• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      水體中內(nèi)分泌干擾物的高效脫除與多技術(shù)組合聯(lián)用

      2022-06-22 02:07:30陳維涵單勝道周雲(yún)劍姚之侃
      關(guān)鍵詞:膜分離內(nèi)分泌活性炭

      李 瑩, 陳維涵, 單勝道, 周雲(yún)劍, 吳 昊, 楊 凱, 姚之侃

      水體中內(nèi)分泌干擾物的高效脫除與多技術(shù)組合聯(lián)用

      李 瑩1, 陳維涵1, 單勝道1, 周雲(yún)劍1, 吳 昊1, 楊 凱1, 姚之侃2

      (1. 浙江科技學(xué)院 環(huán)境與資源學(xué)院, 浙江 杭州 310023;2. 浙江大學(xué) 化學(xué)工程與生物工程學(xué)院, 浙江 杭州 310027)

      水體中內(nèi)分泌干擾物(EDCs)種類繁多、理化性質(zhì)各異、濃度低但危害高,嚴(yán)重威脅著人類和動(dòng)植物的生命安全。單一的物理、化學(xué)或生物處理技術(shù)在水體痕量EDCs的去除過程中,存在效率低、能耗高等問題,而通過多種去除技術(shù)組合聯(lián)用的方式,可有效提升水體EDCs的脫除效率。綜述了生物、物理、化學(xué)去除技術(shù)組合聯(lián)用工藝在水體內(nèi)分泌干擾物去除中的應(yīng)用,重點(diǎn)介紹了活性污泥處理、膜生物反應(yīng)器、膜過濾分離、活性炭吸附和高級氧化等技術(shù)的組合聯(lián)用對水體中EDCs去除的相關(guān)研究和進(jìn)展。通過對不同技術(shù)組合特點(diǎn)的對比分析,提出納米技術(shù)與綠色可持續(xù)技術(shù)的組合聯(lián)用將是未來EDCs去除技術(shù)發(fā)展的重要方向。

      內(nèi)分泌干擾物;新型污染物;水處理;多技術(shù)組合聯(lián)用

      1 前言

      內(nèi)分泌干擾物(endocrine disrupting compounds,EDCs)被定義為能干擾和影響生物體自身荷爾蒙合成、分泌、傳遞、結(jié)合、活性反應(yīng)、代謝和消解等的外源性化學(xué)物質(zhì),主要包括藥物和個(gè)人護(hù)理用品、鄰苯二甲酸鹽、多氯聯(lián)苯、多環(huán)芳烴、烷基酚、烷基酚聚氧乙烯醚、殺蟲劑和增塑劑等[1-2]。極低的內(nèi)分泌干擾物暴露濃度便能對生物體的生理機(jī)能造成嚴(yán)重危害,導(dǎo)致魚類、鳥類、爬行類及哺乳類動(dòng)物出現(xiàn)生殖器官變異、內(nèi)分泌失常、種群退化等問題[3-5],且對人體發(fā)育、生育、神經(jīng)產(chǎn)生嚴(yán)重影響,誘發(fā)糖尿病、心血管病、肥胖、癌癥、甲狀腺問題以及神經(jīng)系統(tǒng)疾病等[6-7]。傳統(tǒng)的工業(yè)廢水和生活污水處理技術(shù),如沉積、絮凝、膜分離、吸附等并不能有效地將其去除,殘留物將隨處理水排入自然水體中,并成為水環(huán)境中內(nèi)分泌干擾物的主要來源[12-13]。近年來,研究者們致力于將各種生物、物理和化學(xué)處理技術(shù)應(yīng)用于EDCs的去除,如圖1所示。然而,較大的處理能耗、較低的處理效率以及較高的運(yùn)行與維護(hù)成本制約了此類技術(shù)的實(shí)際應(yīng)用。為了克服上述處理技術(shù)中的不足,實(shí)現(xiàn)EDCs的高效廣譜去除,研究者們嘗試整合生物、物理和化學(xué)處理技術(shù),通過多技術(shù)的組合聯(lián)用提高EDCs的廣譜去除效率[14-18]。

      圖1 水體EDCs的脫除技術(shù)

      已報(bào)道的文章傾向于針對性地利用單一處理技術(shù)去除EDCs,而本綜述則針對多技術(shù)的組合聯(lián)用,系統(tǒng)地介紹不同技術(shù)聯(lián)用過程的特點(diǎn),對比分析多技術(shù)組合對不同種類EDCs的去除效率,總結(jié)并提出納米技術(shù)與綠色可持續(xù)技術(shù)具有去除水體中EDCs的應(yīng)用潛力。

      2 內(nèi)分泌干擾物的去除技術(shù)

      2.1 物理處理技術(shù)

      內(nèi)分泌干擾物的物理處理技術(shù)主要包括吸附和膜分離。吸附技術(shù)利用吸附材料的高比表面積、高孔隙率及吸附材料與內(nèi)分泌干擾物間的相互作用等特性實(shí)現(xiàn)EDCs的去除。活性炭被認(rèn)為是最有效且最經(jīng)濟(jì)的EDCs吸附去除材料,其去除效果與活性炭的親疏水性、表面電荷、粒子尺寸及EDCs的辛醇-水分配系數(shù)有關(guān)[19-20]。生物質(zhì)炭作為低成本的環(huán)保型吸附劑,有望取代活性炭應(yīng)用于EDCs的去除過程中[21]。生物質(zhì)炭經(jīng)過蒸汽活化、化學(xué)改性、浸漬或熱處理等方法修飾后,其表面吸附活性基團(tuán)如羥基、羧基、羰基等含量增加,極大提高了其對水中EDCs的吸附效率[22-23]。

