪函數(shù)的形式定義了流動(dòng)率,發(fā)展了基于過(guò)應(yīng)力的粘塑性理論(VBO模型)[33-36]。模型總應(yīng)變率由彈性應(yīng)變率和塑性應(yīng)變率兩部分組成
典型的蠕變?cè)囼?yàn)可以分為三個(gè)階段:初始蠕變階段、穩(wěn)態(tài)蠕變階段和加速蠕變階段,其中穩(wěn)態(tài)蠕變階段持續(xù)時(shí)間最長(zhǎng),如何刻畫(huà)不同溫度和加載條件下材料穩(wěn)態(tài)蠕變率也成為國(guó)內(nèi)外學(xué)者的關(guān)注重點(diǎn)。Garofalo-Arrhenius模型采用雙曲正弦函數(shù)描述材料穩(wěn)態(tài)蠕變應(yīng)變率,并用于封裝焊點(diǎn)仿真分析與壽命預(yù)測(cè)中[38-41],模型基本形式為
其中,1和2為溫度相關(guān)參數(shù)具體形式為
Wiese等開(kāi)展了無(wú)鉛釬料蠕變變形試驗(yàn)研究并提出了Wiese本構(gòu)模型用描述材料穩(wěn)態(tài)蠕變應(yīng)變率。穩(wěn)態(tài)蠕變應(yīng)變率由兩部分組成,分別用來(lái)描述低應(yīng)力和高應(yīng)力作用下焊點(diǎn)蠕變速率。由于Wise形式簡(jiǎn)單,易于嵌入有限元程序,被廣泛用于分析封裝焊點(diǎn)可靠性及疲勞壽命[42,43]。
Norton蠕變方程作為最簡(jiǎn)單的穩(wěn)態(tài)蠕變模型之一被廣泛應(yīng)用于金屬材料本構(gòu)方程流動(dòng)率中,模型形式簡(jiǎn)單、參數(shù)獲取難度低,因此在釬料合金中應(yīng)用較為常見(jiàn)[44-45]。
Johnson和Cook[46]基于不同應(yīng)變率下扭轉(zhuǎn)試驗(yàn)、霍普金森桿試驗(yàn)和準(zhǔn)靜態(tài)拉伸試驗(yàn)結(jié)果,提出了Johnson-Cook粘塑性本構(gòu)模型,模型應(yīng)力表達(dá)式由應(yīng)變強(qiáng)化項(xiàng)、率相關(guān)項(xiàng)和溫度相關(guān)項(xiàng)三部分構(gòu)成,模型表達(dá)式清晰、物理意義明確且參數(shù)獲得容易被廣泛用于預(yù)測(cè)金屬材料動(dòng)態(tài)載荷下的變形。然而模型不能準(zhǔn)確描述寬泛應(yīng)變率和較大溫度范圍內(nèi)材料的本構(gòu)關(guān)系,針對(duì)模型不足,Maheshwari等[47]修正了應(yīng)變率相關(guān)項(xiàng)和溫度相關(guān)項(xiàng)提升了模型的預(yù)測(cè)精度。Wang等[48]考慮溫度對(duì)應(yīng)變強(qiáng)化和應(yīng)變率強(qiáng)化的影響,建立了修正的J-C本構(gòu)模型。近年來(lái),針對(duì)釬料合金[49,50]、鋁合金[51]以及高熵合金[52]等材料動(dòng)態(tài)載荷下力學(xué)響應(yīng)的不同特征,建立了相應(yīng)的修正的J-C本構(gòu)模型,進(jìn)一步提升模型預(yù)測(cè)能力
其中,m為材料熔點(diǎn)溫度,r為參考溫度一般取室溫。
Zerilli和Armstrong[53]繼J-C模型之后提出了Z-A本構(gòu)方程用以描述材料動(dòng)態(tài)載荷下的塑性變形。模型綜合考慮應(yīng)變硬化影響、應(yīng)變率硬化影響、溫度影響以及晶體結(jié)構(gòu)影響。模型基本形式如下
由于應(yīng)用環(huán)境的相似性,錫鉛釬料力學(xué)性能具有相似性。如圖1所示,313K、0.02s-1應(yīng)變率條件下,63Sn37Pb、60Sn40Pb、40Sn60Pb和10Sn90Pb飽和應(yīng)力相差不超過(guò)10MPa;398K、0.02s-1應(yīng)變率條件下,63Sn37Pb、60Sn40Pb、40Sn60Pb和10Sn90Pb飽和應(yīng)力相差不超過(guò)5MPa,(數(shù)據(jù)引自文獻(xiàn)[57])。
圖1 錫鉛釬料單軸拉伸試驗(yàn)應(yīng)力-應(yīng)變曲線
因此,本文以63Sn37Pb錫鉛釬料為例分析錫鉛釬料力學(xué)性能并為后續(xù)本構(gòu)模型特性分析提供數(shù)據(jù)支撐。
