• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic Variation for Anaerobic Germination and Emergence from Deeper Soil Depth in Oryza nivara Accessions

    2022-06-16 11:39:34RevanayyaGotheDharminderBhatiaAkashdeepKambojNitikaSandhuButaSinghDhillon
    Rice Science 2022年4期

    Revanayya M. Gothe, Dharminder Bhatia, Akashdeep Kamboj, Nitika Sandhu, Buta Singh Dhillon

    Letter

    Genetic Variation for Anaerobic Germination and Emergence from Deeper Soil Depth inAccessions

    Revanayya M. Gothe1, Dharminder Bhatia1, Akashdeep Kamboj1, Nitika Sandhu2, Buta Singh Dhillon1

    ()

    Anaerobic germination and emergence from deeper soil depth are two important traits for breeding rice suitable for direct seeded conditions. In order to evaluate genetic variation for these traits, a total of 300accessions were evaluated along with checks, of which, 159 accessions germinated under anaerobic conditions indicating presence of immense variability in. Of 159 accessions, 69 germinated in submerged conditions and 90 germinated after removing water with availability of aerobic conditions, indicating two different mechanisms operating in. Similarly, out of 300accessions, 218 germinated from 6 cm and 95 germinated from 8 cm soil depth. The accessions that germinated from deeper soil depth had longer mesocotyl and coleoptile lengths. For both the traits, the bestaccessions that should be used in breeding programme were selected. Further, genome-wide association study (GWAS)identified 10 significant QTLs for anaerobic germination. Similarly, 8 QTLs for mesocotyl length and 12 QTLs for coleoptile length were identified. These donors and QTLs for anaerobic germination and emergence from deeper soil depth will serve as a platform for developing rice varieties suitable for direct seeded conditions.

    Rice plays a pivotal role in the food security of the world’s population.It is an important crop in Punjab, a north-western state of India due to cultivation of high-yielding varieties, favourable policy regime of free energy and open-ended purchase of this crop at an assured price, thus promising higher returns to farmers. In general, puddled transplanted rice is the cultivation method of rice which requires a lot of standing water in the field for irrigation besides using a lot of labour for transplanting. But, about 73% of water requirement for transplanted rice crop is met from ground water in the state (Sidhu et al, 2021). The practice has led to rapid decline in the water table of soil, which is threatening environmental sustainability (Custodio, 2002). Looming water scarcity, water-intensive nature of this rice cultivation practice and escalating labour shortage propel to adopt alternative methods of rice cultivation in the state. Direct seeded rice is emerging as an alternative method due to low input demand. Punjab Agricultural University, India has recently established the agronomic practices of sowing rice under direct seeded conditions (Anonymous, 2022). However, there is a need to develop varieties suitable fordirect seeded conditions.

    The development of rice varieties suitable for direct-seeded conditions requires breeding for several component traits such as germination under anaerobic conditions, emergence from deeper soil depth, uniform emergence, tolerance to Fe deficiency, resistance to soil nematodes and many plant architectural and yield traits. Among them, germination under anaerobic conditions and emergence from deeper soil depth are two important components for breeding direct seeded rice. In addition, germination under anaerobic conditions is also a feasible way to suppress weeds economically.

    Flooding in farmer field after seeding is a common problem in flood prone areas and in some areas, it may occur due to unexpected rain, unlevelled fields and poor drainage that results in uneven crop establishment. Under direct seeded conditions, the varieties having ability to germinate under anaerobic conditions will show better performance (Doley et al, 2018). On the other hand, rice has a narrow range of optimal sowing depth and deep sowing often causes poor seedling emergence. Germination from upper soil layer may suffer due to more transpiration losses under direct seeded conditions, leading to the lack of moisture required for germination and seedling growth. Nevertheless, deep sowing will enhance seedling emergence and establishment because of the high soil moisture in the seed zone quickens germination. Elongation of both mesocotyl and coleoptile, however, can facilitate the emergence of rice seed when sown deep in the soil under direct seeded conditions (Chung, 2010).

    along withis considered as the wild progenitor of(Lu et al, 2001). Itis a reservoir of an abundant genetic diversity which has contributed genes for resistance to pests, diseases, tolerance to abiotic stress, and yield related traits (Cheema et al, 2008; Gaikwad et al, 2014; Bhatia et al, 2017; Kumar et al, 2018). In addition,with ‘AA’ genome can easily hybridize with cultivatedand stable introgressions can be developed. Few scattered studies have been conducted to identify rice germplasm that can germinate under anaerobic conditions (Angaji et al, 2010; Adigbo et al, 2018) and from deeper soil depths (Wu et al, 2005; Alibu et al, 2012). Efforts have also been made to map QTLs associated with these traits in rice (Angaji et al, 2010; Baltazar et al, 2014; Lee and Kwon, 2015). However, many efforts are still needed to identify donors and QTLs for these traits.