      膜分離技術(shù)是另一類典型的物理處理技術(shù)。膜材料的孔徑、表面親疏水性及表面荷電性不同,其對污染物的處理效果也不盡相同[24-25],膜材料的理化性質(zhì)、EDCs的理化性質(zhì)與膜對EDCs的截留效率三者間的對應(yīng)關(guān)系如圖2所示,圖中,r為相對分子質(zhì)量,r,co為截留相對分子質(zhì)量,OW為辛醇-水分配系數(shù),pa為解離常數(shù),m為膜孔徑,RO為反滲透膜分離技術(shù),F(xiàn)O為正滲透膜分離技術(shù),NF為納濾膜分離技術(shù),UF為超濾膜分離技術(shù)。由于膜孔徑過大,微濾無法有效截留EDCs[26]。超濾技術(shù)則根據(jù)目標(biāo)污染物EDCs和膜材料的不同,對EDCs的去除效率具有較大差別,某些激素衍生物(如雙氯芬酸、雌酮、雌二醇)可通過超濾過程去除[27],而極性較弱的鄰苯二甲酸酯類則無法通過超濾截留去除[28]。納濾分離技術(shù)由于其較小的分離孔徑、較低的驅(qū)動(dòng)壓力,在EDCs去除中得到了廣泛應(yīng)用。與超濾技術(shù)相似,納濾分離技術(shù)對EDCs的分離效率與膜材料和運(yùn)行條件息息相關(guān)[29-32]。反滲透過程對絕大部分EDCs具有良好的去除效率,但高昂的運(yùn)行費(fèi)用限制了其在該領(lǐng)域的應(yīng)用[33-35]。

      圖2 膜材料的理化性質(zhì)、EDCs的理化性質(zhì)與膜對EDCs的截留效率三者間的對應(yīng)關(guān)系[36]

      雖然包括吸附和膜分離技術(shù)在內(nèi)的物理處理技術(shù)在EDCs的去除中表現(xiàn)出較大的應(yīng)用潛力,但經(jīng)過物理處理技術(shù)產(chǎn)生的高濃度污染物仍需進(jìn)一步處置和降解。

      2.2 化學(xué)處理技術(shù)

      化學(xué)處理技術(shù)通過一系列氧化反應(yīng),將污染物轉(zhuǎn)化為對環(huán)境危害低、易生物降解的物質(zhì)或直接降解為二氧化碳與水等?;瘜W(xué)處理技術(shù)分為傳統(tǒng)氧化技術(shù)與高級氧化技術(shù)。傳統(tǒng)氧化技術(shù)包括氯化、臭氧氧化和光分解等[37],但反應(yīng)副產(chǎn)物的產(chǎn)生、污染物去除效率低等問題限制了其應(yīng)用。高級氧化技術(shù)具有強(qiáng)氧化性,可降解大多數(shù)EDCs。高級氧化技術(shù)的分類如圖3所示,主要包括芬頓法[39-41]、光催化氧化[37]、電芬頓法[42]、臭氧催化氧化[43]、超聲氧化等。但高級氧化技術(shù)仍存在運(yùn)營費(fèi)用高昂、能耗高、產(chǎn)生毒性氧化副產(chǎn)物等問題。將其與生物或物理處理技術(shù)聯(lián)用可為大部分EDCs的去除提供新思路。

      圖3 高級氧化技術(shù)的分類[43]

      2.3 生物處理技術(shù)

      生物處理技術(shù)基于生物對EDCs的降解,是目前應(yīng)用最廣泛的EDCs去除方法。微生物(如細(xì)菌、真菌、藻類等)可將高相對分子質(zhì)量污染物降解成小分子,甚至完全降解成二氧化碳與水等[44]。污染物的理化性質(zhì)、可生化性與處理過程的運(yùn)行參數(shù)等因素制約了生物處理效能與穩(wěn)定性。傳統(tǒng)的生物處理技術(shù)包括活性污泥法[45]、生物濾地法[46]、移動(dòng)床膜生物反應(yīng)器[47-48]等,非傳統(tǒng)的生物處理技術(shù)包括生物吸附法[49]、膜生物反應(yīng)器[50]和人工濕地[51-53]等。傳統(tǒng)與非傳統(tǒng)的生物處理技術(shù)均具有運(yùn)行成本低的特點(diǎn),皆可應(yīng)用于水體中多種EDCs的去除。但生物處理技術(shù)的處理周期較長,且大多數(shù)生物技術(shù)僅針對特定EDCs的去除。因此,將生物處理技術(shù)與其他處理技術(shù)如膜分離技術(shù)、高級氧化技術(shù)組合,有望獲得更好的EDCs去除效果。

      3 多技術(shù)組合聯(lián)用對水中內(nèi)分泌干擾物的去除

      單一的水處理技術(shù)對水體中大部分EDCs的去除效果并不理想,近年來研究者們嘗試采用多技術(shù)組合聯(lián)用的方法,提升水體中EDCs的去除效果。通過將EDCs處理單元技術(shù)聯(lián)用,可實(shí)現(xiàn)各單元處理技術(shù)間的優(yōu)勢互補(bǔ),有效減少廢水處理過程中殘留EDCs對水環(huán)境的影響。