63Sn37Pb錫鉛釬料室溫環(huán)境下不同應(yīng)變率下(3×10-5~1800 s-1)動(dòng)態(tài)拉伸試驗(yàn)和準(zhǔn)靜態(tài)拉伸試驗(yàn)結(jié)果[58-60]如圖2所示。材料呈現(xiàn)典型的率相關(guān)特征,隨著應(yīng)變率的增加材料整體應(yīng)力水平不斷提高。當(dāng)應(yīng)變率低于0.2s-1時(shí),隨著應(yīng)變?cè)黾?,?yīng)力在經(jīng)過(guò)初始階段快速增加后保持恒定;當(dāng)應(yīng)變率介于0.2與200s-1之間時(shí),隨著應(yīng)變?cè)黾?,?yīng)力在初始階段快速增加后進(jìn)入線性增加階段,應(yīng)力增加速率保持恒定;而當(dāng)應(yīng)變率進(jìn)一步提高至1800s-1時(shí),應(yīng)力增加在不同階段皆呈現(xiàn)非線性特征??芍?,材料在低應(yīng)變率條件下存在應(yīng)力飽和值而高應(yīng)變率條件下應(yīng)力持續(xù)增加不存在飽和值。
不同溫度下63Sn37Pb錫鉛釬料拉伸試驗(yàn)結(jié)果如圖3所示,材料在不同溫度下應(yīng)力-應(yīng)變曲線與室溫下呈現(xiàn)相同特征。此外,當(dāng)應(yīng)變率保持恒定時(shí),材料應(yīng)力水平隨溫度上升不斷下降。為了進(jìn)一步分析材料率相關(guān)及溫度相關(guān)特征,取不同試驗(yàn)條件下5%應(yīng)變對(duì)應(yīng)應(yīng)力值,將其定義為飽和應(yīng)力,繪制塑性應(yīng)變率-飽和應(yīng)力與溫度-飽和應(yīng)力曲線,結(jié)果分別如圖3和圖4所示,相關(guān)特征將在后續(xù)章節(jié)中結(jié)合不同本構(gòu)模型詳細(xì)討論。本文所使用63Sn37Pb試驗(yàn)數(shù)據(jù)部分引自文獻(xiàn),其中應(yīng)變率范圍在1200~1800 s-1內(nèi)的試驗(yàn)數(shù)據(jù)引自文獻(xiàn)[58];應(yīng)變率范圍在2×10-3~200 s-1內(nèi)的試驗(yàn)數(shù)據(jù)引自文獻(xiàn)[59-60];應(yīng)變率范圍在3×10-5~2×10-3s-1內(nèi)的試驗(yàn)數(shù)據(jù)通過(guò)錫鉛釬料單軸拉伸試驗(yàn)獲取。
圖2 室溫環(huán)境下63Sn37Pb錫鉛釬料單軸拉伸試驗(yàn)應(yīng)力-應(yīng)變曲線
圖3 不同溫度環(huán)境下63Sn37Pb錫鉛釬料單軸拉伸試驗(yàn)應(yīng)力-應(yīng)變曲線[59]
室溫環(huán)境下飽和應(yīng)力隨塑性應(yīng)變率演化過(guò)程試驗(yàn)結(jié)果與模型預(yù)測(cè)結(jié)果如圖4所示。在雙對(duì)數(shù)坐標(biāo)下,63Sn37Pb錫鉛釬料飽和應(yīng)力-塑性應(yīng)變率曲線,在低應(yīng)變率段(小于0.2 s-1)呈現(xiàn)高度非線性特征,在高應(yīng)變率段(大于0.2 s-1)非線性特征并不明顯反而更接近線性特征。Miller模型流動(dòng)率方程為雙曲正弦函數(shù)與冪函數(shù)組合的形式,既能夠較好的預(yù)測(cè)低應(yīng)變率階段材料飽和應(yīng)力的非線性增長(zhǎng),又能較好預(yù)測(cè)的高應(yīng)變率段飽和應(yīng)力近似線性增長(zhǎng)的特征。此外,隨著塑性應(yīng)變率增加Miller模型呈現(xiàn)明顯的飽和效應(yīng)即隨著塑性應(yīng)變率的增加,飽和應(yīng)力增加十分有限。整體而言,Miller模型能夠較好的描述錫鉛釬料飽和應(yīng)力和塑性應(yīng)變率間的關(guān)系,在所有模型中預(yù)測(cè)效果最好。
B-P模型流動(dòng)率方程采用指數(shù)函數(shù)與冪函數(shù)組合的形式,在低應(yīng)變率段接近線性增長(zhǎng),而在高應(yīng)變率段呈現(xiàn)明顯的非線性增長(zhǎng)特征且隨著塑性應(yīng)變率增加飽和應(yīng)力增長(zhǎng)速度越來(lái)越快,不具有飽和效應(yīng)。B-P模型僅能較好預(yù)測(cè)應(yīng)變率介于1×10-4與1×10-2s-1之間材料的飽和應(yīng)力,整體預(yù)測(cè)效果不佳,可見(jiàn)B-P模型并不適用于較大應(yīng)變率范圍內(nèi)錫鉛釬料率相關(guān)性能的預(yù)測(cè)。
