• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SYSTEMS WITH ALMOST BANACH-MEAN EQUICONTINUITY FOR ABELIAN GROUP ACTIONS*

    2022-06-25 02:12:06BinZHU朱斌
    關(guān)鍵詞:朱斌

    Bin ZHU (朱斌)

    College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China

    E-mail:binzhucqu@163.com

    Xiaojun HUANG (黃小軍)?

    College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China

    Chongqing Key Laboratory of Analytic Mathematics and Applications,Chongqing University,Chongqing 401331,China

    E-mail:hxj@cqu.edu.cn

    Yuan LIAN (連媛)

    Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China

    E-mail:Andrea@tynu.edu.cn

    Abstract In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain that the topological entropy of a transitive,almost Banach-mean equicontinuous dynamical system of Abelian group action is zero.As an application of our main result,we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.

    Key words Abelian group action;Banach mean equicontinuous;Banach mean density;independence set

    1 Introduction

    Ergodic theory and topological dynamics are two branches of the modern theory of dynamical systems.The first,though not in its broadest definition,deals with group actions on a probability measure space in a measure-preserving way;the second deals with the action of groups on a compact metric space as groups of homeomorphisms.In this paper,we discuss problems that exist under the framework of countable group action on the compact metric spaces which constitute the fundamental objects of study in the field of dynamical systems.

    It is well known that equicontinuous systems have simple dynamical behaviors.A dynamical system is called equicontinuous if the collection of maps defined by the action of the group is a uniformly equicontinuous family.Equicontinuous systems are dynamically the‘simplest’ones;in fact,there is a complete classification of equicontinuous minimal systems.

    Mean equicontinuity has attracted interest in recent years due to its connections with the ergodic properties of measurable dynamical systems,i.e.dynamical systems equipped with an invariant probability measure.In particular,it has been shown that using a measure theoretic version of mean equicontinuity,one can characterize when a measure-preserving system has a discrete spectrum[12]and when the maximal equicontinuous factor is actually an isomorphism[5,17].

    The concept of mean equicontinuity comes in two variants:one is called Weyl-mean equicontinuity and the other Besicovitch-mean equicontinuity.The concepts of Weyl-and Besi-covitchmean equicontinuity were introduced in[17]for Z-actions.In fact,in this case the notion of Besicovich-mean equicontinuity is immediately seen to be equivalent to the concept of mean Lyapunov-stability,which was already introduced in 1951 by Fomin[9]in the context of Zactions with a discrete spectrum.Later,a first systematic treatment was carried out by Auslander[1].

    Answering an open question in[24],it was proved by Li,Tu and Ye in[17]that every invariant measure of a mean equicontinuous system of integer group action has a discrete spectrum.Localizing the notion of mean equicontinuity,they introduced notions of almost mean equicontinuity and almost Weyl-mean equicontinuity.In[17]they proved that a system with the former property may have positive entropy while a system with the latter property must have zero entropy.

    Concerning abelian group action,mean equicontinuity and its relation to the spectral theory of dynamical systems (in particular,to discrete spectrum) has been studied by various groups[11–13].In the minimal case and as regards the action of the Abelian group,F(xiàn)uhrmann,Grger and Lenz[11]concluded that mean equicontinuity is equivalent to a discrete spectrum with continuous eigenfunctions.

    Inspired by these previous papers,we will discuss the dynamical properties of countable Abelian group action systems.In this paper,we introduce the concept of Banach-mean equicontinuity regarding group action dynamical systems;this is broader than Weyl-and Besicovitchmean equicontinuity,and not limited to the dynamical systems of amenable group actions.Moreover,we prove that the above three concepts are equivalent when the dynamic system is an Abelian group action.Furthermore,we introduce the concept of almost Banach-mean equicontinuity for a countable Abelian group action system and obtain the following main result:

    Theorem 1.1LetGbe a countably in finite Abelian group,letXbe a compact metric space without isolated points,and let the actionGXbe transitive.If the actionGXis almost Banach-mean equicontinuous,then

    As an application of our main result,we prove that the topological entropy of the Banachmean equicontinuous system under the action of an Abelian groups is zero.

    Theorem 1.2LetGbe a countably in finite Abelian group,letXbe a compact metric space,and letGXbe a continuous action.IfGXis Banach-mean equicontinuous,then

    The paper is organized as follows:we begin in Section 2 by recalling some basic notations,definitions and results regarding group action systems.In Section 3 we relate the concept and basic propositions of the amenable group.Section 4 is devoted to the concepts of Banach-,Besicovitch-and Weyl-mean equicontinuity for amenable group actions.In this section we prove that the three concepts are equivalent when the dynamic system is an Abelian group action system.In Section 5 we introduce the concept of the Wely-mean sensitivity of an amenable group action system.In this section,we obtain a dichotomy result related to Wely-mean equicontinuity and Weyl-mean sensitivity for when a dynamical system is transitive.In Section 6,we give the proof of our main results.Finally,in Section 7,we apply our main result to prove the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian group is zero.

    2 Preliminaries

    In this section,we recall some basic notations,definitions,and results.We refer the reader to the textbook[21]for information on group action.

    By referring to an action of the groupGwith identityeon a setX,we mean a mapα:G×X→Xsuch that,writing the first argument as a subscript,αs(αt(x))=αst(x) andαe(x)=xfor allx∈Xands,t∈G.Most of the time we will write the action aswith the image of a pair (s,x) written assx.For a setA?Xands∈Gandx∈,Xwe write

    TheG-orbit of a pointx∈Xis the setGx.

    In this paper,we call a topological spaceXequipped with a continuous actionGXthe group action system,and denote it by (X,G).

    Definition 2.1The actionGXis (topologically) transitive if,for all nonempty open setsU,V?X,there exists ans∈Gsuch thatsU∩V?.The pointx∈Xis transitive ifDenote by Tran (X,G) the set of all transitive points.

    The following proposition in[21]suggested that,whenXis metrizable,transitivity can be thought of as a generic version of minimality in the sense of a Baire category:

    Proposition 2.2([21,Proposition 7.9]) Suppose thatXis metrizable.Then the following are equivalent:

    1.the actionGXis transitive;

    2.there is a dense orbit;

    3.the set of points inXwith dense orbit is a denseGδ.

    Definition 2.3A pointx∈Xis recurrent if for every neighbourhoodUofx,the set{s∈G:sx∈U}is in finite.Denote by Re (X,G) the set of all recurrent points.

    Proposition 2.4([21,Proposition 7.11]) Suppose that the actionGXis transitive and thatXis metrizable and has no isolated points.Then the set of recurrent points inXis a denseGδ.

    Definition 2.5LetXbe a set.A collection{(Ai,1,...,Ai,k):i∈I}ofk-tuples of subsets ofXis said to be independent iffor every nonempty finite setF?Iandω∈{1,...,k}F.

    Definition 2.6LetGXbe an action and A=(A1,...,Ak) a tuple of subsets ofX.We say that a setJ?Gis an independence set for A if the collection{(s-1A1,...,s-1Ak):s∈J}is independent.

    Definition 2.7LetGbe a group.Denote by Fin (G) the family of all non-empty finite subsets ofG.LetE?Gbe a subset ofG.The upper Banach density ofEis defined as

    The lower Banach density ofEis given by BD*(E)=1-BD*(GE).