      3.1 生物處理技術(shù)與物理處理技術(shù)的組合聯(lián)用

      生物處理技術(shù)應(yīng)用最為廣泛,大多數(shù)組合聯(lián)用工藝首先采用生物處理技術(shù)對含EDCs水體進(jìn)行處理,隨后組合物理處理技術(shù)實(shí)現(xiàn)強(qiáng)化水體中EDCs去除效果的目的。

      將膜生物反應(yīng)器(MBR)與納濾或反滲透(NF/RO)等膜分離技術(shù)組合并應(yīng)用于水體中EDCs的去除是近幾年的研究熱點(diǎn)之一[54-55]。有研究表明,膜生物反應(yīng)器對親水和易生物降解的EDCs具有較好的去除效果,而對于疏水和具有生物持久性的EDCs的去除效果不佳[50,54,56-57]。而基于孔徑篩分或者靜電排斥作用等膜分離機(jī)理,疏水性EDCs可通過反滲透或納濾分離過程有效去除[58-59]。因此,經(jīng)過膜生物反應(yīng)器處理后殘留的疏水以及部分親水EDCs,可通過后續(xù)的膜分離過程有效去除。將膜生物反應(yīng)器技術(shù)與納濾或反滲透膜分離技術(shù)(MBR-NF/RO)組合聯(lián)用可提升水體中EDCs的整體去除效率。表1總結(jié)了MBR-NF/RO組合聯(lián)用對水體中部分EDCs的去除效果[54-55],表中E1為雌酮,E2為雌二醇,E3為雌三醇,EE2為乙炔基雌二醇。結(jié)果表明,通過MBR-NF/RO組合聯(lián)用處理后,絕大部分EDCs完全降解或濃度降低至可檢測濃度以下。MBR-RO組合聯(lián)用可實(shí)現(xiàn)對絕大部分EDCs高于99% 的去除效率,而MBR-NF組合聯(lián)用對大部分EDCs的去除效率也能達(dá)到95%。對于高濃度EDCs水體的處理,MBR-NF/RO組合聯(lián)用法仍能實(shí)現(xiàn)對EDCs的有效去除。但對于MBR-NF組合聯(lián)用法而言,其雙酚A、五氯苯酚、對乙酰氨基酚、酰胺咪嗪、甲硝噠唑等的去除效率相對較低(<90%)。此外,高能耗與膜污染也在一定程度上限制了MBR-NF/RO組合聯(lián)用法的發(fā)展。

      表1 膜生物反應(yīng)器與納濾或反滲透膜分離技術(shù)組合聯(lián)用對部分內(nèi)分泌干擾物的去除效果

      滲透膜生物反應(yīng)器是近期廢水處理領(lǐng)域的研究熱點(diǎn)之一。該方法將生物處理技術(shù)、正滲透與反滲透膜分離技術(shù)有效結(jié)合,經(jīng)生物處理-正滲透分離-反滲透分離處理可獲得高質(zhì)量的再生用水[60-61]。對比傳統(tǒng)膜反應(yīng)器,滲透膜反應(yīng)器采用具有高分離性能的正滲透膜和反滲透膜,因而對EDCs具有廣譜的高去除效率(>99%),尤其是針對親水與難生物降解的EDCs。

      將UF、活性污泥技術(shù)(ASP)以及絮凝(F)技術(shù)組合聯(lián)用是一種性價(jià)比較高的水體EDCs處理方法[28]。將ASP與F技術(shù)組合聯(lián)用,陽離子絮凝劑可增強(qiáng)EDCs的可生物降解性,顯著提高ASP過程對EDCs的降解效率。污泥與超濾膜均對鄰苯二甲酸酯類以及某些酚類物質(zhì)具有吸附作用,ASP對酸性藥物具有良好的降解效果,而UF則對酚類物質(zhì)的去除更加有效。因此,以好氧生物降解為主要污染物去除機(jī)制的F+ASP+UF組合聯(lián)用法,對包括水楊酸、對叔丁基苯酚、異丁苯丙酸和甲氧萘丙酸等在內(nèi)的大部分EDCs都具有良好的降解去除作用。雖然,對于少數(shù)EDCs(如DEHP、2,4-D和酰胺咪嗪等)的去除效率有限,但F+ASP+UF組合聯(lián)用法對EDCs的整體去除效果優(yōu)于其中任一單一處理技術(shù)及ASP+F的組合聯(lián)用。

      3.2 化學(xué)處理技術(shù)與其他處理技術(shù)的組合聯(lián)用

      高級氧化技術(shù)在各種EDCs的處理過程中均表現(xiàn)出良好的去除效果。因此,常將臭氧氧化、超聲、伽馬射線等處理技術(shù)與其他物理或生物處理技術(shù)組合聯(lián)用,強(qiáng)化水體中EDCs的去除效率[62]。表2總結(jié)了幾種高級氧化技術(shù)與其他處理技術(shù)的組合聯(lián)用及其對EDCs的去除效果[54,63-64]。