    In this study, we screened 300accessions along with positive and negative checks for anaerobic germination and for emergence from 6 cm and 8 cm soil depths. During screening for anaerobic germination, seeds were submerged for 21 d and thereafter the water was drained out. All the accessions were allowed to germinate for another 10 d, and days to germination and the number of plants germinated were recorded. Wide range of variation was recorded inaccessions for survival under anaerobic conditions. Positive checks started germination from 9 d whereasaccessions started germination from 7 d of submergence. Out of 300accessions, 159 accessions germinated under anaerobic conditions (Table S1). Of these, 69 accessions germinated before removing water or within submerged conditions, whereas 90 accessions germinated after removing water (after 21 d of seeding)(Fig.S1). Of 90 accessions, more than half germinated after 4 d of removing water (21–25 d after seeding). Negative checks didn’t germinate before and after removing water. After removing water and allowing it to germinate for a few more days, we examined seeds of negative checks andaccessions that didn’t germinate, and found thatthese seeds had softened and started decaying, while the seeds ofaccessions that got germinated after some days of removing water were as hard as it was at the time of sowing. The 159 germinated accessions were further evaluated, and the accessions germinated within 7 to 9 d after seeding or within 4 d of removing water were selected (Table 1).

    Table 1. Oryza nivara accessions selected for anaerobic conditions and deeper soil depth (8 cm) with germination in minimum number of days as compared to 2 cm soil depth.

    Numbers in parenthesis are mesocotyl length (cm) and coleoptilelength (cm) obtained at 8 cm soil depth.‘–’ indicates no data for the trait.

    CR, Cuttack rice; IRGC, International rice germplasm collection.

    For anaerobic germination, two types of mechanisms seemed to be operating inaccessions. In one mechanism,accessions started germinating under submerged conditions after 7–8 d of seeding, showing early vigour and elongated coleoptiles. This mechanism seems similar togene mechanism, which helps the plant to survive from flood-like situations by elongating the stem internode and keeping the leaf above water (Hattori et al, 2009). In the other mechanism, germination ofaccessions remained suppressed under anaerobic conditions and as soon as the aerobic conditions prevailed, germination started. However, it will be interesting to get deep insight into molecular mechanisms in both cases inaccessions.

    Similarly, under control conditions at 2 cm soil depth, emergence ofaccessions started as early as the 5th day and by the end of the 9th day, all the accessions germinated. Under the 6 cm soil depth, seed emergence started as early as the 7th day and ended on the 13th day. Most of the accessions germinated between 8 to 12 d under the 6 cm soil depth. Under the 8 cm soil depth, seed emergence started as early as the 8th day and ended on the 14th day and most of the accessions germinated between 10 to 13 d. All the negative checks germinated under the 2 cm soil depth but didn’t germinate under the 6 and 8 cm soil depths except NPT1 and LIL427, which also germinated at the 6 cm soil depth. Out of 300accessions, 218 accessions germinated at the 6 cm soil depth and 95 lines germinated at the 8 cm soil depth. At 15 d after seeding, mesocotyl length and coleoptile length were measured by carefully uprooting the seedlings. Significant variations were observed amongaccessions for mesocotyl and coleoptile lengths under the 6 and 8 cm soil depths (Fig. S2). In the control conditions, as seeds were sown on the upper surface, mesocotyl didn’t get elongated but only coleoptile elongated and it varied from 0.40 to 0.90 cm. Under the 6 cm soil depth, mesocotyl length varied from 1.72 to 5.12 cm and coleoptile length varied from 0.41 to 3.91 cm. Under the 8 cm depth, mesocotyl length varied in the range of 2.90 to 7.70 cm and coleoptile length varied from 0.30 to 4.15 cm.