    Clearly one has BD*(E)≤BD*(E).If BD*(E)=BD*(E),then we say that there exists the Banach density ofEand denote it by BD (E).

    From the above definitions it is easy to see that the Banach upper density has a right shift invariant property.For the sake of completeness,we give a proof here.

    Proposition 2.8BD*(Es)=BD*(E) for anys∈GandEsubset of G.

    ProofBy the symmetry of the pair of setsEsandE,it is sufficient to prove that BD*(Es)≤BD*(E).LetFbe any nonempty finite subset ofG.From the definition of the Banach upper density ofEs,one has

    The arbitrariness ofFimplies that BD*(Es)≤BD*(E).Hence the proposition is obtained.□

    It is not difficult to observe the following result:

    Lemma 2.9LetF,F(xiàn)1,F(xiàn)2be subsets ofGands∈G.Then,

    1.ifF1has a Banach density of one andF1?F2,then so doseF2;

    2.ifFhas a Banach density of one,thenGFis a set of Banach density zero;

    3.ifF1andF2have a Banach density of one,then so doesF1∩F2;

    4.ifFhas a Banach density of one,then so doesFs.

    3 Amenable Group

    This section is devoted to the class of amenable groups.This is a class of groups that plays an important role in many areas of mathematics,such as ergodic theory,harmonic analysis,dynamical systems,geometric group theory,probability theory and statistics.

    LetGbe a group.A mean for G on?∞(G) is a unital positive linear functionσ:?∞(G)→C (unital means thatσ(1)=1).The meanσis left invariant ifσ(sf)=σ(f) for alls∈Gandf∈?∞(G),where (sf)(t)=f(s-1t) for allt∈G.

    Definition 3.1The groupGis said to be amenable if there is a left invariant mean on?∞(G).

    The above definition of a countable amenable groupGis equivalent to the existence of a sequence of finite subsets{Fn}ofGwhich is asymptotically invariant,i.e.,

    wheregFn={gf:f∈Fn},|·|denotes the cardinality of a set,and Δ is the symmetric difference.Such a sequence is called a (left) F?lner sequence.

    The class of amenable groups contains,in particular,all finite groups,all Abelian groups and,more generally,all solvable groups.In this paper,we need the following theorem:

    Theorem 3.2([6,Theorem 4.6.1]) Every Abelian group is amenable.

    Definition 3.3LetFandAbe nonempty finite subsets ofG.We say thatAis (F,ε)-invariant if|s∈A:Fs?A|≥(1-ε)|A|.

    Definition 3.4Letfbe a real-valued function on the set of all finite subsets ofG.We say thatf(A) converges to a limitLasAbecomes more and more invariant if,for everyε>0,there are a finite setF?Gand aδ>0 such that|f(A)-L|<εfor every nonempty (F,δ)-invariant finite setA?G.

    Theorem 3.5([21,Theorem 4.38]) Suppose thatGis amenable.Letφbe a[0,∞)-valued function on the set of all finite subsets ofGsuch that

    1.φ(As)=φ(A) for all finiteA?Gands∈G;

    2.φ(A∪B)≤φ(A)+φ(B) for all finiteA,B?G(subadditivity).Thenφ(A)/|A|converges to a limit asAbecomes more and more invariant.

    LetGXbe an action and A=(A1,...,Ak) a tuple of subsets ofX.It is readily seen that the function

    on the collection of nonempty finite subsets ofGsatisfies the two conditions in Theorem 3.5,so that the quantityφA(F)/|F|converges asFbecomes more and more invariant (Definition 3.4),and the limit is equal to infFφA(F)/|F|whereFranges over all nonempty finite subsets ofG.

    Definition 3.6For a finite tuple A=(A1,...,Ak) of subsets ofX,we define the independence densityI(A) of A to be the above limit.

    Proposition 3.7([21,Proposition 12.7]) Let A=(A1,...,Ak) be a tuple of subsets ofXand letd>0.Then the following are equivalent:

    1.I(A)≥d;

    2.there are a F?lner sequence{Fn}and an independence setJfor A such that

    In what follows,we recall some notions which were introduced in[20].

    LetE?G.The upper asymptotic density ofEwith respect to a F?lner sequence F={Fn}n∈N,denoted by(E),is defined by

    Similarly,the lower asymptotic density ofEwith respect to a F?lner sequence F={Fn}n∈N,denoted by(E),is defined by

    One may say thatEhas an asymptotic densitydF(E) ofEwith respect to a F?lner sequence,wheredF(E) is equal to this common value.

    Let{Fn}n∈Nbe a F?lner sequence of the amenable groupGandE?G.For the upper Banach density ofEplease refer to Definition 2.7.Meanwhile,we have the following formula for the properties of upper Banach density (see[8,Lemma 2.9]):

    As for the relationship between upper Banach density and upper asymptotic density,we have the following formula (see[4,Lemma 3.3]):

    Here the supremum is taken over all F?lner sequences F={Fn}n∈NofG.

    Throughout this paper,Gis a countable amenable group andGXis a continuous action on a compact metric space.We write△k(X) for the diagonal{(x,...,x):x∈X}inXk.

    Definition 3.8We call a tuplex=(x1,...,xk)∈Xkan IE-tuple (or IE-pair ifk=2) if,for every product neighbourhoodU1×...×Ukofx,the tuple (U1,...Uk) has positive independence density.We denote the set of IE-tuples of lengthkby IEk(X,G).

    In this paper,we need the following theorem:

    Theorem 3.9([21,Theorem 12.19]) IE2(X,G)Δ2(X) is nonempty if and only ifhtop(X,G)>0.

    4 Besicovitch-,Weyl-and Banach-Mean Equicontinuity

    In a 2005 study of a dynamical system with bounded complexity (defined by using the mean metrics),Huang,Li,Thouvenot,Xu and Ye[18]introduced a notion called“equicontinuity in the mean”.In 2015,Li,Tu and Ye[17]showed that for a minimal system,the notions of mean equicontinuity and equicontinuity in the mean are equivalent for Z-actions.The concepts of Besicovitch-and Weyl-mean equicontinuity were introduce,in[17]for Z-actions,and in[11]for amenable actions.

    In this paper,we give a notion of Banach-mean equicontinuity on a dynamical system for a group action.For countable amenable group action systems,we show that two concepts,Weyland Banach-mean equicontinuity are equivalent.By the results of[11],we also know that the concepts of Besicovitch-,Weyl-and Banach-mean equicontinuity are the same for Abelian group action systems.

    Definition 4.1LetGbe a discrete group and let Fin (G) be the family of all non-empty finite subsets ofG.LetXbe a compact metric space with metricd.Forx,y∈X,we denote

    We say that the actionGXis Banach-mean equicontinuous or simply B-mean equicontinuous if,for anyε>0,there existsδ>0 such that(x,y)<εwheneverd(x,y)<δforx,y∈X.

    A pointx∈Xis called a Banach-mean equicontinuous point if,for for every∈>0,there existsδ>0 such that,for everyy∈B(x,δ),

    We say that the actionGXis almost Banach-mean equicontinuous if the group action system (X,G) has at least one Banach-mean equicontinuous point.

    By the compactness ofX,it is easy to see that the actionGXis Banach-mean equicontinuous if and only if every point inXis a Banach-mean equicontinuous point.