J-C模型流動(dòng)率方程為指數(shù)函數(shù)形式,Kock模型在此基礎(chǔ)上引入粘度指數(shù),兩者在形式上較為接近,同時(shí)模擬曲線也極為接近,且均呈現(xiàn)明顯的飽和效應(yīng)。在低應(yīng)變率段模型過(guò)高的估計(jì)了材料飽和應(yīng)力值,而在高應(yīng)變率段模型能夠較好的預(yù)測(cè)材料飽和應(yīng)力值。
Anand模型和Garofalo模型的流動(dòng)率方程與Miller模型相似,均為指數(shù)函數(shù)與冪函數(shù)組合的形式,然而相比于Miller模型Anand和Garofalo模型飽和效應(yīng)相對(duì)不明顯。模型在低應(yīng)變率段預(yù)測(cè)結(jié)果同樣較為準(zhǔn)確,而在高應(yīng)變率預(yù)測(cè)偏差較大。
Dorn模型流動(dòng)率方程為冪函數(shù)形式,且不具有飽和效應(yīng),僅能較好預(yù)測(cè)應(yīng)變率介于1×10-4與1×10-2s-1之間材料的飽和應(yīng)力。Wiese模型兩項(xiàng)均為冪函數(shù)形式,可以看作兩個(gè)Dorn模型的疊加,模型在低應(yīng)變率段預(yù)測(cè)效果較好而在高應(yīng)變率預(yù)測(cè)偏差極大且不具有飽和效應(yīng)。
Z-A模型流動(dòng)率函數(shù)為指數(shù)函數(shù)與對(duì)數(shù)函數(shù)組合的形式,模型在全應(yīng)變率段線性增加,整體預(yù)測(cè)偏差較大。
SVBO模型同樣為冪函數(shù)形式類(lèi)似,且在全應(yīng)變率段線性增加,整體預(yù)測(cè)偏差較大。VBO模型則呈現(xiàn),明顯的飽和效應(yīng)模型在高應(yīng)變率段能夠較好的預(yù)測(cè)材料飽和應(yīng)力,而當(dāng)應(yīng)變率低于1×10-4模型預(yù)測(cè)偏差較大。
綜上,在低應(yīng)變率段,Miller、Anand、Garofalo和Wiese模型能夠較好的預(yù)測(cè)63Sn37Pb錫鉛釬料飽和應(yīng)力-塑性應(yīng)變率曲線;在高應(yīng)變率段,Miller、J-C、Kocks和VBO模型預(yù)測(cè)結(jié)果較好。然而必須指出模型參數(shù)是根據(jù)室溫環(huán)境下低應(yīng)變率段試驗(yàn)結(jié)果確定的,不能輕易斷定在高應(yīng)變率段預(yù)測(cè)結(jié)果欠佳的模型就不一定適于高應(yīng)變率段錫鉛釬料飽和應(yīng)力的預(yù)測(cè),在實(shí)際選取模型時(shí)還要根據(jù)具體使用場(chǎng)景判定應(yīng)變率范圍重新確定參數(shù)。
環(huán)境溫度作為影響釬料合金力學(xué)性能的重要因素,同樣是統(tǒng)一粘塑性本構(gòu)模型需要重點(diǎn)考慮的對(duì)象。一般情況下,描述溫度影響的方法可以分為兩種:其一是在原有方程基礎(chǔ)上外乘溫度修正項(xiàng),如Dorn模型在流動(dòng)率方程上外乘Arrhenius項(xiàng);其二是構(gòu)建關(guān)鍵材料參數(shù)與環(huán)境溫度的函數(shù),如B-P模型中材料參數(shù)。本文選取Miller、B-P等9個(gè)本構(gòu)模型分析溫度相關(guān)特征,模型流動(dòng)率方程及模型參數(shù)如表2所示。
塑性流動(dòng)率為1×10-3s-1時(shí),飽和應(yīng)力隨溫度演化過(guò)程試驗(yàn)與模型預(yù)測(cè)結(jié)果如圖5所示,在雙對(duì)數(shù)坐標(biāo)下,飽和應(yīng)力隨溫度的降低而不斷增加且增加速率不斷下降,與應(yīng)變率飽和效應(yīng)相似,飽和應(yīng)力隨溫度降低同樣呈現(xiàn)飽和趨勢(shì),本文稱(chēng)其為低溫飽和效應(yīng)。
圖4 塑性應(yīng)變-飽和應(yīng)力試驗(yàn)與本構(gòu)模型預(yù)測(cè)結(jié)果
