高佳南 吳奉亮 馬礪 賀雁鵬
摘要:礦井進(jìn)風(fēng)井筒風(fēng)溫的準(zhǔn)確預(yù)測(cè)對(duì)于井下風(fēng)流的熱計(jì)算至關(guān)重要。為提高礦井井筒風(fēng)溫預(yù)測(cè)精度,在結(jié)合礦井生產(chǎn)特點(diǎn)和參考有關(guān)淋水井筒風(fēng)溫預(yù)測(cè)研究的基礎(chǔ)上,采用粒子群算法(PSO)對(duì)支持向量回歸(SVR)參數(shù)進(jìn)行優(yōu)化,建立礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型,并與利用同樣的訓(xùn)練和測(cè)試樣本建立的常規(guī)SVR預(yù)測(cè)模型和多元線性回歸(MLR)預(yù)測(cè)模型進(jìn)行比較。結(jié)果表明:對(duì)于訓(xùn)練和測(cè)試樣本,MLR預(yù)測(cè)模型的預(yù)測(cè)與觀測(cè)值散點(diǎn)分散于標(biāo)準(zhǔn)線四周,相比于MLR預(yù)測(cè)模型,常規(guī)SVR預(yù)測(cè)模型的散點(diǎn)較集中于標(biāo)準(zhǔn)線周圍,而經(jīng)過(guò)PSO優(yōu)化后的SVR預(yù)測(cè)模型的散點(diǎn)均緊密分布在標(biāo)準(zhǔn)線附近,說(shuō)明PSO-SVR預(yù)測(cè)模型具有更好的預(yù)測(cè)精度,更強(qiáng)的泛化性;MLR預(yù)測(cè)模型、常規(guī)SVR預(yù)測(cè)模型和PSO-SVR預(yù)測(cè)模型的測(cè)試樣本預(yù)測(cè)結(jié)果的平均絕對(duì)百分比誤差分別為3.43%,1.27%和0.37%,常規(guī)SVR預(yù)測(cè)模型較MLR預(yù)測(cè)模型的預(yù)測(cè)結(jié)果改進(jìn)比約63%,PSO-SVR預(yù)測(cè)模型較常規(guī)SVR預(yù)測(cè)模型的預(yù)測(cè)結(jié)果改進(jìn)比約71%,表明PSO-SVR預(yù)測(cè)模型的預(yù)測(cè)效果顯著優(yōu)于MLR預(yù)測(cè)模型和常規(guī)SVR預(yù)測(cè)模型,該模型適用于礦井淋水井筒風(fēng)溫的預(yù)測(cè)。
關(guān)鍵詞:淋水井筒;風(fēng)溫預(yù)測(cè);粒子群優(yōu)化算法;支持向量回歸
中圖分類號(hào):TD 727文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2022)03-0476-08
DOI:10.13800/j.cnki.xakjdxxb.2022.0310開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
PSO-SVR prediction method of airflow temperature
of shaft with water dropping in mine
GAO Jianan WU Fengliang MA Li HE Yanpeng
(1.College of Safety Science and Engineering,Xian University of Science and Technology,Xian 710054,China;
2.Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,
Xian University of Science and Technology,Xian 710054,China)Abstract:The accurate prediction of airflow temperature in air intake shaft of mine of great significance for the thermal calculation of underground mine airflow.In order to improve the prediction accuracy of airflow temperature in air intake shaft of mine,based on the characteristics of mine production and the study of the prediction of airflow temperature of shaft with water dropping,particle swarm optimization(PSO)is used to optimize the parameters of support vector regression(SVR),and the PSO-SVR prediction model of airflow temperature of shaft with water dropping in mine is established.The conventional SVR prediction and multiple linear regression(MLR)models are established by using the