    Among the 95 accessions germinated at the 8 cm soil depth, the accessions CR100113A, IRGC92745, IRGC92910 and IRGC100916 showed the longest mesocotyl and coleoptile lengths and higher germination rate. At 15 d after seeding, we examined the seeds of negative checks andaccessions which didn’t emerge from the 8 cm depth. Seeds started germinating but they were unable to reach the soil surface due to shorter mesocotyl and coleoptile lengths, and hence the coleoptile leaves unfurled underground which finally terminated. Rice seedlings with longer mesocotyls and coleoptiles can emerge better under deeper soil depths.Highly significant variationwas observed among 95 accessions for mesocotyl and coleoptile lengths (< 0.0001). Based on replicated evaluation, the accessions which germinated within 10 d of seeding showed higher germination rate and possessed longer mesocotyl and coleoptile lengths for emergence from the 8 cm soil depth (Table 1).

    Eizenga et al (2016) indicated thatintrogressions show higher seedling vigour by increasing both coleoptile and shoot lengthsusing backcross inbred lines derived from M-202 and.hides genetic variation for emergence from deeper soil depth. Here, a set of 300accessions was tested for emergence from deeper soil depths, of which, 218 accessions germinated from the 6 cm soil depth and 95 accessions germinated from the 8 cm soil depth, indicating the presence of huge variation for this trait in annual wild relative of rice. Shift from transplanting to direct seeding for rice crop establishment has been evident in Punjab, India due to scarcity of labour required for transplanting, simplicity and additional advantages associated with direct seeded rice. Most of the present cultivated varieties might lack these traits due to breeding efforts directed towards development of cultivars suitable under transplanted conditions for past many decades. However, large number ofaccessions possess these traits, indicating large amount of variations of such traits might be present in wild relatives of rice. Based on thorough screening, theaccessions showing germination under anaerobic conditions with less days to germination could be used further in breeding programme.

    Rice varieties having the ability to elongate its mesocotyl can emerge from deeper soil depths (Luo et al, 2007; Chung, 2010). The mesocotyl elongation ability varied inaccessions. Thus, failure of seedlings to reach soil surface in deep seed placement is due to inability of the mesocotyl to elongate. The mesocotyl and coleoptile lengths increase with changing soil depths and genetic ability present in the accessions.accessions that germinated from the 8 cm soil depth had the ability to elongate its mesocotyl and emerge from the soil surface.

    GWAS was used to identify QTLs governing anaerobic germination and emergence from deeper soil depths. The method uses historic recombination events to identify markers located much closer to the genes of interest (Zhu et al, 2008). In addition, GWAS is an important strategy to identify founder lines that can be used further in breeding programme. A total of 21912 single nucleotide polymorphism (SNPs) were obtained from ddRADseq ofaccessions after data analysis and filtering based on missing data point < 10%, MAF (minor allele frequency) of 0.05 and read depth > 2 (Table S2). Of 21912 SNPs, the highest number of SNPs was obtained on chromosome 1 and the lowest on chromosome 12. SNP data along with phenotypic data of anaerobic germination, mesocotyl and coleoptile lengths for emergence from deeper soil depth were used for GWAS. Principal component analysis (PCA) ofaccessions based on 21912SNPs divided the whole population into two major sub-clusters while few accessions in one major sub-cluster seemed to bear differences with others(Fig. S3).

    Fig. 1. Manhattan plot and quantile-quantile plot for anaerobic germination (A), mesocotyl length (B) and coleoptile length (C).

    Horizontal dotted line is the threshold plotted at LOD = 3 and correspondingvalue. The vertical bars show the QTL region identified based on genome-wide association study using multi-locus mrMLM approach.

    Table 2. Single nucleotide polymorphisms associated with anaerobic germination (AG), mesocotyl length (ML) and coleoptile length (CL) in O. nivara accessions.

    Chr, Chromosome;2, Contribution to the total phenotype; MAF,Minor allele frequency.

    For GWAS,accessions were scored for anaerobic germination as ‘1’ which germinated under anaerobic conditionsand the rest as ‘0’. GWAS with anaerobic germination identified10 SNPs present on chromosomes 1, 2, 3, 4, 7, 8 and 11 (Fig. 1-A and Table 2). Similarly, GWAS was conducted to identify QTLs governing emergence from deeper soil depths using associated traits, mesocotyl length and coleoptile length. Mesocotyl and coleoptile lengths of all the accessions were obtained by combining data from different soil depths(2, 6 and 8 cm). GWAS with mesocotyl length identified 7 SNPs present on chromosomes 1, 2, 3, 8, 9 and 11 (Fig. 1-B and Table 2). GWAS with coleoptile length identified 10 SNPs on chromosomes 1, 2, 3, 4, 8, 9, 10 and 11 (Fig. 1-C and Table 2).