圖5 溫度-飽和應(yīng)力試驗(yàn)與本構(gòu)模型預(yù)測(cè)結(jié)果
進(jìn)一步分析溫度對(duì)模型率相關(guān)特征的影響,選取環(huán)境溫度在228K~423K之間,應(yīng)變率在1×10-5~1×10-2s-1之間數(shù)據(jù)進(jìn)行分析,不同溫度下飽和應(yīng)力隨塑性應(yīng)變率變化試驗(yàn)結(jié)果與模型擬合曲線如圖6所示,63Sn37Pb錫鉛釬料應(yīng)變率敏感度隨溫度的降低而不斷下降,即隨著溫度降低,飽和應(yīng)力隨應(yīng)變率增加的增加幅度越來(lái)越小。如圖6a) 所示,Miller模型擬合曲線隨溫度降低而逐漸變得平緩,即相同應(yīng)變率下曲線斜率不斷減小。
表2 不同本構(gòu)模型流動(dòng)率方程與模型參數(shù)
模型能夠較好的描述錫鉛釬料應(yīng)變率敏感度隨溫度的變化情況。B-P模型與J-C模型擬合曲線分別如圖6b) 和c) 所示,不同溫度擬合曲線近似相互平行,模型并不能很好刻畫(huà)溫度對(duì)錫鉛釬料應(yīng)變率敏感度的影響且整體預(yù)測(cè)偏差較大。Anand模型、G-A模型與Wiese模型預(yù)測(cè)結(jié)果如圖6 d)、e)、f)所示,模型均能較好的描述錫鉛釬料應(yīng)變率敏感度隨溫度的變化情況,其中Anand模型對(duì)低溫環(huán)境下試驗(yàn)結(jié)果的預(yù)測(cè)精度略低而其他環(huán)境溫度下預(yù)測(cè)精度較高。Wiese模型與對(duì)低溫環(huán)境下試驗(yàn)結(jié)果預(yù)測(cè)偏差較大而其他環(huán)境溫度下預(yù)測(cè)精度較高。G-A模型能夠較好的預(yù)測(cè)低溫環(huán)境下飽和應(yīng)力隨塑性應(yīng)變率變化曲線而高溫環(huán)境下預(yù)測(cè)偏差較大。Dorn模型與Z-A模型預(yù)測(cè)結(jié)果與B-P模型類(lèi)似如圖6g)、h)所示,模型同樣不能刻畫(huà)溫度對(duì)錫鉛釬料應(yīng)變率敏感度的影響且預(yù)測(cè)精度較低。
圖6 塑性應(yīng)變率-飽和應(yīng)力試驗(yàn)與本構(gòu)模型預(yù)測(cè)結(jié)果
根據(jù)前文所介紹的不同統(tǒng)一粘塑性本構(gòu)模型具體特征,可將模型分為三類(lèi):第一類(lèi)本構(gòu)模型以G-A、Wiese和Dorn模型為代表,模型僅能描述蠕變?cè)囼?yàn)中穩(wěn)態(tài)蠕變應(yīng)變率與應(yīng)力間的關(guān)系,因此只能描述單軸拉伸曲線中飽和應(yīng)力值與塑性應(yīng)變率間的關(guān)系,不能描述應(yīng)變強(qiáng)化效應(yīng),即不能刻畫(huà)單軸拉伸應(yīng)力-應(yīng)變曲線中初始強(qiáng)化段;第二類(lèi)本構(gòu)模型以Miller、B-P和Anand模型為代表,模型考慮了溫度相關(guān)、率相關(guān)以及應(yīng)變強(qiáng)化等影響因素且在恒定應(yīng)變率下應(yīng)力增長(zhǎng)存在飽和值與錫鉛釬料在低應(yīng)變率段力學(xué)性能一致;第三類(lèi)本構(gòu)模型以J-C和Z-A模型為代表,模型考慮了溫度相關(guān)、率相關(guān)以及應(yīng)變強(qiáng)化等影響因素且在恒定應(yīng)變率下應(yīng)力增長(zhǎng)不存在飽和值與錫鉛釬料在高應(yīng)變率段力學(xué)性能一致。綜上可知,第二類(lèi)和第三類(lèi)能夠描述材料應(yīng)變強(qiáng)化特征,而第二類(lèi)本構(gòu)模型更適于錫鉛釬料在低應(yīng)變率段力學(xué)性能預(yù)測(cè)而第三類(lèi)錫鉛釬料在高應(yīng)變率段力學(xué)性能預(yù)測(cè)。根據(jù)前文分析結(jié)果可知,在第二類(lèi)本構(gòu)模型中Miller模型和Anand模型能夠較好的描述材料在低應(yīng)變率段率相關(guān)與溫度相關(guān)特征,因此選取其作為進(jìn)一步分析對(duì)象。同時(shí),選取J-C與Z-A模型作為研究對(duì)象,根據(jù)錫鉛釬料在高應(yīng)變率段試驗(yàn)結(jié)果重新確定模型材料參數(shù),進(jìn)一步分析模型預(yù)測(cè)能力。忽略各向同性強(qiáng)化和環(huán)境溫度影響以簡(jiǎn)化模型參數(shù)聚焦應(yīng)變強(qiáng)化特征,Miller模型簡(jiǎn)化后應(yīng)力表達(dá)式為