same training and testing samples,with the predicted results of PSO-SVR model compared.It is found? that for training and testing samples,the scatter points of prediction and observation values of MLR prediction model are scattered around the standard line.Compared with MLR prediction model,the scatter points of conventional SVR prediction model are more concentrated around the standard line,while the scatter points of SVR prediction model after PSO optimization are closely distributed near the standard line,which indicates that PSO-SVR prediction model has better prediction accuracy and stronger generation capacity.The mean absolute percentage errors of MLR prediction model,conventional SVR prediction model and PSO-SVR prediction model are 3.43%,1.27% and 0.37%,respectively.The improvement ratio of conventional SVR prediction model is about 63% compared with MLR prediction model,and the improvement ratio of PSO-SVR prediction model is about 71% compared with conventional SVR prediction model.The prediction effect of PSO-SVR prediction model is better than MLR prediction model and conventional SVR prediction model.The model is suitable for the prediction of airflow temperature of shaft with water dropping in mine.F191FC4A-792D-4749-8D0F-AA5A93EAF57B
Key words:shaft with water dropping;air temperature prediction;particle swarm optimization(PSO);support vector regression(SVR)
0引言
隨著礦井開(kāi)采深度的加大,井下風(fēng)溫不斷升高,熱害問(wèn)題日益突出,嚴(yán)重制約著深部煤炭資源的安全高效開(kāi)采[1-2]。為充分掌握井巷風(fēng)流熱力狀態(tài)變化規(guī)律,準(zhǔn)確評(píng)估礦井熱害程度,從而制定科學(xué)合理的降溫方案,改善井下高溫作業(yè)環(huán)境,進(jìn)而保護(hù)工作人員的身心健康,礦井風(fēng)溫預(yù)測(cè)研究至關(guān)重要[3]。
國(guó)內(nèi)外眾多學(xué)者對(duì)礦井風(fēng)溫預(yù)測(cè)做了大量研究。LOWNDES等構(gòu)建了巷道氣候預(yù)測(cè)模型并分析了有關(guān)熱力參數(shù)[4];KRASNOSHTEIN等基于拉普拉斯變換確定了圍巖與風(fēng)流間非穩(wěn)態(tài)換熱的積分表達(dá)式[5];侯祺棕等分析了風(fēng)溫與風(fēng)流濕度間變化的相關(guān)關(guān)系,并建立了將風(fēng)溫與風(fēng)流濕度相結(jié)合的預(yù)測(cè)模型[6];張習(xí)軍研究了井下風(fēng)溫的線性回歸計(jì)算式[7];高建良等通過(guò)對(duì)飽和空氣含濕量與溫度進(jìn)行二次曲線擬合來(lái)處理巷壁水分蒸發(fā),并解算出風(fēng)溫及濕度的變化規(guī)律[8];孔松等利用有限差分方法建立了進(jìn)風(fēng)井筒及巷道的風(fēng)溫迭代預(yù)測(cè)模型[9]。從上述文獻(xiàn)中可以看出,礦井風(fēng)溫預(yù)測(cè)方法主要有實(shí)驗(yàn)室模型模擬法、數(shù)學(xué)分析法、實(shí)測(cè)回歸統(tǒng)計(jì)法等[10-12]。實(shí)驗(yàn)室模型模擬法往往受實(shí)驗(yàn)條件所限,預(yù)測(cè)精度很難精確[13]。數(shù)學(xué)分析法是通過(guò)傳熱學(xué)理論建立熱傳導(dǎo)方程,計(jì)算精度相對(duì)較高,而實(shí)際條件復(fù)雜,涉及的熱物性等基礎(chǔ)參數(shù)各異且難以獲取,在計(jì)算方法上采取了假設(shè)簡(jiǎn)化,影響風(fēng)溫預(yù)測(cè)精度[14]。