      表2 高級氧化技術(shù)與其他處理技術(shù)的組合聯(lián)用及其對內(nèi)分泌干擾物的去除效果

      Nguyen將膜生物反應(yīng)器與紫外(UV)氧化技術(shù)組合聯(lián)用,通過MBR技術(shù)處理去除易生物降解及親水性物質(zhì),通過紫外氧化技術(shù)顯著降低難生物降解的疏水性物質(zhì)含量,從而有效提高水體EDCs的去除效率[54]。MBR+UV組合聯(lián)用可完全去除或?qū)1、甲氧萘丙酸和異丁苯丙酸等的濃度降至可檢測范圍以下。對于難生物降解的酰胺咪嗪,通過單一的MBR技術(shù)或紫外氧化技術(shù),其去除率分別只能達(dá)到約32% 和30%,而通過MBR+UV技術(shù)聯(lián)用則可實(shí)現(xiàn)90% 以上的酰胺咪嗪的去除。

      電化學(xué)技術(shù)與MBR技術(shù)組合聯(lián)用(eMBR)也被應(yīng)用于水體中EDCs的去除,可在提高EDCs去除效率的同時(shí),有效減少膜污染的產(chǎn)生[63,65]。不同的電化學(xué)過程,如電氧化、電泳、電凝與MBR技術(shù)組合聯(lián)用,結(jié)合電凝作用與膜分離技術(shù),可有效去除廢水中的阿莫西林(去除率72%)、酰胺咪嗪(去除率73%)和雙氯芬酸(去除率75%)等EDCs。

      將臭氧催化氧化、活性炭吸附和膜分離技術(shù)的組合聯(lián)用,在水體EDCs的去除過程中也取得了良好的效果,如圖4所示[66-68]。臭氧的氧化過程有利于廢水中強(qiáng)氧化性自由基的生成,促進(jìn)EDCs的降解。負(fù)載有金屬氧化物的活性炭,可進(jìn)一步促進(jìn)臭氧氧化過程中自由基的生成,大幅提高臭氧的催化氧化效率?;钚蕴吭谪?fù)載金屬氧化物的同時(shí),可將EDCs吸附并保留在活性炭的活性位點(diǎn)上,加速污染物的降解。最后通過膜分離過程,有效提升難降解與難吸附污染物、氧化反應(yīng)副產(chǎn)物等的去除率。通過臭氧催化氧化、活性炭吸附和膜分離技術(shù)的組合聯(lián)用可實(shí)現(xiàn)對水體中鄰苯二甲酸、雙氯芬酸的完全去除,并有效控制氧化反應(yīng)副產(chǎn)物的產(chǎn)生。

      圖4 臭氧催化氧化、活性炭吸附和膜分離技術(shù)的組合聯(lián)用工藝

      3.3 物理處理技術(shù)與物理處理技術(shù)的組合聯(lián)用

      超濾膜分離技術(shù)與粉末狀活性炭(UF-PAC)或活性生物質(zhì)炭(UF-ABC)的膜分離技術(shù)與吸附技術(shù)組合聯(lián)用也具有去除水體中EDCs的應(yīng)用潛力[69]。超濾膜分離技術(shù)與活性生物質(zhì)炭吸附技術(shù)可通過半連續(xù)式反應(yīng)器與吸附超濾膜2種方式進(jìn)行組合聯(lián)用,如圖5所示。相比于粉末狀活性炭,由廢棄生物質(zhì)燃燒而成的活性生物質(zhì)炭的比表面積較小,并以疏水吸附為其主要吸附機(jī)理。因此,UF+PAC組合聯(lián)用具有更好的EDCs截留效果,而UF+ABC組合聯(lián)用則具有更高的處理效率。將UF+ABC組合應(yīng)用于水體EDCs的去除,在實(shí)現(xiàn)EDCs去除的同時(shí),可減少廢棄生物質(zhì)的污染,被認(rèn)為是UF+PAC組合聯(lián)用的替代。

      圖5 超濾膜分離技術(shù)與活性生物質(zhì)炭吸附技術(shù)的組合聯(lián)用

      相關(guān)研究也將超濾膜分離技術(shù)與以單壁碳納米管為吸附材料的吸附技術(shù)組合聯(lián)用(UF+SWNTs),實(shí)現(xiàn)對某些EDCs的去除[70]。UF+SWNTs組合聯(lián)用依靠EDCs的疏水性實(shí)現(xiàn)污染物的截留與去除,但同時(shí)廢水中有機(jī)物質(zhì)間的疏水相互作用會加速膜材料的堵塞和污染?;赟WNTs的吸附作用及超濾膜的截留作用,該技術(shù)組合可有效提升17-β-雌二酮與雙酚A的去除效率,且對疏水性更強(qiáng)的17-β-雌二酮的去除效果更好。

      除上述多技術(shù)組合聯(lián)用外,許多新材料與新處理技術(shù)也被應(yīng)用于水體中EDCs組合聯(lián)用去除過程,包括以納米吸附劑[71-73]、金屬氧化物[74-75]、負(fù)載氧化物的活性炭[76]、磁性粒子交換材料[77]等為基礎(chǔ)的吸附技術(shù)和高級氧化技術(shù),以金屬有機(jī)骨架、固定化酶等改性的膜材料為基礎(chǔ)的膜分離技術(shù)[78],以微藻處理過程為基礎(chǔ)的生物處理技術(shù)等。此類新興處理技術(shù)目前均處于實(shí)驗(yàn)研究階段,距離實(shí)際應(yīng)用仍有一定距離。