    Definition 4.2LetGbe an amenable group and F={Fn}n∈Nbe a F?lner sequence ofG.We say that the actionGXis Besicovitch-F-mean equicontinuous if,for everyε>0,there existsδ>0 such that

    for allx,y∈Xwithd(x,y)<δ.The dependence on the F?lner sequence immediately motivates the next definition.We say that the actionGXis Weyl-mean equicontinuous if,for everyε>0,there existsδ>0 such that,for allx,y∈Xwithd(x,y)<δ,we have

    A pointx∈Xis called a Weyl-mean equicontinuous point if,for for every∈>0,there existsδ>0 such that,for everyy∈B(x,δ),

    We say that the actionGXis almost Weyl-mean equicontinuous if the group action system (X,G) has at least one Weyl-mean equicontinuous point.

    Before we can proceed,a few comments are in order.First,note thatFandDare pseudometric.Moreover,as is not hard to see,DisG-invariant;that is,D(gx,gy)=D(x,y) for allx,y∈Xandg∈G.

    In what follows,for the amenable group action system,we will see that the Banach pseudometric(·,·) is equal to the Wely pseudometricD(·,·).

    Theorem 4.3LetGbe a countable amenable group,letXbe a compact metric space and letGXbe a group action.Then

    ProofLetx,y∈X.First,we show that

    Letε>0.From the definition of(x,y),there is a nonempty finite subsetF∈Fin (G) such that

    Let{Fn}n∈Nbe a F?lner sequence ofG.In what follows we will show that

    Takeg∈G.For everyh∈Fn,one has

    Thus it follows that

    We denote thatα(h,t)=d((thg)x,(thg)y) forh∈Fnandt∈F.Then the above inequality can be re-written as

    It is clear that there ist′∈Fsuch that

    Therefore,we get

    which implies that

    Note that

    where diam (X) is the diameter of the compact metric space (X,d).SinceFnis a F?lner sequence,we have that

    From the arbitrariness of the F?lner sequence{Fn},we get

    where the supremum is taken over all F?lner sequences ofG;that is

    The arbitrariness ofεimplies that

    Suppose thatD(x0,y0)(x0,y0) for somex0,y0∈X.In what follows,we will obtain a contradiction.

    We choose two real numbersη1,η2∈R,such that

    Let{Fn}n∈Nbe a F?lner sequence of the amenable groupG.Note thatFnis a nonempty finite subset ofGfor eachn∈N.From the definition of(x0,y0),we have

    Thus,for eachn∈N,there existsgn∈Gsuch that

    SetHn=Fngn.Since F′:={Hn}n∈Nis also a (left) F?lner sequence ofG,we get that

    This is a contradiction.Hence the theorem is proved. □

    From the above Theorems,it follows that the concepts of Banach-and Weyl-mean equicontinuity are equivalent for the amenable group action system.

    Corollary 4.4LetGbe a countable amenable group,letXbe a compact metric space let andGXbe a group action.ThenGXis Banach-mean equicontinuous if and only ifGXis Weyl-mean equicontinuous.

    According to the theorem on the independence of F?lner sequences for an amenable group in[11,Theorem 1.3,p.6],we can get the following result:

    Theorem 4.5LetGbe a countable Abelian group andGXbe a dynamical system.Then the following three statements are equivalent:

    1.GXis Banach-mean equicontinuous;

    2.GXis Weyl-mean equicontinuous;

    3.GXis Besicovitch-F-mean equicontinuous for some left F?lner sequence F.

    LetGbe a countable amenable group and letGXbe a group action.Let E denote the set of all Weyl-mean equicontinuous points of the group action system (X,G).For everyε>0,let

    For the Weyl-mean equicontinuous points we have the following proposition:

    Proposition 4.6LetGbe a countable amenable group,letGXbe a group actionand letε>0.Then Eεis open andsEε/2?Eεfor alls∈G.Moreover,is aGδsubset ofX.

    ProofLetx∈Eε.Chooseδ>0 satisfying the condition from the definition of Eεforx.Fixy∈B(x,δ/2).Ifz,w∈B(y,δ/2),thenz,w∈B(x,δ),soD(z,w)<ε.This shows thatB(x,δ/2)?Eε,and hence,Eεis open.

    Lets∈G.Suppose thatx∈sEε/2,sos-1x∈Eε/2.Chooseδ>0 satisfying the condition from the definition of Eε/2fors-1x;that is,for ally,z∈B(s-1x,δ),one hasD(y,z)<ε/2.By the continuity of the maps-1,there existsη>0 such thatd(s-1y,s-1x)<δfor anyy∈B(x,η).

    Letu,v∈B(x,η).Thens-1u,s-1v∈B(s-1x,δ).

    Let F={Fn}n∈Nbe any F?lner sequence ofG.Note that Fs={Fns}n∈Nis also a (left) F?lner sequence ofG.Thus,we have

    The arbitrariness of the F?lner sequence F indicates thatD(u,v)≤ε/2<ε,which implies thatx∈Eε.Hence we getsEε/2?Eε.

    Ifx∈Xbelongs to all E,then clearly,x∈E.

    Conversely,ifx∈E andm≥1,there existsδ>0 such thatD(x,y)<1/2mfor ally∈B(x,δ).Ify,z∈B(x,δ),then

    Thusx∈.Therefore we get.Hence,the proof is completed. □

    5 Weyl-Mean Sensitivity

    LetXbe a compact metric space.Recall that a subset ofXis called residual if it contains the intersection of a countable collection of dense open sets.By the Baire category theorem,a residual set is also dense inX.

    Definition 5.1LetGXbe a continuous action and letx∈Xbe a point.We say that the pointxis a Weyl-mean sensitive point if there existsδ>0 such that,for everyε>0,there isy∈B(x,ε) satisfying

    For the definition of the functionD(·,·),please refer to (4.1).

    We say that the actionGXis Weyl-mean sensitive if every pointx∈Xis a Weyl-mean sensitive point.

    Proposition 5.2LetGbe a countable amenable group and letXbe a compact metric space.LetGXbe a transitive action.Then,

    1.The set of Weyl-mean equicontinuous points is either empty or residual.If,in addition,the actionGXis almost Weyl-mean equicontinuous,then every transitive point is Weylmean equicontinuous.

    2.If the actionGXis minimal and almost Weyl-mean equicontinuous,then it is Weyl-mean equicontinuous.

    ProofIf Eεis empty for someε>0,then the set of Weyl-mean equicontinuous points E is empty.

    Now,we assume that every Eεis nonempty.Then,for eachε>0,Eεis a nonempty open subset ofX.In what follows we show that every Eεis dense.LetUbe any nonempty open subset ofX.By the transitivity of the actionGX,noting that Eε/2is a nonempty open subset ofXand considering Proposition 4.6,there existss∈Gsuch that ?U∩sEε/2?U∩Eε.

    Hence E is either empty or residual,by the Baire Category Theorem.

    If E is residual,then every Eεis open and dense.Letx∈Xbe a transitive point andε>0.Then there exists some elements∈Gsuch thatsx∈Eε/2,and,by Proposition 4.6,x∈s-1Eε/2?Eε.Thusx∈E. □

    Proposition 5.3LetGbe a countable amenable group and letXbe a compact metric space.LetGXbe a continuous action.If there existsδ>0 such that for every non-empty open subsetUofXthere arex,y∈UsatisfyingD(x,y)>δ,Then the group actionGXis Weyl-mean sensitive.

    ProofSuppose that there existsδ>0 such that for any nonempty open subsetUofX,there areu,v∈UsatisfyingD(u,v)>δ.