實(shí)測(cè)回歸統(tǒng)計(jì)法是在現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)基礎(chǔ)上進(jìn)行回歸預(yù)測(cè),解決了應(yīng)用理論方法求解風(fēng)溫的困難,但風(fēng)溫與其他參數(shù)之間存在著某種非線性關(guān)系,該方法下的風(fēng)溫預(yù)測(cè)精度不佳[15-16]。近年來(lái)機(jī)器學(xué)習(xí)的智能算法在礦井風(fēng)溫預(yù)測(cè)方面有所應(yīng)用,如BP神經(jīng)網(wǎng)絡(luò)[15,17-18]、支持向量機(jī)(SVM)[19]等。BP神經(jīng)網(wǎng)絡(luò)具有優(yōu)越的非線性處理能力,但其預(yù)測(cè)精度受學(xué)習(xí)樣本規(guī)模的影響較大,且易出現(xiàn)模型在訓(xùn)練樣本中擬合效果好,而在測(cè)試樣本表現(xiàn)差的過(guò)擬合現(xiàn)象,泛化性能較低[20];SVM是一種基于統(tǒng)計(jì)學(xué)習(xí)理論的機(jī)器學(xué)習(xí)算法,具有嚴(yán)格的數(shù)學(xué)邏輯,能夠較好地解決小型數(shù)據(jù)樣本、高維度、非線性的問(wèn)題,學(xué)習(xí)與泛化能力強(qiáng),將SVM推廣到回歸問(wèn)題可得到支持向量回歸SVR[21],能夠處理井巷風(fēng)溫與其影響因素之間存在的非線性函數(shù)關(guān)系。
礦井入風(fēng)井筒風(fēng)溫是井下空氣熱計(jì)算的重要節(jié)點(diǎn),其風(fēng)溫關(guān)系到整個(gè)礦內(nèi)的熱環(huán)境。當(dāng)井筒有淋水現(xiàn)象時(shí),其風(fēng)溫的求解涉及到風(fēng)流與淋水水滴混合流的復(fù)雜熱交換,因此,理論計(jì)算淋水井筒風(fēng)溫較為困難[22]。另外,許多學(xué)者在井筒風(fēng)溫預(yù)測(cè)研究中未考慮淋水的存在[16],導(dǎo)致預(yù)測(cè)結(jié)果不理想?;谏鲜龇治?,文中提出利用支持向量回歸法(SVR)來(lái)預(yù)測(cè)礦井淋水井筒風(fēng)溫,并利用粒子群算法(PSO)對(duì)支持向量回歸參數(shù)進(jìn)行優(yōu)化,建立參數(shù)優(yōu)化的支持向量回歸模型(PSO-SVR),以期獲得準(zhǔn)確的礦井淋水井筒風(fēng)溫預(yù)測(cè)方法。
1礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型
1.1支持向量回歸SVR
1.2粒子群優(yōu)化算法
PSO算法的基本思想是:模擬鳥(niǎo)群根據(jù)自身經(jīng)驗(yàn)和種群交流來(lái)調(diào)整搜尋路徑繼而尋找到食物的捕食行為。在PSO算法中,用粒子代表優(yōu)化問(wèn)題的解,粒子特征用位置、速度來(lái)描述,優(yōu)化求解首先是在搜索空間中隨機(jī)初始化每個(gè)粒子的速度和位置,根據(jù)粒子的適應(yīng)度函數(shù)值,迭代搜索最優(yōu)解。每次迭代搜尋時(shí)粒子都會(huì)根據(jù)自身歷史最優(yōu)位置和粒子種群當(dāng)前最優(yōu)位置來(lái)更新自身的搜尋速度和位置,最終找到最優(yōu)解。
1.3預(yù)測(cè)結(jié)果評(píng)價(jià)
對(duì)于礦井淋水井筒風(fēng)溫預(yù)測(cè)回歸模型的預(yù)測(cè)結(jié)果,文中采用平均絕對(duì)誤差MAE,平均絕對(duì)百分比誤差MAPE,均方誤差MSE等3項(xiàng)統(tǒng)計(jì)量對(duì)其預(yù)測(cè)效果進(jìn)行評(píng)價(jià)。其中,
2PSO-SVR預(yù)測(cè)模型建立
利用PSO優(yōu)選SVR的懲罰因子C和核函數(shù)參數(shù)g,建立井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型,其尋優(yōu)預(yù)測(cè)過(guò)程如圖1所示。主要步驟如下。
1)訓(xùn)練和測(cè)試樣本數(shù)據(jù)歸一化。將訓(xùn)練和測(cè)試樣本數(shù)據(jù)按式(11)(12)歸一化在[0,1]區(qū)間
式中xti為特征屬性t的原始輸入數(shù)據(jù);min{xti}為特征屬性t的原始輸入數(shù)據(jù)最小值;max{xti}為特征屬性t的原始輸入數(shù)據(jù)最大值。
式中yi為原始輸出數(shù)據(jù);min{yi}為原始輸出數(shù)據(jù)最小值;max{yi}為原始輸出數(shù)據(jù)最大值。
2)PSO初始化。算法參數(shù)的初始化:設(shè)定粒子群算法最大進(jìn)化代數(shù)為100,種群數(shù)目20,懲罰因子C∈[0.1,100],核函數(shù)參數(shù)g∈[0.01,100],局部搜索能力c1=1.5,全局搜索能力c2=1.7,對(duì)訓(xùn)練樣本進(jìn)行5折交叉驗(yàn)證;種群20個(gè)粒子的位置和速度初始化。