Anand模型表達(dá)式如式(11)-(13)所示,去除其中Arrhenius項(xiàng)即為不考慮溫度影響的Anand本構(gòu)模型。J-C與Z-A模型分別為
模型參數(shù)如表3所示。
表3 不同本構(gòu)模型參數(shù)
錫鉛釬料單軸拉伸試驗(yàn)及本構(gòu)模型預(yù)測(cè)結(jié)果如圖所示,Anand模型能夠較好的模擬材料初始強(qiáng)化階段非線性特征,而Miller模型在初始強(qiáng)化階段擬合曲線近似線性增長(zhǎng)不能很好的描述材料力學(xué)性能,可見(jiàn)Anand本構(gòu)模型更適于描述錫鉛釬料在低應(yīng)變率段的力學(xué)性能。
高應(yīng)變率段本構(gòu)模型擬合曲線如圖8所示,J-C和Z-A模型均能模擬材料應(yīng)變強(qiáng)化特征,其中J-C模型擬合曲線穩(wěn)定增長(zhǎng)階段斜率隨應(yīng)變率提高而不斷增加,而Z-A模型不同應(yīng)變率下擬合曲線近似平行,結(jié)合文獻(xiàn)中試驗(yàn)結(jié)果如圖3所示,可知J-C模型與錫鉛釬料在高應(yīng)變率段力學(xué)性能更為吻合。
圖7 單軸拉伸試驗(yàn)與本構(gòu)模型預(yù)測(cè)結(jié)果
圖8 J-C與Z-A本構(gòu)模型應(yīng)力-應(yīng)變擬合曲線
本文結(jié)合國(guó)內(nèi)外相關(guān)研究成果以63Sn37Pb為例分析了錫鉛釬料塑性變形特征,梳理了釬料合金統(tǒng)一粘塑性本構(gòu)模型的發(fā)展歷程,總結(jié)并分析不同本構(gòu)模型率相關(guān)、溫度相關(guān)以及應(yīng)變強(qiáng)化特征,得出以下結(jié)論:1)錫鉛釬料呈現(xiàn)典型的率相關(guān)、溫度相關(guān)和應(yīng)變強(qiáng)化特征。材料在低應(yīng)變段材料存在飽和應(yīng)力值。飽和應(yīng)力隨應(yīng)變?cè)黾映尸F(xiàn)非線性增長(zhǎng),且飽和應(yīng)力變化存在應(yīng)變率飽和效應(yīng);飽和應(yīng)力隨溫度降低不斷增加且呈現(xiàn)低溫飽和效應(yīng)。2)Miller、Anand、G-A和Wiese本構(gòu)模型應(yīng)變率飽和效應(yīng)不明顯,但能夠較好的描述材料在低應(yīng)變率段率相關(guān)特征;Miller、J-C、Kocks和VBO本構(gòu)模型呈現(xiàn)明顯應(yīng)變率飽和效應(yīng),能夠較好的描述材料在高應(yīng)變率段率相關(guān)特征。3)Miller、Anand和G-A模型能夠較好的描述材料低溫飽和效應(yīng),B-P、Wiese、Dorn和Z-A不能描述材料低溫飽和效應(yīng)。Miller、Anand、G-A和Wiese模型能夠較好的描述溫度對(duì)材料應(yīng)變率敏感度的影響,其他模型則不能很好的反映材料應(yīng)變率敏感度隨溫度變化情況。4)Anand模型預(yù)測(cè)結(jié)果更接近錫鉛釬料低應(yīng)變率段應(yīng)變強(qiáng)化特征,而J-C模型預(yù)測(cè)結(jié)果更接近錫鉛釬料高應(yīng)變率段應(yīng)變強(qiáng)化特征。
綜上,本文以63Sn37Pb錫鉛釬料為例,分析了不同本構(gòu)模型的特征與預(yù)測(cè)能力,為不同載荷環(huán)境下本構(gòu)模型選取提供支撐,對(duì)航天儀器設(shè)備封裝結(jié)構(gòu)精細(xì)化設(shè)計(jì)提供基礎(chǔ)。
[1] Liang Z, He C W, Guo Y H, et al. Development of Sn Ag-based lead free solders in electronics packaging-ScienceDirect[J]. Microelectronics Reliability, 2012, 52(3): 559-578.