    Letx∈Xandε>0.ThenB(x,ε)? andB(x,ε) is open subset ofX.Then there existy,z∈B(x,ε)?XsatisfyingD(y,z)>δ.

    Proposition 5.4LetGbe a countable amenable group and letXbe a compact metric space.Let the actionGXbe transitive.If there exists a transitive point which is a Weyl-mean sensitive point,then the actionGXis Weyl-mean sensitive.

    ProofLetx∈Xbe a Weyl-mean sensitivity point.Thus there existsδ>0 such that,for everyε>0,there isy∈B(x,ε) satisfyingD(x,y)>δ.

    Take a nonempty open subsetUofX.Sincexis a transitive point,there existss∈Gsuch thatsx∈U;that is,x∈s-1U.Furthermore,ass-1Uis open,there is∈>0 such thatB(x,∈)?s-1U;that is,sB(x,∈)?U.By the assumption thatxis a Weyl-mean sensitivity point,there existsy∈B(x,∈) satisfying thatD(x,y)>δ.By the definition ofD(x,y),there is a (left) F?lner sequence F={Fn}n∈NofGsuch thatDF(x,y)>δ.

    Letu=sx,v=sy.Noting that Fs-1={Fns-1}n∈Nis also a (left) F?lner sequence andu,v∈U,then

    Therefore the actionGXis Weyl-mean sensitive,by Proposition 5.3. □

    Theorem 5.5LetGbe a countable amenable group and letXbe a compact metric space.If the actionGXis transitive,then the actionGXis either almost Weyl-mean equicontinuous or Weyl-mean sensitive.

    ProofLetx∈Xbe a transitive point.Ifxis a Weyl-mean sensitivity point,then the actionGXis Weyl-mean sensitive,by Proposition 5.4.Ifxis not a Weyl-mean sensitive point,then it is a Weyl-mean equicontinuous point.Thus the actionGXis almost Weylmean equicontinuous. □

    Corollary 5.6LetGbe a countable amenable group and letXbe a compact metric space.LetGXbe a minimal system.Then the actionGXis either Weyl-mean sensitive or Weyl-mean equicontinuous.

    6 The Proof of Main Theorem

    To prove our main theorem we need some preparation.For the following result,please see[17,Proposition 5.8]:

    Proposition 6.1Let (X,β,μ) be a probability space,and letbe a sequence of measurable sets withμ(Ei)≥a>0 for some constantaand anyi∈N.Then,for anyk≥1 and∈>0,there isN=N(a,k,∈) such that,for any tuple{s1<s2<...<sn}withn≥N,there exist 1≤t1<...<tk≤nwith

    Let (X,d) be a compact metric space,with Borelσ-algebra B.Denote by M (X) the space of Borel probability measures onX.Our main interest is the weak-*topology of space M (X).This is standard (see Pathasarathy[22]).

    Theorem 6.2LetXbe compact metric space and let{μn}be a sequence of probability measures in M (X).Letμ∈M (X).Then the following statements are equivalent:

    1.{μn}converges toμwith weak-*topology in M (X);

    In order to obtain our results,we need the following fundamental fact:

    Fact 6.3Let{an}and{bn}be two sequences of real numbers.Suppose thatexists and thatis finite.Then

    The next result is the well-known Furstenberg corresponding principle[10]of the amenable group version.

    Proposition 6.4LetGbe a countable amenable group and letFbe a subset ofGwith BD*(F)>0.Then for anyk≥1 and∈>0,there isN=N(BD*(F),k,∈) such that,for anyn≥Nand any tuple{s1,s2,...,sn}?G,there exist{1≤t1<t2<...<tk≤n}such that

    ProofLetK={0,1}be a finite alphabet.We define the map Σ:G×KG→KGby Σ(g,x):=x°Rgfor allg∈G andx∈KG.HereRg:G→Gis defined byRg(h):=hgfor allh∈G.Lets∈Gandx∈KG.Thussx(g)=x(gs) for allg∈G.

    Takeξ∈KGsatisfyingξ(s)=0 for alls∈Fandξ(s)=1 for alls∈GF.Denote by

    It is clear thatXis a compact metric space.Meanwhile,it follows that the set{s∈G:ξ(s)=0}=Fhas positive upper Banach density.

    Let{Hn}be a (left) F?lner sequence forG.By a formula of upper Banach density (see[8,Lemma 2.9]),we have that

    Letκ>0.For the above limit equation,there isN1∈N such that,for everyn≥N1,one has that

    Thus,for eachn≥N1,there isgn∈Gsuch that

    SetFn=Hngnfor alln∈N.Then{Fn}n∈Nis a (left) F?lner sequence with

    Define a sequence of probability measures in M (X) as

    whereδsξis Dirac measure at the pointsξinX.

    Since M (X) is a compact metrizable space (see Theorem 6.3 in[22],p43),there exists a subsequence{μnl}l∈Nthat converges to a probability measureνwith weak-*topology in M (X);that is,

    In what follows we will show thatνis aG-invariant probability measure;that is,ν=gνfor eachg∈G.

    Letg∈G.From (3) of Theorem 6.2,it is easy to check that

    ClaimFor any Borel setBofX,one has that

    In fact,since{Fnl}l∈Nis a F?lner sequence ofG,we have that

    Hence the claim is obtained.

    Now we will prove thatgν=ν.LetCbe any closed subset ofX.From (6.3),F(xiàn)act 6.3 and (3) of Theorem 6.2,we have tnat

    Applying (3) of Theorem 6.2 again,we getCombining this with (6.2),we have thatgν=ν.Thusνis aG-invariant measure.

    Denote byethe unit element of the groupG.We defineA(0)={η∈KG:η(e)=0}∩X.Since{η∈KG:η(e)=0}is a clopen subset ofKG,it follows thatA(0) is a clopen subset ofX.Therefore the boundary ofA(0) is a empty set;that is,?(A(0))=?.From (5) of Theorem 6.2,we have that

    Note thatsξ∈A(0)?ξ(s)=0?s∈F,so,by (6.1),we get tnat

    SinceGis countable,we listGasDenote thatA(0) for eachi∈N.Owing toνbeingG-invariant,we deduce that=ν(A(0))=BD*(F) for eachi∈N.

    Letk≥1 and∈>0.From Proposition 6.1,there isN=N(BD*(F),k,∈) such that,for anyn≥Nand any tuple{s1,s2,...,sn}?G,there exist{1≤t1<t2<...<tk≤n}satisfying

    SinceA(0) is a clopen subset ofX,the setBis also clopen inX.Therefore,the boundary ofBis an empty set;that is,?(B)=?.Thus,by equation (3.1) and (5) of Theorem 6.2,we have

    Applying (6.4),(6.5) and (6.6),we get

    Hence the proposition is obtained. □

    Lemma 6.5LetGbe a countably in finite amenable group,letSbe a subset ofGwith BD*(S)>0,and letW?Gbe an in finite set (i.e.|W|=∞).Then there are two distinct elementsl1,l2∈Wsuch that

    as in Proposition 6.4,for the tuple{s1,s2,...,sn}?Wwithn≥N,there exist 1≤t1<t2≤nsuch that

    Letl1=st1andl2=st2.Then the proof is completed. □

    The main result in this section is

    Theorem 6.6LetGbe a countably in finite Abelian group and letXbe a compact metric space without isolated points.Suppose that the actionGXis transitive.Ifhtop(X,G)>0,then the actionGXis Weyl-mean sensitive.