3)計(jì)算每個(gè)粒子的適應(yīng)度。初始化的粒子位置向量(C,g)輸入SVR后建模,將預(yù)測(cè)結(jié)果的均方誤差作為對(duì)應(yīng)粒子的適應(yīng)度。
4)優(yōu)選個(gè)體適應(yīng)度。比較20個(gè)粒子的適應(yīng)度,以適應(yīng)度最小為最優(yōu),得到當(dāng)前群體的最優(yōu)位置。
5)迭代更新種群適應(yīng)度,獲得最優(yōu)SVR參數(shù)(C,g)。按照式(6)、式(7)分別更新種群粒子的位置和速度,重復(fù)步驟3)4),更新優(yōu)選出種群最小適應(yīng)度,對(duì)應(yīng)粒子的(C,g)為最優(yōu)位置向量,即最優(yōu)SVR參數(shù)。
6)將訓(xùn)練樣本輸入SVR,最優(yōu)SVR參數(shù)(C,g)賦值于SVR,建立礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型。
3礦井淋水井筒風(fēng)溫預(yù)測(cè)算例分析
3.1樣本數(shù)據(jù)F191FC4A-792D-4749-8D0F-AA5A93EAF57B
結(jié)合礦井生產(chǎn)特點(diǎn),并參考有關(guān)礦井淋水井筒風(fēng)溫預(yù)測(cè)研究[16],綜合分析選取了地面氣候參數(shù)及井深作為影響井筒風(fēng)溫的因素,因此礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型的特征向量由地面風(fēng)溫、地面空氣相對(duì)濕度、地面大氣壓、井深構(gòu)成,輸出變量為井底風(fēng)溫。選用有關(guān)礦井淋水井筒溫度預(yù)測(cè)研究文獻(xiàn)[11,15,16,19]中近30個(gè)礦井共65組實(shí)測(cè)數(shù)據(jù)作為樣本數(shù)據(jù)。樣本數(shù)據(jù)部分內(nèi)容見(jiàn)表1。其中前50組實(shí)測(cè)數(shù)據(jù)作為訓(xùn)練集,用于構(gòu)建模型,后15組實(shí)測(cè)數(shù)據(jù)作為測(cè)試集,對(duì)已訓(xùn)練好的模型進(jìn)行預(yù)測(cè)效果檢驗(yàn)。
3.2預(yù)測(cè)結(jié)果對(duì)比分析
為研究礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型的預(yù)測(cè)效果,表2列出了其他2種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型。利用同樣的訓(xùn)練和測(cè)試樣本數(shù)據(jù),將3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型預(yù)測(cè)精度和預(yù)測(cè)誤差進(jìn)行對(duì)比。礦井淋水井筒風(fēng)溫MLR預(yù)測(cè)模型是根據(jù)最小二乘法原理尋求礦井淋水井筒風(fēng)溫與地面入風(fēng)氣候參數(shù)及井深間的最佳線性回歸函數(shù),實(shí)現(xiàn)對(duì)礦井淋水井筒風(fēng)溫的預(yù)測(cè)。礦井淋水井筒風(fēng)溫SVR預(yù)測(cè)模型中,取懲罰因子C為1,核函數(shù)參數(shù)g為0.25。利用LIBSVM工具箱,編寫PSO算法程序?qū)VR參數(shù)進(jìn)行尋優(yōu),確定最優(yōu)懲罰因子C為30.1096,核函數(shù)參數(shù)g為0.010,建立PSO優(yōu)化后的礦井淋水井筒風(fēng)溫SVR預(yù)測(cè)模型。采用上述3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型對(duì)訓(xùn)練和測(cè)試樣本進(jìn)行預(yù)測(cè),井底風(fēng)溫的預(yù)測(cè)值與其現(xiàn)場(chǎng)實(shí)際觀測(cè)值散點(diǎn)圖如圖2和圖3所示,圖中橫坐標(biāo)為井底風(fēng)溫現(xiàn)場(chǎng)實(shí)際觀測(cè)值,縱坐標(biāo)為3種預(yù)測(cè)模型的井底風(fēng)溫預(yù)測(cè)值,直線y=x為預(yù)測(cè)標(biāo)準(zhǔn)線,分布于該直線上的點(diǎn)的井底風(fēng)溫預(yù)測(cè)值等于其現(xiàn)場(chǎng)實(shí)際觀測(cè)值,即預(yù)測(cè)誤差為零。