[2] Mu D K, Mcdonald S D, Read J, et al. Critical properties of Cu6Sn5 in electronic devices: Recent progress and a review[J]. Current Opinion in Solid State & Materials Science, 2016, 20(2):55-76.
[3] Salleh M AA M, Sandu I G, Abdullah M M A, et al. Nickel (Ni) Microalloying Additions in Sn-Cu Lead-free Solder. Short Review[J]. IOP Conference Series: Materials Science and Engineering, 2017, 209:012084.
[4] Anderson I E, Choquette S, Reeve K T, et al. Pb-free solders and other joining materials for potential replacement of high-Pb hierarchical solders[C]. IEEE, 2018:1-11.
[5] Yao Y, Long X, Keer L M. A review of recent research on the mechanical behavior of lead-free solders[J]. Applied Mechanics Reviews, 2017, 69(4):040802.
[6] Winslow J W, Silveira C D. A Brief. Selective review of thermal cycling fatigue in eutectic tin-lead solder[J]. 1993.
[7] Lee W W, Nguyen L T, Selvaduray G S. Solder joint fatigue models: review and applicability to chip scale packages[J]. Microelectronics Reliability, 2000, 40(2):231-244.
[8] Tonapi S, Gopakumar S, Borgesen P, et al. Reliability of lead-free solder interconnects-a review[C]. IEEE, 2002.
[9] Wong E H, Van Driel W D, Dasgupta A, et al. Creep fatigue models of solder joints: A critical review[J]. Microelectronics Reliability, 2016, 59:1-12.
[10] Fang L, Bo J, Wei T. Review of board-level solder joint reliability under environmental stress[C]. 2016 Prognostics and System Health Management Conference (PHM-Chengdu). IEEE, 2016.
[11] Massiot G, Munier C. A review of creep fatigue failure models in solder material-simplified use of a continuous damage mechanical approach[C]. International Conference on Thermal & Mechanical Simulation & Experiments in Microelectronics & Microsystems. IEEE, 2004.
[12] Miller A K. An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part I-equations development and analytical procedures[J]. Trans. ASME, Journal of Engineering Materials and Technology, 1976, 98(2):97.
[13] Miller A K, Sherby O D. A simplified phenomenological model for non-elastic deformation: Predictions of pure aluminum behavior and incorporation of solute strengthening effects[J]. Acta Metallurgica, 1978, 26(2):289-304.
[14] Schmidt C G, Miller A K. A unified phenomenological model for non-elastic deformation of type 316 stainless steel, Part II: Fitting and predictive capabilities. 1981.
[15] Lowe T C. Procedures for determining MATMOD-4V material constants[M]. 1993.
[16] Henshall G A, Helling D E, Miller A K. Improvements in the MATMOD equations for modeling solute effects and yield-surface distortion[J]. Unified Constitutive Laws of Plastic Deformation, 1996:153-227.
[17] Bonder S R. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Trans. ASME, Journal of Applied Mechanics, 1975.
[18] Bodner S R.Evolution equations for anisotropic hardening and damage of elastic-viscoplastic materials[J]. 1985.
[19] Moreno V, Jordan E H. Prediction of material thermomechanical response with a unified viscoplastic constitutive model[J]. International Journal of Plasticity, 1986, 2(3):223-245.
[20] Fz A, Na A, Kw B, et al. Constitutive equations for the viscoplastic-damage behaviour of a rubber-modified polymer[J]. European Journal of Mechanics - A/Solids, 2005, 24(1):169-182.
[21] Skipor A F, Harren S V, Botsis J. On the constitutive response of 63/37 Sn/Pb eutectic solder[J]. Journal of Engineering Materials and Technology, 1996, 118(1):1-11.
[22] Chabaud B M, Brock J S, Williams T O. Benchmark analytic solution of the dynamic sphere problem for Bodner–Partom elastic-visco plastic materials[J]. European Journal of Mechanics- A/Solids, 2015, 49(1):114-124.
[23] Klosowski P, Zerdzicki K, Woznica K. Identification of Bodner-Partom model parameters for technical fabrics[J]. Computers & Structures, 2017, 187(JUL.):114-121.
[24] Anand L. Constitutive equations for hot-working of metals[J]. International Journal of Plasticity, 1985, 1(3):213-231.