    ProofIt suffices to prove that there exists a transitive pointx0which is not a Weyl-mean equicontinuous point,by Proposition 5.4.

    AsGis Abelian,the groupGis an amenable group.Sincehtop(X,G)>0,and by Theorem 3.9 and Definition 3.8,there exists an IE pair (x1,x2)∈IE2(X,G)△2(X) satisfying,for any nonempty open neighborhoodV1×V2?(x1,x2),that A′.=(V1,V2) has positive independent density,i.e.,

    whereφA′(F)=max{|F∩J|:Jis an independent set for A′},andFranges over all nonempty finite subsets ofG.Sincex1x2,we choose two open setsUi(i=1,2) which are in the neighborhood ofxiwith

    Here A=(U1,U2).Thus,by Proposition 3.7 and (3.1),there exists an independent setJfor A such that

    SinceGXis transitive andXhas no isolated points,by Propositions 2.2 and 2.4,we know that the set Tran (X,G) of points inXwith dense orbit and the set Re (X,G) of recurrent points are both denseGδsets ofX.Applying the Baire category theorem,we have that Tran (X,G)∩Re (X,G) is also a denseGδset ofX,which means that we have Tran (X,G)∩Re (X,G)?.

    Letx0∈Tran (X,G)∩Re (X,G).In what follows,we will show thatx0is not a Weyl-mean equicontinuous point.

    For eachδ>0,denote that

    The cardinality of the setG(x0,B(x0,δ)) is in finite becausex0is a recurrent point.

    Takem0∈N satisfying

    Hereδ0is defined as in (6.7).Recall that,from (4.3),

    The rest of the proof we will establish the following assertion:

    Claimx0E1/m0.

    Suppose that

    Then there existsδ*>0 depending onx0andm0such that

    Recall that BD*(J)>0 for the independent setJfor A.It follows from Lemma 6.5 that there are two distinct elements,

    LetHbe a maximal subset ofwith the property that,for every pairg,s∈Handgs,φ(g)∩φ(s)=?(Zorn’s Lemma guarantees the existence of the setH).Now we claim that

    Indeed,ifφ(g*)∩φ(h0)? for someh0∈H,then,by the above argument,we know thatwhich contradicts the fact thatHence,by (6.13),we deduce that the setH∪{g*}satisfies the property that,for every pairg,s∈H∪{g*}andgs,φ(g)∩φ(s)=?.Noting thatg*Handwe can see that this contradicts the fact that the setHis a maximal subsetwith such a property.

    Hence,we get

    According to Proposition 2.8 and the fact thatGis abelian,one has that

    Combining this with (6.14),it follows that

    Therefore,we have

    Recall thatGis an amenable group asGis abelian and Theorem 3.2.By (3.1),we know that

    where the supremum is taken over all F?lner sequences F={Fn}n∈NofG.Thus,by (6.15) and (6.16),there is a F?lner sequence{Fn}ofGsatisfying

    Therefore,there exists a subsequenceof N such thatmn<mn+1,mn≥nand

    We denote thatJ1=l1Hand thatJ2=l2H.Sincewe immediately haveJ1∪J2?J.Furthermore,we have thatJ1∩J2=?.Indeed,ifJ1∩J2?,then there areh1,h2∈Hsuch thatl1h1=l2h2.Asl1l2,it follows thath1h2.Note that

    Thusφ(h1)∩φ(h2)? andh1h2∈H,which contradicts the definition ofH.Hence,J1∩J2=?.

    Letn∈N.Inequality (6.17) implies thatFmn∩H?.Denote that

    Then we define the mapsψi:Tn→Ji(i=1,2) as follows:

    It is easy to see that

    From the definition of the independent set ofJfor A=(U1,U2)(see Definition 2.5 and Definition 2.6),we get that

    Moreover,for eachg∈Tn,sinceGis abelian,one has that

    Combining this with 6.18 and withGbeing an Abelian group,we get that

    Therefore,we obtain that,for eachg∈Tn,

    Recall thatd(U1,U2)>2δ0.Hence,one has

    Therefore,we have

    Denote that

    Since{Fn}n∈Nis a F?lner sequence of the Abelian groupG,F(xiàn)′is also a F?lner sequence ofG.Inequality (6.22) shows that

    Meanwhile,the above inequality implies thatl1x0l2x0.

    Recall that,from (6.12) and (6.11),

    This contradicts inequality (6.10).Hence we obtain that

    Recall that E denotes the set of all Weyl-mean equicontinuous points of the group action system (X,G).From Proposition 4.6,we know that

    By (6.25) and (6.26),we get

    Therefore,x0is not a Weyl-mean equicontinuous point ofGX.Therefore,x0is a Weylmean sensitive point ofGX.By the assumption thatGXis transitive and Proposition 5.4,we deduce thatGXis Weyl-mean sensitive.

    Hence,the theorem is proved. □

    Proof of Theorem 1.1The proof follows from Theorem 6.6,Theorem 5.5,Theorem 3.2 and Theorem 4.3. □

    7 An Application

    In order to get our result,we need to establish the following concepts and theorems:

    Definition 7.1([21]) By a p.m.p.(probability-measure-preserving) action ofG,we mean an action ofGon a standard probability space (X,μ) by measure-preserving transformations.In this case,we will combine the notation and simply writeG(X,μ).

    Given an actionGXon a compact metric spaceX,we say that a setA?XisGinvariant ifGA=A,which is equivalent toGA?A.When the action is probability-measure preserving andAis a measurable set,we interpretG-invariance to mean thatGA=Amodulo a null set,i.e.,μ(sA△A)=0 for alls∈G.

    Definition 7.2([21]) The actionG(X,μ) is said to be ergodic ifμ(A)=0 or 1 for everyG-invariant measurable setA?X.

    Any dynamical system with an amenable group action admits invariant probability measures and the ergodic measures can be shown to be the extremal points of the set of invariant probability measures (see,for example,the monographs[7,25]).Let M (X),MG(X) and M(X) denote the sets of all Borel probability measures onX,theG-invariant regular Borel probability measures onX,and the ergodic measures in MG(X),respectively.

    Proposition 7.3([21,Proposition 2.5]) For a p.m.p.actionG(X,μ),the following are equivalent:

    1.the action is ergodic;

    2.μ(A)=0 or 1 for every measurable setA?XsatisfyingsA=Afor alls∈G(i.e.,G-invariance in the strict sense);

    3.for all setsA,B?Xof positive measure,there is ans∈Gsuch thatμ(sA∩B)>0.

    Now,we recall the concept of amenable measure entropy (see[16]and[21]).

    LetGbe a amenable group and letG(X,μ) be a p.m.p.action.Let

    be a finite partition ofXand letFbe a nonempty finite subset ofG.Setting PFfor the join

    whereFranges over nonempty finite subsets ofGand

    The entropy of the actionG(X,μ) is

    where P ranges over all finite partitions ofX.