      4 結(jié)語

      綜述了生物、物理和化學(xué)處理技術(shù)在水體內(nèi)分泌干擾物處理中的應(yīng)用。現(xiàn)有單一處理技術(shù)在實(shí)際應(yīng)用過程中受諸多因素限制,存在生物處理時(shí)間長、物理與生物處理產(chǎn)生的含污染物污泥的最終處理以及化學(xué)處理運(yùn)營費(fèi)用較高等不足。進(jìn)一步總結(jié)了不同處理技術(shù)組合聯(lián)用在水體內(nèi)分泌干擾物去除中的應(yīng)用,發(fā)現(xiàn)大多數(shù)組合聯(lián)用工藝首先采用生物技術(shù)處理含EDCs水體,隨后通過物理或化學(xué)處理技術(shù)實(shí)現(xiàn)強(qiáng)化水體中EDCs去除效果的目的?;诨钚晕勰喾ǖ亩嗉夹g(shù)組合聯(lián)用成本較低,基于膜生物反應(yīng)器法的多技術(shù)組合聯(lián)用可實(shí)現(xiàn)對多種EDCs的高效去除,而基于高級氧化的多技術(shù)組合聯(lián)用,對大多數(shù)EDCs具有較高脫除效率。因此,依據(jù)實(shí)際處理需求將單一處理技術(shù)組合聯(lián)用,為廢水的高效處理提供了更多選擇。

      將單一處理技術(shù)組合聯(lián)用可實(shí)現(xiàn)水中內(nèi)分泌干擾物的廣譜去除,但仍存在對部分EDCs無法完全去除的問題。針對上述難點(diǎn),處理技術(shù)的組合聯(lián)用需進(jìn)一步研究與優(yōu)化:(1)在組合聯(lián)用工藝中引入新興處理材料與處理技術(shù),例如納米材料或以納米材料為基礎(chǔ)的處理技術(shù);(2)深入研究組合聯(lián)用過程中EDCs去除的反應(yīng)動(dòng)力學(xué)與EDCs降解機(jī)理,針對性地設(shè)計(jì)反應(yīng)器,優(yōu)化運(yùn)行工藝等;(3)合理組合處理技術(shù),優(yōu)化聯(lián)用工藝,利用可再生資源降低處理成本,實(shí)現(xiàn)組合聯(lián)用工藝的綠色化與低碳化;(4)通過中試放大或工程示范,評估多技術(shù)組合聯(lián)用處理的實(shí)際效能。

      [1] WEE S Y, ARIS A Z, YUSOFF F MOccurrence of multiclass endocrine disrupting compounds in a drinking water supply system and associated risks [J]. Scientific Reports, 2020, 10(1): 17755.

      [2] LI J, PANG S Y, WANG ZOxidative transformation of emerging organic contaminants by aqueous permanganate: kinetics, products, toxicity changes, and effects of manganese products [J]. Water Research, 2021, 203: 117513.

      [3] LUO Y L, GUO W S, NGO H HA review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. Science of the Total Environment, 2014, 473/474: 619-641.

      [4] ESPLUGAS S, BILA D M, KRAUSE L GOzonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642.

      [5] BOLONG N, ISMAIL A F, SALIM M RA review of the effects of emerging contaminants in wastewater and options for their removal [J]. Desalination, 2009, 239(1/2/3): 229-246.

      [6] RIBEIRO E, LADEIRA C, VIEGAS S. EDCs mixtures: A stealthy hazard for human health? [J]. Toxics, 2017, 5(1): 5-22.

      [7] GRAY L E, JR. Twenty-five years after "Wingspread"- Environmental endocrine disruptors (EDCs) and human health [J]. Current Opinion in Toxicology, 2017, 3: 40-47.

      [8] BELHAJ D, BACCAR R, JAABIRI IFate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa) [J]. Science of the Total Environment, 2015, 505: 154-160.

      [9] QIANG Z, DONG H, ZHU BA comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs) [J]. Chemosphere, 2013, 92(8): 986-992.

      [10] LI R, KADRISPAHIC H, KOUSTRUP J MRemoval of micropollutants in a ceramic membrane bioreactor for the post-treatment of municipal wastewater [J]. Chemical Engineering Journal, 2022, 427: 131458.

      [11] 史雨薇, 蔡靈, 潘辰苑等.海洋環(huán)境中新型雌激素污染特征研究進(jìn)展 [J]. 高?;瘜W(xué)工程學(xué)報(bào), 2019, 33(6): 1285-1302.

      SHI Y W, CAI L, PAN C Y,. Research progress on emerging estrogenic pollutants in marine environment [J]. Journal of ChemicalEngineering of Chinese Universities, 2019, 33(6): 1285-1302.

      [12] KLAMERTH N, MALATO S, AGUERA APhoto-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison [J]. Water Research, 2013, 47(2): 833-840.

      [13] AHMED M B, ZHOU J L, NGO H HAdsorptive removal of antibiotics from water and wastewater: Progress and challenges [J]. Science of the Total Environment, 2015, 532: 112-126.

      [14] ZHANG Y, ZHAO P, LI JA hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment [J]. Chemosphere, 2016, 160: 134-140.

      [15] WANG Y, WANG X, LI MRemoval of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF [J]. International Journal of Environmental Research and Public Health, 2018, 15(2): 269-281.

      [16] RACAR M, DOLAR D, KARADAKIC KChallenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: Physico-chemical and microbiological parameters, and emerging contaminants [J]. Science of the Total Environment, 2020, 722: 137959.