從圖2和圖3可以看出,3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型中,MLR預(yù)測(cè)模型的訓(xùn)練和測(cè)試樣本的預(yù)測(cè)與觀測(cè)值散點(diǎn)分散于標(biāo)準(zhǔn)線四周,對(duì)比MLR預(yù)測(cè)模型,常規(guī)SVR預(yù)測(cè)模型的預(yù)測(cè)與觀測(cè)值散點(diǎn)較集中分布于標(biāo)準(zhǔn)線周圍,而經(jīng)過(guò)PSO優(yōu)化后的SVR預(yù)測(cè)模型的訓(xùn)練和測(cè)試樣本的預(yù)測(cè)與觀測(cè)值散點(diǎn)均集中在標(biāo)準(zhǔn)線附近,說(shuō)明3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型中,MLR預(yù)測(cè)模型預(yù)測(cè)結(jié)果偏差最大,PSO-SVR預(yù)測(cè)模型具有更好的預(yù)測(cè)精度,更強(qiáng)的泛化性。
圖4給出了3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型的預(yù)測(cè)值和觀測(cè)值的比較曲線??梢钥闯觯?種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型下測(cè)試樣本的預(yù)測(cè)值與觀測(cè)值曲線的趨勢(shì)基本一致,相比于MLR預(yù)測(cè)模型和常規(guī)SVR預(yù)測(cè)模型,PSO-SVR預(yù)測(cè)模型的預(yù)測(cè)值與觀測(cè)值曲線更為接近,說(shuō)明該模型擬合效果更好。
為更直觀地對(duì)比3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型的預(yù)測(cè)效果,表3給出了3種礦井淋水井筒風(fēng)溫預(yù)測(cè)模型下測(cè)試樣本的預(yù)測(cè)結(jié)果的MAE,MAPE和MSE。
從表3可知,相比于礦井淋水井筒風(fēng)溫MLR預(yù)測(cè)模型,常規(guī)SVR預(yù)測(cè)模型的預(yù)測(cè)結(jié)果的MAE與MAPE均提升約63%,MSE提升約85%,說(shuō)明常規(guī)SVR預(yù)測(cè)模型預(yù)測(cè)效果好于MLR預(yù)測(cè)模型;相對(duì)于常規(guī)SVR預(yù)測(cè)模型,PSO-SVR預(yù)測(cè)模型的預(yù)測(cè)結(jié)果的MAE與MAPE均提升約71%,MSE提升約92%,表明在礦井淋水井筒風(fēng)溫預(yù)測(cè)中PSO-SVR預(yù)測(cè)模型具有更好的預(yù)測(cè)效果,同時(shí)也說(shuō)明了優(yōu)化SVR參數(shù)對(duì)提高礦井淋水井筒風(fēng)溫預(yù)測(cè)精度有明顯作用。
4結(jié)論
1)提出了礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)方法。利用粒子群優(yōu)化算法對(duì)支持向量回歸參數(shù)進(jìn)行尋優(yōu),建立了礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型,實(shí)現(xiàn)了對(duì)礦井淋水井筒風(fēng)溫的預(yù)測(cè),為礦井風(fēng)溫預(yù)測(cè)提供了一種人工智能新方法。
2)礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型具有更高的預(yù)測(cè)精度。對(duì)比礦井淋水井筒風(fēng)溫MLR預(yù)測(cè)模型的預(yù)測(cè)結(jié)果,SVR預(yù)測(cè)模型的預(yù)測(cè)精度有一定提高,而采用PSO對(duì)SVR進(jìn)行參數(shù)尋優(yōu)后的預(yù)測(cè)模型的預(yù)測(cè)值更逼近于觀測(cè)值,說(shuō)明礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型有更好的預(yù)測(cè)效果,這也表明了SVR參數(shù)優(yōu)化對(duì)于提高礦井淋水井筒風(fēng)溫預(yù)測(cè)精度有重要作用。
3)本研究所建立的礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型是將地面入風(fēng)氣候參數(shù)及井深作為主要影響因素對(duì)礦井淋水井筒風(fēng)溫進(jìn)行預(yù)測(cè),后續(xù)工作可考慮圍巖熱物性參數(shù)、風(fēng)量等因素,建立礦井淋水井筒風(fēng)溫PSO-SVR預(yù)測(cè)模型,同時(shí)也可嘗試將本研究應(yīng)用于礦井采掘工作面風(fēng)溫預(yù)測(cè)工作當(dāng)中。
參考文獻(xiàn)(References):
[1]謝和平,周宏偉,薛東杰,等.煤炭深部開(kāi)采與極限開(kāi)采深度的研究與思考[J].煤炭學(xué)報(bào),2012,37(4):535-542.XIE Heping,ZHOU Hongwei,XUE Dongjie,et al.Research and consideration on deep coal mining and critical mining depth[J].Journal of China Coal Society,2012,37(4):535-542.