    The support of a measureμ∈M (X),denoted by supp (μ),is the smallest closed subsetCofXsuch thatμ(C)=1(see[23]);that is,

    The following fact is well known:

    Fact 7.4We have that

    Topological entropy is related to measure entropy by the variational principle which asserts that for a continuous map on a compact metric space,the topological entropy equals the supremum of the measure entropy taken over all the invariant probability measures.The following is a statement of the variational principle of the version of the amenable group action that we need in this paper:

    Theorem 7.5([19,Theorem 5.2]) (Variational principle of topological entropy) LetGbe an amenable group and letXbe a compact metric space.Then

    As an application of our main result,we have

    Theorem 7.6LetGbe a countable Abelian group,letXbe a compact metric space,and letGXbe a continuous action.IfGXis Banach-mean equicontinuous,then

    ProofLetμbe an ergodic invariant measure on the actionGX.Denote byX0=supp (μ) the support of the ergodic invariant measureμ.It is clear thatX0is aG-invariant closed subset ofXand thatG(X0,μ) is also ergodic.Moreover,we have thathμ(X,G)=hμ(X0,G).

    In what follows we show thathμ(X0,G)=0.

    LetU,Vbe any pair nonempty open sets ofX0.Thenμ(U)μ(V)>0,on account of supp (μ)=X0and Fact 7.4.Thus there is an elements∈Gsuch thatμ(U∩sV)>0 on account ofG(X0,μ) being ergodic and Proposition 7.3;that is,

    Note thatX0is a compact metric space.Hence the actionGX0is topological transitive.

    Now we divide things into two cases to complete our proof.

    Case 1X0has no isolated points.

    SinceGXis Banach-mean equicontinuous,it is clear thatGX0is also Banach-mean equicontinuous.By Theorem 1.1 and becauseX0has no isolated points,we get that

    Note thatμ|X0is an ergodic measure ofGX0.Then,by Theorem 7.5,we obtain that

    Therefore,we have that

    Recall thatμbe any ergodic invariant measure on the actionGX.Again applying Theorem 7.5,we deduce that

    Case 2X0has isolated points.

    Suppose thatx0∈X0is an isolated point ofX0,so the single point set{x0}is an open set ofX0.LetV?X0be any open set.Since the actionGX0is topological transitive,there iss∈Gsuch thatsx0∈V.This fact implies that the orbit ofx0is dense inX0;that is,

    Note thatx0∈supp (μ) and that the single point set{x0}is an open set.Thus one hasμ({x0})>0.Sinceμ(X0)=1,we deduce that the cardinality of the setGx0is finite (i.e.,|Gx0|<∞).Combining this withwe get that the cardinality of the spaceX0is finite (i.e.,|X0|<∞).By the definition of topological entropy,it is easy to see that

    In what follows,with an argument similar to that in Case 1,we can obtain that

    Hence the theorem is proved. □

    AcknowledgementsThe authors are very grateful to Prof.Hanfeng Li and Prof.Jian Li for their generous sharing of knowledge about the topic.