      [17] DHANGAR K, KUMAR M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review [J]. Science of the Total Environment, 2020, 738: 140320.

      [18] NADDEO V, SECONDES M F N, BOREA LRemoval of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process-ultrasound, adsorption, and membrane ultrafiltration (USAMe(R)) [J]. Ultrason Sonochemistry, 2020, 68: 105237.

      [19] SOTELO J L, RODRIGUEZ A R, MATEOS M MAdsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials [J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2012, 47(7): 640-652.

      [20] NAM S W, CHOI D J, KIM S KAdsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon [J]. Journal of Hazardous Materials, 2014, 270: 144-152.

      [21] JUNG C, BOATENG L K, FLORA J R VCompetitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study [J]. Chemical Engineering Journal, 2015, 264: 1-9

      [22] AHMED M B, ZHOU J L, NGO H HProgress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater [J]. Bioresource Technology, 2016, 214: 836-851.

      [23] WANG J, ZHANG M. Adsorption characteristics and mechanism of bisphenol A by magnetic biochar [J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 1075-1092.

      [24] SCHAFER A I, AKANYETI I, SEMIAO A J. Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens [J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 100-117.

      [25] SIMMONS F J, KUO D H, XAGORARAKI I. Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing [J]. Water Research, 2011, 45(9): 2739-2750.

      [26] KATIBI K K, YUNOS K F, CHE MAN HRecent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: A review [J]. Polymers, 2021, 13(3): 392-443.

      [27] BABAEI A A, LIMA E C, TAKDASTAN ARemoval of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: Operational variables, kinetics, and equilibrium studies [J]. Water Science and Technology, 2016, 74(5): 1202-1216.

      [28] MELO-GUIMARAES A, TORNER-MORALES F J, DURAN-ALVAREZ J CRemoval and fate of emerging contaminants combining biological, flocculation and membrane treatments [J]. Water Science and Technology, 2013, 67(4): 877-885.

      [29] GUO H, PENG L E, YAO Z KNon-polyamide based nanofiltration membranes using green metal-organic coordination complexes: Implications for the removal of trace organic contaminants [J]. Environmental Science & Technology, 2019, 53(5): 2688-2694.

      [30] GUO H, YAO Z K, YANG ZA one-step rapid assembly of thin film coating using green coordination complexes for enhanced removal of trace organic contaminants by membranes [J]. Environmental Science & Technology, 2017, 51(21): 12638-12643

      [31] GUO H, DENG Y, YAO Z KA highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications [J]. Water Research, 2017, 121: 197-203.

      [32] GUO H, DENG Y, TAO Z JDoes hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? [J]. Environmental Science & Technology Letters, 2016, 3(9): 332-338.

      [33] DAI R, GUO H, TANG C YHydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranesenhance rejection of hydrophobic endocrine-disrupting compounds [J]. Environmental Science & Technology, 2019, 53(23): 13776-13783.

      [34] SADMANI A H, ANDREWS R C, BAGLEY D M. Influence of naturally occurring dissolved organic matter, colloids, and cations on nanofiltration of pharmaceutically active and endocrine disrupting compounds [J]. Chemosphere, 2014, 117: 170-177.

      [35] 羅方, 閆康康, 王晶等基于改性納米纖維支撐層的復(fù)合正滲透膜 [J]. 高?;瘜W(xué)工程學(xué)報(bào), 2020, 34(5): 1151-1158.

      LUO F, YAN K K, WANG J,. Forward osmosis membranes based on modified nanofiber substrates [J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1151-1158.

      [36] KIM S, CHU K H, AL-HAMADANI Y A JRemoval of contaminants of emerging concern by membranes in water and wastewater: A review [J]. Chemical Engineering Journal, 2018, 335: 896-914.

      [37] NOUTSOPOULOS C, MAMAIS D, MPOURAS TThe role of activated carbon and disinfection on the removal of endocrine disrupting chemicals and non-steroidal anti-inflammatory drugs from wastewater [J]. Environmental Technology, 2014, 35(5/6/7/8): 698-708.

      [38] JATOI A S, HASHMI Z, ADRIYANI RRecent trends and future challenges of pesticide removal techniques - A comprehensive review [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105571.

      [39] IFELEBUEGU A O, EZENWA C P. Removal of endocrine disrupting chemicals in wastewater treatment by Fenton-like oxidation [J]. Water Air and Soil Pollution, 2011, 217(1/2/3/4): 213-220.

      [40] ZIEMBOWICZ S, KIDA M, KOSZELNIK P. Reservoir bottom sediments as heterogeneous catalysts for effective degradation of a selected endocrine-disrupting chemical via a Fenton-like process [J]. Journal of Water Process Engineering, 2019, 32: 100950.

      [41] 余濤, 張萌, 林秋健等豬場廢水Fenton法深度除碳研究 [J]. 高?;瘜W(xué)工程學(xué)報(bào), 2018, 32(2): 667-674.

      YU T, ZHANG M, LIN Q J,. Advanced removal of organics from swine wastewater by Fenton process [J]. Journal of Chemical Engineering of Chinese Unversities, 2018, 32(2): 667-674.

      [42] ROSALES E, BUFTIA G, PAZOS MHighly active based iron-carbonaceous cathodes for heterogeneous electro-Fenton process: application to degradation of parabens [J]. Process Safety and Environmental Protection, 2018, 117: 363-371.