[25] Wilde J, Becker K, Thoben M, et al. Rate dependent constitutive relations based on Anand model for 92.5Pb5Sn2.5Ag solder[J]. IEEE Transactions on Advanced Packaging, 2002, 23(3):408-414.
[26] Yu D J, Xu C, Gang C, et al. Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment[J]. Materials and Design, 2009, 30(10):4574-4579.
[27] 童軍, 侯傳濤, 榮克林. 溫循載荷作用下電路板焊點(diǎn)的疲勞壽命評(píng)估[J]. 強(qiáng)度與環(huán)境, 2014, 41(4):48-52. [Tong J, Hou C T, Rong K L. Life evaluation of solder joints of circuit boards under thermally cyclic loading[J]. Strength and environment, 2014, 41(4):48-52.]
[28] 景博, 李龍騰, 胡家興. 耦合環(huán)境應(yīng)力下電子設(shè)備焊點(diǎn)退化試驗(yàn)研究[J]. 強(qiáng)度與環(huán)境, 2020, 47(1):55-63. [Jing B, Li L T, Hu J X. Degradation experiment study on solder joint of electronic equipment under coupling stress[J]. Strength and Environment, 2020, 47(1):55-63.]
[29] Xu C, Gang C, Sakane M. Prediction of stress-strain relationship with an improved and constitutive model for lead-free solder Sn-3.5Ag[J]. IEEE Transactions on Components & Packaging Technologies, 2005, 28(1):111-116.
[30] Bianchi J H, Karjalainen L P. Modelling of dynamic and metal dynamic recry stallisation during bar rolling of a medium carbon spring steel[J]. Journal of Materials Processing Technology, 2005, 160(3):267-277.
[31] Puchi-Cabrera E S, JD Guérin, Barbera-Sosa J L, et al . Plausible extension of Anand's model to metals exhibiting dynamic recrystallization and its experimental validation[J]. International Journal of Plasticity, 2018: S0749641917306411.
[32] Wang Y Y, Zhao J J, Zhang C. Viscoplastic equations incorporated into a finite element model to predict deformation behavior of irradiated reduced activation ferritic/martensitic steel[J]. Fusion Engineering and Design, 2017, 118:129-134.
[33] Cernocky E P, Krempl E. A non-linear uniaxial integral constitutive equation incorporating rate effects, creep and relaxation[J]. International Journal of Non-Linear Mechanics, 1979, 14(3):183-203.
[34] Cernocky E P, Krempl E. A theory of viscoplasticity based on infinitesimal total strain[J]. Acta Mechanica, 1980, 36(3-4):263-289.
[35] Krempl E, Mcmahon J J, Yao D. Viscoplasticity based on overstress with a differential growth law for the equilibrium stress[J]. Mechanics of Materials, 1986, 5(1):35-48.
[36] Krempl H E. Extension of the viscoplasticity theory based on overstress (VBO) to capture non-standard rate dependence in solids[J]. International Journal of Plasticity, 2002.
[37] Maciucescu L, Sham T L, Krempl E. Modeling the deformation behavior of a Sn-Pb solder alloy using the simplified viscoplasticity theory based on overstress (VBO)[J]. Asme Journal of Electronic Packaging, 1999, 121(2):92-98.
[38] Darveaux R, Banerji K. Constitutive relations for tin-based solder joints[J]. IEEE Transactions on Components Hybrids & Manufacturing Technology, 1992, 15(6):1013-1024.
[39] Lau J H, Lee S. Modeling and analysis of 96.5Sn-3.5Ag lead-free solder joints of wafer level chip scale package on buildup microvia printed circuit board[J]. Electronics Packaging Manufacturing IEEE Transactions on, 2002, 25(1):51-58.
[40] Tseng S C, Chen R S, Lio C C. Stress analysis of lead-free solders with under bump metallurgy in a wafer level chip scale package[J]. International Journal of Advanced Manufacturing Technology, 2006, 31(1-2):1-9.
[41] Amalu E H, Ekere N N. Modelling evaluation of Garofalo-Arrhenius creep relation forlead-free solder joints in surface mount electronic componentassemblies[J]. Journal of Manufacturing Systems, 2016, 39:9-23.
[42] Wiese S, Roellig M, Wolter K J. Creep of thermally aged SnAgCu-solder joints[J]. IEEE, 2005.
[43] Stoeckl S, Yeo A, Lee C, et al. Impact of fatigue modeling on 2ndlevel joint reliability of BGA packages with SnAgCu solder balls[C]. Electronic Packaging Technology Conference. IEEE, 2005, 2:857-862.
[44] Lee S R, Zhang X. Sensitivity study on material properties for the fatigue life prediction of solder joints under cyclic thermal loading[J]. Circuit World, 1998, 24(3):26-31.