    猜你喜歡
    朱斌
    憋住的屁到哪去了
    “愚公移山”新篇
    “斗雞眼”
    碎石神掌
    “愚公移山”新篇
    抓人眼球
    呆頭農(nóng)場(chǎng)
    呆頭農(nóng)場(chǎng)
    呆頭農(nóng)場(chǎng)
    呆頭農(nóng)場(chǎng)
    日韩精品青青久久久久久| 99在线视频只有这里精品首页| 97碰自拍视频| 国产午夜精品论理片| 热99re8久久精品国产| 国内毛片毛片毛片毛片毛片| 黄色女人牲交| 成人高潮视频无遮挡免费网站| 亚洲在线自拍视频| 精品人妻熟女av久视频| 国产三级中文精品| 人人妻人人看人人澡| xxxwww97欧美| 国产精品久久久久久人妻精品电影| 国产一区二区在线观看日韩| 国产白丝娇喘喷水9色精品| 色尼玛亚洲综合影院| 狂野欧美白嫩少妇大欣赏| 国内揄拍国产精品人妻在线| 国产乱人视频| 午夜视频国产福利| 午夜精品久久久久久毛片777| 一个人免费在线观看的高清视频| 亚洲精品一区av在线观看| 欧美潮喷喷水| 国产日本99.免费观看| 精品免费久久久久久久清纯| 91久久精品电影网| 99精品在免费线老司机午夜| 国产成人aa在线观看| 嫩草影院精品99| 亚洲国产精品sss在线观看| 国语自产精品视频在线第100页| 免费看日本二区| 嫩草影院入口| 免费高清视频大片| 亚洲乱码一区二区免费版| 婷婷亚洲欧美| 亚洲天堂国产精品一区在线| 精品人妻熟女av久视频| 性色av乱码一区二区三区2| 国产高清激情床上av| 亚洲精品在线美女| 久久精品国产亚洲av涩爱 | 久久人人精品亚洲av| 国产一区二区三区视频了| 成人一区二区视频在线观看| 狂野欧美白嫩少妇大欣赏| 美女xxoo啪啪120秒动态图 | 少妇丰满av| 深夜a级毛片| 国产乱人伦免费视频| 国产大屁股一区二区在线视频| 18禁黄网站禁片午夜丰满| 国产真实乱freesex| or卡值多少钱| 国产亚洲欧美在线一区二区| 日韩欧美一区二区三区在线观看| 国产精品影院久久| av福利片在线观看| 免费观看的影片在线观看| 91麻豆精品激情在线观看国产| 久久国产精品影院| 无人区码免费观看不卡| 最后的刺客免费高清国语| 久久久久久久精品吃奶| 一进一出好大好爽视频| 一a级毛片在线观看| 精品一区二区三区人妻视频| 亚洲欧美日韩东京热| bbb黄色大片| 亚洲成av人片免费观看| 桃红色精品国产亚洲av| 成人性生交大片免费视频hd| 我要看日韩黄色一级片| 精品人妻1区二区| 757午夜福利合集在线观看| 亚洲人成伊人成综合网2020| 十八禁人妻一区二区| 黄片小视频在线播放| av福利片在线观看| 欧美性猛交黑人性爽| 一进一出好大好爽视频| 丰满的人妻完整版| 亚洲国产高清在线一区二区三| 高清在线国产一区| 99热这里只有是精品在线观看 | 校园春色视频在线观看| 久久九九热精品免费| 18美女黄网站色大片免费观看| 99国产综合亚洲精品| 亚洲性夜色夜夜综合| 90打野战视频偷拍视频| 国产三级黄色录像| 久久精品夜夜夜夜夜久久蜜豆| 一个人看视频在线观看www免费| 真实男女啪啪啪动态图| 国产精品嫩草影院av在线观看 | 97超级碰碰碰精品色视频在线观看| or卡值多少钱| 亚州av有码| 少妇被粗大猛烈的视频| 中文字幕av成人在线电影| 熟女电影av网| 黄色一级大片看看| 淫妇啪啪啪对白视频| 亚洲欧美精品综合久久99| 精品久久久久久久末码| 俄罗斯特黄特色一大片| 久久久成人免费电影| av中文乱码字幕在线| 午夜福利在线观看免费完整高清在 | 成人高潮视频无遮挡免费网站| h日本视频在线播放| 成熟少妇高潮喷水视频| 久久久国产成人免费| 国产成人福利小说| 午夜福利18| 麻豆一二三区av精品| 夜夜躁狠狠躁天天躁| 国产成人啪精品午夜网站| 51国产日韩欧美| 女人十人毛片免费观看3o分钟| 国产精品99久久久久久久久| 中文字幕高清在线视频| 精品人妻一区二区三区麻豆 | 少妇的逼水好多| 亚洲人成网站高清观看| 国产精品人妻久久久久久| 99精品在免费线老司机午夜| 久久精品国产99精品国产亚洲性色| 久久午夜福利片| 少妇裸体淫交视频免费看高清| a级毛片a级免费在线| 日本 av在线| 男人舔女人下体高潮全视频| 亚洲美女黄片视频| 久久婷婷人人爽人人干人人爱| 人人妻人人澡欧美一区二区| 国产三级中文精品| 婷婷精品国产亚洲av在线| 国产高清视频在线播放一区| 国语自产精品视频在线第100页| 在线播放无遮挡| 人妻丰满熟妇av一区二区三区| 极品教师在线视频| 中文字幕精品亚洲无线码一区| 一本久久中文字幕| 亚洲精华国产精华精| 90打野战视频偷拍视频| av欧美777| 午夜福利欧美成人| 国产蜜桃级精品一区二区三区| 亚洲内射少妇av| 成人午夜高清在线视频| 亚洲熟妇熟女久久| 久久久久久久久大av| 久久99热这里只有精品18| 久久国产乱子伦精品免费另类| 国产三级中文精品| 少妇高潮的动态图| 成人永久免费在线观看视频| 免费一级毛片在线播放高清视频| 观看免费一级毛片| 一级av片app| 老司机午夜福利在线观看视频| 51国产日韩欧美| 欧美黄色淫秽网站| 日本三级黄在线观看| 18禁裸乳无遮挡免费网站照片| 无人区码免费观看不卡| 成熟少妇高潮喷水视频| 午夜激情欧美在线| 成人性生交大片免费视频hd| 女人被狂操c到高潮| 亚洲美女搞黄在线观看 | 久久国产精品影院| 精品福利观看| av专区在线播放| 99久久精品一区二区三区| 乱码一卡2卡4卡精品| 国产在视频线在精品| x7x7x7水蜜桃| 久久久久九九精品影院| 18禁裸乳无遮挡免费网站照片| 久久久国产成人免费| 精品不卡国产一区二区三区| 亚洲人成网站在线播放欧美日韩| 成人国产一区最新在线观看| 欧美最新免费一区二区三区 | 变态另类成人亚洲欧美熟女| 欧美日韩国产亚洲二区| 久久人妻av系列| 中文字幕人妻熟人妻熟丝袜美| 欧美3d第一页| 色综合欧美亚洲国产小说| 别揉我奶头 嗯啊视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人欧美大片| 在线观看舔阴道视频| 亚洲一区二区三区不卡视频| 18+在线观看网站| 国内久久婷婷六月综合欲色啪| 国产精品嫩草影院av在线观看 | 国产一级毛片七仙女欲春2| 91九色精品人成在线观看| 成人欧美大片| 国产色婷婷99| aaaaa片日本免费| 婷婷丁香在线五月| 国产亚洲欧美98| 欧美极品一区二区三区四区| 午夜福利在线观看吧| 18美女黄网站色大片免费观看| 国产精品久久视频播放| 十八禁人妻一区二区| 国产真实乱freesex| 国产真实乱freesex| 很黄的视频免费| 老司机午夜福利在线观看视频| 色综合欧美亚洲国产小说| 免费黄网站久久成人精品 | 日本免费一区二区三区高清不卡| 在线十欧美十亚洲十日本专区| 人妻制服诱惑在线中文字幕| 天天一区二区日本电影三级| 99久久99久久久精品蜜桃| 久久久久国产精品人妻aⅴ院| 国产精品99久久久久久久久| 又紧又爽又黄一区二区| 国产激情偷乱视频一区二区| 国内精品久久久久精免费| 看黄色毛片网站| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 精华霜和精华液先用哪个| 精品人妻1区二区| 久久国产乱子伦精品免费另类| 他把我摸到了高潮在线观看| 婷婷色综合大香蕉| АⅤ资源中文在线天堂| 精品免费久久久久久久清纯| 桃色一区二区三区在线观看| bbb黄色大片| 精品午夜福利视频在线观看一区| 99久国产av精品| 欧美最黄视频在线播放免费| 99久久99久久久精品蜜桃| 国产精品国产高清国产av| 成人毛片a级毛片在线播放| www日本黄色视频网| 国产av不卡久久| 国产精品一区二区三区四区久久| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 97超级碰碰碰精品色视频在线观看| 夜夜夜夜夜久久久久| www.熟女人妻精品国产| 成人欧美大片| 国产白丝娇喘喷水9色精品| 久久亚洲真实| 精品欧美国产一区二区三| 亚洲美女搞黄在线观看 | 熟妇人妻久久中文字幕3abv| 国产老妇女一区| 成人国产一区最新在线观看| 亚洲国产精品999在线| 欧美黄色片欧美黄色片| 国产精品精品国产色婷婷| 男插女下体视频免费在线播放| 国产人妻一区二区三区在| 特大巨黑吊av在线直播| av黄色大香蕉| 亚洲av不卡在线观看| 欧美最黄视频在线播放免费| 亚洲欧美精品综合久久99| 人人妻人人看人人澡| 一个人看的www免费观看视频| 欧美日韩国产亚洲二区| 午夜福利在线观看免费完整高清在 | 91麻豆精品激情在线观看国产| 国产三级黄色录像| av视频在线观看入口| 18美女黄网站色大片免费观看| 国产麻豆成人av免费视频| 中文字幕免费在线视频6| 美女 人体艺术 gogo| 亚洲avbb在线观看| 午夜视频国产福利| 老熟妇乱子伦视频在线观看| 一进一出抽搐gif免费好疼| 国产真实伦视频高清在线观看 | 午夜福利高清视频| 国产一区二区在线观看日韩| 久久久久久久午夜电影| 人人妻,人人澡人人爽秒播| 亚洲国产精品sss在线观看| 久久久久久久久大av| 高清日韩中文字幕在线| 国产欧美日韩精品亚洲av| 久久久久久久精品吃奶| 欧美日韩福利视频一区二区| 色视频www国产| 精品久久久久久久久久久久久| 久久人妻av系列| 国内精品一区二区在线观看| 国产精品国产高清国产av| 国产真实伦视频高清在线观看 | 国产精品久久久久久亚洲av鲁大| 少妇丰满av| 我要看日韩黄色一级片| 高清毛片免费观看视频网站| 国产精品久久久久久久久免 | av天堂中文字幕网| 午夜免费成人在线视频| 丰满人妻一区二区三区视频av| 搡老妇女老女人老熟妇| 