      [43] 蔡應(yīng)康, 劉茂春, 李衛(wèi)星等臭氧催化氧化降解2,4,6-三氯苯酚研究 [J]. 高?;瘜W(xué)工程學(xué)報(bào), 2018, 32(3): 725-730.

      CAI Y K, LIU M C, LI W X,. Study on catalytic ozonation of 2,4,6-trichlorophenol [J]. Journal of Chemical Engineering of Chinese Unveristies, 2018, 32(3): 725-730.

      [44] DE OLIVEIRA J F, FIA R, RODRIGUES F NQuantification, removal and potential ecological risk of emerging contaminants in different organic loads of swine wastewater treated by integrated biological reactors [J]. Chemosphere, 2020, 260: 127516.

      [45] LIU Z H, KANJO Y, MIZUTANI S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: A review [J]. Science of the Total Environment, 2009, 407(2): 731-748.

      [46] SVENSON A, ALLARD A S, EK M. Removal of estrogenicity in Swedish municipal sewage treatment plants [J]. Water Research, 2003, 37(18): 4433-4443.

      [47] PHAN H V, HAI F I, KANG JSimultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic-aerobic membrane bioreactor (MBR) [J]. Bioresource Technology, 2014, 165: 96-104.

      [48] AHMED M B, ZHOU J L, NGO H HProgress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review [J]. Journal of Hazardous Materials, 2017, 323: 274-298.

      [49] NGUYEN L N, HAI F I, YANG S FRemoval of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: Role of biosorption and biodegradation [J]. International Biodeterioration & Biodegradation, 2014, 88: 169-175.

      [50] CLARA M, STRENN B, GANS ORemoval of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants [J]. Water Research, 2005, 39(19): 4797-4807.

      [51] GORITO A M, RIBEIRO A R, ALMEIDA C M RA review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation [J]. Environmental Pollution, 2017, 227: 428-443.

      [52] ILYAS H, MASIH I, VAN HULLEBUSCH E D. A decision tree framework to support design, operation, and performance assessment of constructed wetlands for the removal of emerging organic contaminants [J]. Science of the Total Environment, 2021, 760: 143334.

      [53] MATAMOROS V, CAIOLA N, ROSALES VThe role of rice fields and constructed wetlands as a source and a sink of pesticides and contaminants of emerging concern: Full-scale evaluation [J]. Ecological Engineering, 2020, 156: 105971.

      [54] NGUYEN L N, HAI F I, KANG J GRemoval of emerging trace organic contaminants by MBR-based hybrid treatment processes [J]. International Biodeterioration & Biodegradation, 2013, 85: 474-482.

      [55] DOLAR D, GROS M, RODRIGUEZ-MOZAZ SRemoval of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO [J]. Journal of Hazardous Materials, 2012, 239/240: 64-69.

      [56] ALTURKI A A, TADKAEW N, MCDONALD J ACombining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications [J]. Journal of Membrane Science, 2010, 365(1/2): 206-215.

      [57] TADKAEW N, HAI F I, MCDONALD J ARemoval of trace organics by MBR treatment: The role of molecular properties [J]. Water Research, 2011, 45(8): 2439-2451.

      [58] BELLONA C, DREWES J E, XU PFactors affecting the rejection of organic solutes during NF/RO treatment- a literature review [J]. Water Research, 2004, 38(12): 2795-2809.

      [59] NGHIEM L D, SCHAFER A I, ELIMELECH M. Pharmaceutical retention mechanisms by nanofiltration membranes [J]. Environmental Science & Technology, 2005, 39(19): 7698-7705.

      [60] LUO W, PHAN H V, XIE MOsmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal [J]. Water Research, 2017, 109: 122-134.

      [61] LI Y, ZHANG B X, LI G XOsmotic membrane bioreactor and its hybrid systems for wastewater reuse and resource recovery: Advances, challenges, and future directions [J]. Current Pollution Reports, 2018, 4(1): 23-34.

      [62] ROSMAN N, SALLEH W N W, MOHAMED M AHybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue [J]. Journal of Colloid and Interface Science, 2018, 532: 236-260.

      [63] ENSANO B M B, BOREA L, NADDEO VControl of emerging contaminants by the combination of electrochemical processes and membrane bioreactors [J]. Environmental Science and Pollution Research, 2019, 26(2): 1103-1112.

      [64] IBANEZ M, GRACIA-LOR E, BIJLSMA LRemoval of emerging contaminants in sewage water subjected to advanced oxidation with ozone [J]. Journal of Hazardous Materials, 2013, 260: 389-398.

      [65] MAMEDA N, PARK H J, CHOO K H. Membrane electro-oxidizer: A new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control [J]. Water Research, 2017, 126: 40-49.

      [66] LI Y, YEUNG K L. Polymeric catalytic membrane for ozone treatment of DEET in water [J]. Catalysis Today, 2019, 331: 53-59.

      [67] HO H L, CHAN W K, BLONDY AExperiment and modeling of advanced ozone membrane reactor for treatment of organic endocrine disrupting pollutants in water [J]. Catalysis Today, 2012, 193(1): 120-127.

      [68] CHAN W K, JOUET J, HENG SMembrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water [J]. Journal of Solid State Chemistry, 2012, 189: 96-100.

      [69] KIM S, PARK C M, JANG ARemoval of selected pharmaceuticals in an ultrafiltration-activated biochar hybrid system [J]. Journal of Membrane Science, 2019, 570/571: 77-84.