[2]高佳南.井巷圍巖對(duì)風(fēng)流調(diào)熱能力模擬研究[D].西安:西安科技大學(xué),2017.GAO Jianan.Simulation research on heat regulating ability of surrounding rock of roadway[D].Xian:Xian University of Science and Technology,2017.
[3]趙長(zhǎng)闖,楊超鋒,李志立.巨厚覆蓋層下礦井開(kāi)采風(fēng)溫預(yù)測(cè)與降溫措施研究[J].煤炭工程,2017,49(6):13-15.ZHAO Changchuang,YANG Chaofeng,LI Zhili,et al.Wind temperature forecast and cooling measures for mining under thick overburden[J].Coal Engineering,2017,49(6):13-15.F191FC4A-792D-4749-8D0F-AA5A93EAF57B
[4]LOWNDES I S,YANG Z Y,JOBLING S,et al.A parametric analysis of a tunnel climatic prediction and planning model[J].Tunnelling and Underground Space Technology,2006,21(5):520-532.
[5]KRASNOSHTEIN A E,KAZAKOV B P,SHALIMOV A V.Modeling phenomena of non-stationary heat exchange between mine air and a rock mass[J].Journal of Mining Science,2007,43(5):522-529.
[6]侯祺棕,沈伯雄.井巷圍巖與風(fēng)流間熱濕交換的溫濕預(yù)測(cè)模型[J].武漢工業(yè)大學(xué)學(xué)報(bào),1997(3):125-129.HOU Qizong,SHEN Boxiong.The prediction model of temperature and moisture transfer between tunnel periphery rock and air[J].Journal of Wuhan University of Technology,1997(3):125-129.
[7]張習(xí)軍.蠶莊金礦深部開(kāi)采降溫技術(shù)研究與應(yīng)用[D].青島:山東科技大學(xué),2007.ZHAGN Xijun.Research and application of cooling technology in deep mining of Canzhuang gold mine[D].Qingdao:Shandong University of Science and Technology,2007.
[8]高建良,張學(xué)博.潮濕巷道風(fēng)流溫度及濕度計(jì)算方法研究[J].中國(guó)安全科學(xué)學(xué)報(bào),2007,17(6):114-119,179.GAO Jianliang,ZHAGN Xuebo.Study on method of temperature and humidity calculation of airflow in wet airway[J].China Safety Science Journal,2007,17(6):114-119,179.
[9]孔松,吳建松,孫廣京,等.高溫礦井進(jìn)風(fēng)井筒及巷道風(fēng)溫預(yù)測(cè)[J].煤礦安全,2015,46(10):199-202.KONG Song,WU Jiansong,SUN Guangjing,et al.Air temperature prediction of intake air shaft and airway in high temperature mine[J].Safety in Coal Mines,2015,46(10):199-202.
[10]湯元元,菅從光,張曉磊,等.高溫礦井風(fēng)流熱狀態(tài)預(yù)測(cè)[J].煤礦安全,2010,41(2):79-82.TANG Yuanyuan,JIAN Congguang,ZHAGN Xiaolei,et al.Prediction of heat state of airflow in the high-temperature mine[J].Safety in Coal Mines,2010,41(2):79-82.