给我免费播放毛片高清在线观看| 国产亚洲欧美98| 高潮久久久久久久久久久不卡| 搞女人的毛片| 九九在线视频观看精品| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| 色吧在线观看| 天美传媒精品一区二区| 国产精品嫩草影院av在线观看 | 国产亚洲欧美在线一区二区| 免费大片18禁| 色综合站精品国产| 男女床上黄色一级片免费看| 中文字幕熟女人妻在线| 久久久成人免费电影| 我要搜黄色片| 精品一区二区三区视频在线| 天堂av国产一区二区熟女人妻| 欧美日韩瑟瑟在线播放| 悠悠久久av| 久久99热这里只有精品18| 国产高清视频在线观看网站| 男女之事视频高清在线观看| 国产精品嫩草影院av在线观看 | 少妇的逼好多水| www.www免费av| 精品午夜福利视频在线观看一区| 少妇的逼水好多| 日本黄色视频三级网站网址| 亚洲乱码一区二区免费版| 亚洲无线在线观看| 亚洲五月婷婷丁香| 99热这里只有精品一区| 内射极品少妇av片p| 在线十欧美十亚洲十日本专区| 老熟妇乱子伦视频在线观看| 男人舔奶头视频| 精品国产三级普通话版| 亚洲狠狠婷婷综合久久图片| 午夜福利在线观看吧| 嫩草影院入口| 久久草成人影院| 色5月婷婷丁香| 久久国产乱子免费精品| 国产精品久久久久久人妻精品电影| 老司机午夜十八禁免费视频| 99久久99久久久精品蜜桃| 精品一区二区三区人妻视频| 香蕉av资源在线| 桃红色精品国产亚洲av| 99热精品在线国产| 日韩免费av在线播放| 亚洲国产欧美人成| 久久性视频一级片| www.熟女人妻精品国产| 一个人看的www免费观看视频| 久久精品国产自在天天线| 亚洲av一区综合| 欧美3d第一页| 欧美日韩国产亚洲二区| 精品一区二区三区人妻视频| 亚洲自偷自拍三级| 欧美成人a在线观看| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 少妇丰满av| 最近最新免费中文字幕在线| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 精品久久国产蜜桃| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 九九在线视频观看精品| 热99在线观看视频| 69人妻影院| 两人在一起打扑克的视频| 亚洲中文日韩欧美视频| 亚洲成人久久性| 亚洲熟妇熟女久久| 国产淫片久久久久久久久 | 欧美高清性xxxxhd video| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 69av精品久久久久久| 日本三级黄在线观看| 亚洲av二区三区四区| 久久久成人免费电影| 一区二区三区免费毛片| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 夜夜躁狠狠躁天天躁| 全区人妻精品视频| 国产精品久久久久久亚洲av鲁大| 欧美性猛交黑人性爽| 色视频www国产| 国产精品国产高清国产av| 久久国产乱子免费精品| 日本免费a在线| 国产真实乱freesex| 久久久国产成人精品二区| 亚洲,欧美,日韩| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人精品亚洲av| 亚洲av熟女| 别揉我奶头 嗯啊视频| 国产黄片美女视频| 亚洲av.av天堂| 日韩亚洲欧美综合| 中文资源天堂在线| av在线观看视频网站免费| 99国产综合亚洲精品| 国产淫片久久久久久久久 | 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 久久久久性生活片| 国产亚洲精品av在线| 亚洲美女黄片视频| 天美传媒精品一区二区| 亚洲男人的天堂狠狠| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 国产视频内射| 看片在线看免费视频| 成人av一区二区三区在线看| 综合色av麻豆| 最新在线观看一区二区三区| 亚洲,欧美,日韩| 此物有八面人人有两片| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| 丁香六月欧美| 在线观看av片永久免费下载| 男女做爰动态图高潮gif福利片| 欧美黑人欧美精品刺激| 最近在线观看免费完整版| 日韩大尺度精品在线看网址| eeuss影院久久| 亚洲最大成人手机在线| 深夜精品福利| 嫁个100分男人电影在线观看| 看片在线看免费视频| 美女免费视频网站| 久久午夜亚洲精品久久| 久久久久国产精品人妻aⅴ院| 欧美黄色片欧美黄色片| 欧美色欧美亚洲另类二区| 亚洲 欧美 日韩 在线 免费| 91在线精品国自产拍蜜月| 免费一级毛片在线播放高清视频| 亚洲av美国av| xxxwww97欧美| 脱女人内裤的视频| 成人av一区二区三区在线看| 国模一区二区三区四区视频| 韩国av一区二区三区四区| 亚洲精品色激情综合| 欧美中文日本在线观看视频| 日本熟妇午夜| 级片在线观看| 国产三级中文精品| 亚洲精品影视一区二区三区av| 欧美潮喷喷水| 一a级毛片在线观看| 麻豆国产av国片精品| 赤兔流量卡办理| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 国产精品98久久久久久宅男小说| 成人特级av手机在线观看| 欧美中文日本在线观看视频| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 怎么达到女性高潮| 久久精品国产自在天天线| 中文字幕精品亚洲无线码一区| 在线观看免费视频日本深夜| а√天堂www在线а√下载| 精品99又大又爽又粗少妇毛片 | 国内精品美女久久久久久| 国产国拍精品亚洲av在线观看| 两人在一起打扑克的视频| 亚洲中文字幕日韩| 日韩欧美免费精品| 夜夜躁狠狠躁天天躁| www日本黄色视频网| 精品人妻熟女av久视频| 亚洲色图av天堂| 欧美性猛交黑人性爽| 国产在视频线在精品| 色在线成人网| 久9热在线精品视频| 伦理电影大哥的女人| 午夜福利免费观看在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久,| 日韩高清综合在线| 欧美+日韩+精品| 免费av毛片视频| 又爽又黄无遮挡网站| 国产午夜福利久久久久久| 色播亚洲综合网| 久久久久久久久久成人| 国产成人福利小说| 乱码一卡2卡4卡精品| 午夜a级毛片| 成年女人毛片免费观看观看9| 国产乱人视频| 国产精华一区二区三区| 91在线观看av| a级毛片a级免费在线| 国产探花在线观看一区二区| 美女黄网站色视频| 亚洲av不卡在线观看| 久久久久久九九精品二区国产| 欧美zozozo另类| 99久久精品一区二区三区| 精品一区二区免费观看| 久久精品国产99精品国产亚洲性色| 91久久精品电影网| 麻豆国产av国片精品| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 麻豆成人av在线观看| 中国美女看黄片| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 亚洲最大成人中文| 90打野战视频偷拍视频| 免费在线观看日本一区| 精品久久久久久久久亚洲 | 一级黄片播放器| 国产一区二区三区视频了| 性色avwww在线观看| 久久精品国产亚洲av涩爱 | 久久性视频一级片| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 国产白丝娇喘喷水9色精品| 亚洲性夜色夜夜综合| 99久久精品一区二区三区| 波多野结衣高清作品| av在线老鸭窝| 天堂动漫精品| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 91麻豆av在线| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 国产三级中文精品| 精品一区二区三区视频在线| 每晚都被弄得嗷嗷叫到高潮| 麻豆成人午夜福利视频| 精品一区二区三区视频在线观看免费| 男人和女人高潮做爰伦理| 色哟哟哟哟哟哟| 亚洲人成电影免费在线| 午夜福利在线观看免费完整高清在 | 欧美日本亚洲视频在线播放| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 1024手机看黄色片| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 国产爱豆传媒在线观看| 午夜激情福利司机影院| 日本与韩国留学比较| 亚洲av不卡在线观看| www.色视频.com| av在线老鸭窝| 在线免费观看的www视频| 国产精品永久免费网站| 草草在线视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 欧美另类亚洲清纯唯美| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| avwww免费| 国内久久婷婷六月综合欲色啪| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 长腿黑丝高跟| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图 | 麻豆国产97在线/欧美| 国产av一区在线观看免费| 一进一出好大好爽视频| 国产在视频线在精品| 国产精品一及| 真实男女啪啪啪动态图| 深夜精品福利| 免费在线观看日本一区| 精品久久久久久久久av| 国产精品野战在线观看| 欧美性猛交黑人性爽| 91九色精品人成在线观看| 少妇裸体淫交视频免费看高清|