[45] Lau J H, Lee S W, Pan S H, et al. Nonlinear time dependent analysis of Micro via-in-pad substrates for solder bumped flip chip applications[J]. Journal of Electronic Packaging, 2002, 124(3):205211
[46] Cook J. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressure[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[47] Maheshwari A K, Pathak K K, Ramakrishnan N, et al. Modified Johnson-Cook material flow model for hot deformation processing[J]. Journal of Materials Science, 2010, 45(4): 859-864.
[48] Wang B, Liu Z, Song Q, et al. A modified Johnson-Cook model and its application to high-speed machining of 7075-T7451 aluminum alloy[J]. Journal of Manufacturing Science and Engineering, 2019, 141: 1-15.
[49] 秦飛, 安彤, 王旭明. 考慮損傷效應(yīng)的無(wú)鉛焊錫材料的率相關(guān)本構(gòu)模型[J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2013, 39(1):5. [Qin F, An T, Wang X M. Rate-dependent constitutive model for lead-free solders considering damage effect[J]. Journal of Beijing University of Technology, 2013, 39(1):5. ]
[50] Vafaeenezhad H, Seyedein S H, Aboutalebi M R, et al. Incorporating the johnson-cook constitutive model and a soft computational approach for predicting the high-temperature flow behavior of Sn-5Sb solder alloy: a comparative study for processing map development[J]. Journal of Electronic Materials, 2017, 46:467-477.
[51] Zhang Y B, Song Y, Hong X, et al. A modified Johnson-Cook model for 7N01 aluminum alloy under dynamic condition[J]. Journal of Central South University, 2017, 24(011):2550-2555.
[52] Bobbili R, Madhu V. A modified Johnson-Cook model for FeCoNiCr high entropy alloy over a wide range of strain rates[J]. Materials Letters, 2018, 218:103-105.
[53] Zerilli F J, Armstrong R W. Dislocation‐mechanics‐based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
[54] Abed F H, Voyiadjis G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperature[J]. Acta Mechanica, 2005, 175(1-4):1-18.
[55] Jiang L, Li F, Cai J, et al. Comparative investigation on the modified Zerilli–Armstrong model and Arrhenius-type model to predict the elevated-temperature flow behavior of 7050 aluminum alloy[J]. Computational Materials Science, 2013, 71(3):56-65.
[56] Zhang H, Wang G, Kent D, et al. Constitutive modeling of the flow behavior of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models[J]. Materials Science & Engineering A, 2014, 6(12):71-79.
[57] 張莉. 焊錫釬料溫度與應(yīng)變率相關(guān)拉伸性能的本構(gòu)描述[D].天津大學(xué), 2014.[Zhang L. Constitutive description of temperature and strain rate dependent tensile behaviors of solder[D]. Tianjin University, 2014.]
[58] 秦飛, 安彤. 焊錫材料的應(yīng)變率效應(yīng)及其材料模型[J]. 力學(xué)學(xué)報(bào), 2010, 42(3):9. [Qin F, An T. Strain rate effects and material models of solders[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3):9.]
[59] Pang H, Wang Y P, Shi X Q, et al. Sensitivity study of temperature and strain rate dependent properties on solder joint fatigue life[C].Electronics Packaging Technology Conference. IEEE, 1998.
[60] Boyce, Lee B, Neilsen, et al. On the strain rate and temperature-dependent tensile behavior of Eutectic Sn-Pb Solder[J]. Journal of Electronic Packaging, 2010, 133:031009-1.
Review of Mechanical Properties and Constitutive Model of Tin-Lead Solder
XING Rui-si WANG Long HOU Chuan-tao
(Science and Technology on Reliability and Environmental Engineering Laboratory,Beijing Institute of Structure and Environment Engineering,Beijing 100076,China)
Tin-lead solders have been widely used in the package structure of aerospace instruments. With the miniaturization of volume and functional diversification of aerospace instruments, the instruments service in higher temperature and power. In order to satisfy the precise design requirements and improve the reliability and durability of the package structures, the constitutive model of tin-lead solders should be investigated. In this paper, a review was presented on the mechanical properties and macro phenomenal constitutive models of tin-lead solders. Different constitutive models were summarized and discussed in details, which was beneficial for model selection.
Tin-lead solders; Mechanical properties; Rate dependent; Constitutive model
V417+.4
A
1006-3919(2022)02-0015-13
10.19447/j.cnki.11-1773/v.2022.02.003
2021-07-15;
2021-10-22
科技部國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFB3801700);重點(diǎn)實(shí)驗(yàn)室基金(6142911180512)
邢睿思(1991—),男,博士,工程師,研究方向:結(jié)構(gòu)完整性,(100076)北京9200信箱72分箱.