      [70] HEO J, FLORA J R V, HER NRemoval of bisphenol A and 17 beta-estradiol in single walled carbon nanotubes-ultrafiltration (SWNTs-UF) membrane systems [J]. Separation and Purification Technology, 2012, 90: 39-52.

      [71] ZHAO L, DENG J, SUN PNanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis [J]. Science of the Total Environment, 2018, 627: 1253-1263.

      [72] YU C, SONG T, LIU A P-BNMR/TiO2hybrid materials with exposing the {001} facet for enhanced photocatalytic application in treatment of antibiotic contaminants [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2020, 584: 124052.

      [73] GHAMKHARI A, MOHAMADI L, KAZEMZADEH SSynthesis and characterization of poly(styrene-block-acrylic acid) diblock copolymer modified magnetite nanocomposite for efficient removal of penicillin G [J]. Composites Part B-Engineering, 2020, 182: 107643.

      [74] SACCO O, VAIANO V, MATARANGOLO M. ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis [J]. Separation and Purification Technology, 2018, 193: 303-310.

      [75] SARRO M, GULE N P, LAURENTI EZnO-based materials and enzymes hybrid systems as highly efficient catalysts for recalcitrant pollutants abatement [J]. Chemical Engineering Journal, 2018, 334: 2530-2538.

      [76] GUO Z, KANG Y, HU ZRemoval pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon [J]. Bioresource Technology, 2020, 311: 123481.

      [77] LOPEZ-ORTIZ C M, SENTANA-GADEA I, VARO-GALVAN P JEffect of magnetic ion exchange (MIEX((R))) on removal of emerging organic contaminants [J]. Chemosphere, 2018, 208: 433-440.

      [78] KIM S, MUNOZ-SENMACHE J C, JUN B MA metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter [J]. Chemical Engineering Journal, 2020, 382: 122920.

      Research progress of hybrid systems for EDCs efficient removal in water

      LI Ying1, CHEN Wei-han1, SHAN Sheng-dao1, ZHOU Yun-jian1, WU Hao1, YANG Kai1, YAO Zhi-kan2

      (1. School of Environmental and Natural Resources, Zhejiang University of Science and Technology,Hangzhou 310023, China;2. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

      Many endocrine disrupting compounds (EDCs) existed in pharmaceuticals, personal care products and furniture. EDCs are frequently detected in surface water and ground water since they are survived from convenient water and wastewater treatment plants. This review presents an insight on hybrid systems combining biological, physical and chemical treatments for fast and eco-efficient EDCs removal in water. Typical hybrid systems consisted of activated sludge process, membrane bioreactor, membrane filtration process, activated carbon adsorption process and advanced oxidation process are summarized, and the characteristics of different hybrid systems are comparatively analyzed. Moreover, the application of hybrid nanotechnologies and green sustainable technology are suggested for EDCs removal in future.

      endocrine disrupting compounds; emerging contaminants; water purification; hybrid systems

      X505

      A

      10.3969/j.issn.1003-9015.2022.03.003

      1003-9015(2022)03-0318-09

      2021-07-05;

      2021-09-10。

      浙江省公益研究項(xiàng)目(LGN20E030001);浙江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020C01017)。

      李瑩(1991-),女,安徽黃山人,浙江科技學(xué)院講師,博士。

      姚之侃,E-mail:yaozhikan@zju.edu.cn

      李瑩, 陳維涵, 單勝道, 周雲(yún)劍, 吳昊, 楊凱, 姚之侃. 水體中內(nèi)分泌干擾物的高效脫除與多技術(shù)組合聯(lián)用[J]. 高校化學(xué)工程學(xué)報(bào), 2022, 36(3): 318-326.

      :LI Ying, CHEN Wei-han, SHAN Sheng-dao, ZHOU Yun-jian, WU Hao, YANG Kai, YAO Zhi-kan. Research progress of hybrid systems for EDCs efficient removal in water [J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(3): 318-326.

      猜你喜歡
      膜分離內(nèi)分泌活性炭
      玩轉(zhuǎn)活性炭
      童話世界(2020年32期)2020-12-25 02:59:18
      前列腺癌的內(nèi)分泌治療
      什么是乳腺癌的內(nèi)分泌治療?
      探析膜分離技術(shù)在環(huán)境工程中的應(yīng)用及發(fā)展
      神奇的活性炭
      化香樹果序多酚膜分離的動(dòng)力學(xué)研究
      首都醫(yī)科大學(xué)內(nèi)分泌與代謝病學(xué)系
      穩(wěn)住內(nèi)分泌
      改性活性炭吸附除砷的研究
      直接合成法制備載銀稻殼活性炭及其對苯并噻吩的吸附
      东乌珠穆沁旗| 仙游县| 确山县| 南皮县| 合水县| 车致| 南部县| 界首市| 松潘县| 惠安县| 晋城| 酉阳| 滁州市| 台中县| 和顺县| 周口市| 阿图什市| 南华县| 辽宁省| 伊吾县| 彭州市| 韶山市| 皋兰县| 沙洋县| 徐闻县| 同心县| 荣昌县| 乐平市| 文化| 丽江市| 津市市| 华容县| 固始县| 云龙县| 乌恰县| 屯门区| 赫章县| 隆化县| 龙游县| 涟源市| 大洼县|