[11]何啟林,任克斌.深井建井期入風(fēng)井筒風(fēng)溫的預(yù)測(cè)[J].煤炭工程,2002(8):47-48.HE Qilin,REN Kebin.Prediction of air temperature of air-intake shafts in developing coal mine[J].Coal Engineering,2002(8):47-48.
[12]劉何清.高溫礦井井巷熱質(zhì)交換理論及降溫技術(shù)研究[D].長(zhǎng)沙:中南大學(xué),2009.LIU Heqing.The study of heat and mass transfer theory and cooling technology in the shaft and tunnel that in the high-temperature mine[D].Changsha:Central South University,2009.
[13]岑衍強(qiáng),侯祺棕.礦內(nèi)熱環(huán)境工程[M].武漢:武漢工業(yè)大學(xué)出版社,1989.
[14]張曉明,李麗峰,王志光.煤礦井下熱害分析與風(fēng)流溫度預(yù)測(cè)[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,31(6):826-829.ZHANG Xiaoming,LI Lifeng,WANG Zhiguang.Heat harm analysis and prediction of airflow temperature in coal mine[J].Journal of Liaoning Technical University(Natural Science),2012,31(6):826-829.
[15]呂品,左金寶,倪小軍,等.基于BP神經(jīng)網(wǎng)絡(luò)的礦井淋水井筒風(fēng)溫預(yù)測(cè)[J].煤礦安全,2008,39(12):11-13.LYU Pin,ZUO Jinbao,NI Xiaojun.BP neural network for predicting air temperature of watering well in mine[J].Safety in Coal Mines,2008,39(12):11-13.
[16]馬恒,劉亮亮.基于T-S模糊神經(jīng)網(wǎng)絡(luò)的淋水井筒溫度預(yù)測(cè)分析[J].世界科技研究與發(fā)展,2015,37(3):226-229.MA Heng,LIU Liangliang.Prediction analysis of temperature of wellbore with spay water based on T-S fuzzy neural network[J].World Sci-Tech R & D,2015,37(3):226-229.F191FC4A-792D-4749-8D0F-AA5A93EAF57B
[17]張翔,王佰順,徐碩,等.基于PSO-BP的礦井淋水井筒風(fēng)溫預(yù)測(cè)[J].煤礦安全,2012,43(11):178-181.ZHANG Xiang,WANG Baishun,XU Shuo,et al.Prediction of airflow temperature of shafts with water dropping based on PSO-BP neural network[J].Safety in Coal Mines,2012,43(11):178-181.
[18]趙鼎成.基于GA-BP網(wǎng)絡(luò)的掘進(jìn)工作面風(fēng)流溫度預(yù)測(cè)的研究[J].煤炭工程,2013(1):105-107.ZHAO Dingcheng.Research on prediction of airflow temperature in heading face based on GA-BP neural network[J].Coal Engineering,2013(1):105-107.
[19]段艷艷.基于支持向量機(jī)的礦井風(fēng)溫預(yù)測(cè)[D].西安:西安科技大學(xué),2013.DUAN Yanyan.Prediction of the mine air temperature based on support vector machine[D].Xian:Xian University of Science and Technology,2013.
[20]KATSUYUKI H,F(xiàn)UKUMIZU K.Relation between weight size and degree of over-fitting in neural network regression[J].Neural Networks,2008,21(1):48-58.
[21]MENG Q,MA X P,ZHOU Y.Forecasting of coal seam gas content by using support vector regression based on particle swarm optimization[J].Journal of Natural Gas Science and Engineering,2014,21:71-78.
[22]黃昌洪,馬逸吟.深井建井期入風(fēng)淋水井筒風(fēng)溫預(yù)算的研究[J].淮南礦業(yè)學(xué)院學(xué)報(bào),1987(2):34-49.HUANG Changhong,MA Yiyin.The study of temperature predicting of air-intake shafts with water dropping in developing coal mine[J].Journal of Huainan Mining Institute,1987(2):34-49.
[23]CHERKASSKY V,MA Y Q.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
[24]MILAN P,SHAHABODDIN S,DALIBOR P,et al.Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm[J].Energy,2015,87:343-351.F191FC4A-792D-4749-8D0F-AA5A93EAF57B