    QTLs for anaerobic germination have been reported on chromosomes 1, 2, 3, 7, 9, 11 and 12 (Angaji et al, 2010; Baltazar et al, 2014). Of these QTLs, trehalose-6-phosphate phosphatase genehas been identified as the genetic determinant in, a major QTL responsible for anaerobic germination.is involved in starch mobilization to the germinating embryo and elongating coleoptile, which consequentlyfacilitates germination under anaerobic conditions (Kretzschmaret al, 2015). This mechanism seems to be operating inaccessions which are germinating under submerged conditions, though further elucidation is required for validation. Ten QTLs for anaerobic germination inaccessions could be further explored by generating bi-parental population, however, no QTL was observed inregion. Wu et al (2015) and Lu et al (2016) have identified QTLs for emergence from deeper soil depth using associated traits such as mesocotyl and coleoptile lengths. This study identified 7 QTLs for mesocotyl length and 10 QTLs for coleoptile length inaccessions.These QTLs are being validated and introgressed into elite cultivars by making bi-parental populations and converting associated SNP to KASP (kompetitive allele specificPCR) markers. At this stage, it is also difficult to predict the candidate genes responsible for anaerobic germination and emergence under deeper soil depth present in QTL regions. However, the donors for anaerobic germination and emergence under deeper soil depth identified in this study can be used in the breeding for direct seeded rice. Further identification of genes underlying these QTL regions will unfold the mechanism that is responsible for anaerobic germination tolerance and emergence under deeper soil depth.

    ACKNOWLEDGEMENT

    This study was funded by the Department of Science and Technology, India (Grant No. EMR/2017/003069).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Frequency distribution for days to germination ofaccessions under anaerobic conditions.

    Fig. S2. Germination status under anaerobic conditions (submerged conditions) and emergence from deeper soil depths.

    Fig. S3. Principal component analysis (PCA) plot showing clustering of 294accessions into different groups.

    Table S1. Information of 300accessions and checks being evaluated under anaerobic conditions and emergence from deeper soil depths at 6 and 8 cm.

    Table S2.ddRADseq based SNPs inaccessions spanning all the 12 chromosomes.

    Adigbo S O, Osadebay P J, Iseghohi I, Alarima C I, Agbenin N O, Odedina J N, Fabunmi T O. 2018. Screening and evaluation of upland rice (L.) varieties in inundated soil., 51(2): 63–69.

    Alibu S, Saito Y, Shiwachi H, Irie K. 2012. Genotypic variation in coleoptile or mesocotyl lengths of upland rice (L.) and seedling emergence in deep sowing., 7:6239–6348.

    Angaji S A, Septiningsih E M, Mackill D J, Ismail A M. 2010. QTLs associated with tolerance of flooding during germination in rice (L.)., 172(2): 159–168.

    Anonymous. 2022. Package of Practices ofCrops. Ludhiana, India: Punjab Agricultural University: 21–24.

    Baltazar M D, Ignacio J C I, Thomson M J, Ismail A M, Mendioro M S, Septiningsih E M. 2014. QTL mapping for tolerance of anaerobic germination from IR64 and thelandrace Nanhi using SNP genotyping., 197: 251–260.

    Bhatia D, Joshi S, Das A, Vikal Y, Sahi G K, Neelam K, Kaur K, Singh K. 2017. Introgression of yield component traits in rice (ssp.) through interspecific hybridization., 57(3): 1557–1573.

    Cheema K K, Grewal N K, Vikal Y, Sharma R, Lore J S, Das A, Bhatia D, Mahajan R, Gupta V, Bharaj T S, Singh K. 2008. A novel bacterial blight resistance gene frommapped to 38 kb region on chromosome 4L and transferred toL., 90(5): 397–407.

    Chung N J. 2010. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields., 61(11): 911.

    Custodio E. 2002. Aquifer overexploitation: What does it mean?, 10(2): 254–277.

    Doley D, Barua M, Sarma D, Barua P K. 2018. Screening and enhancement of anaerobic germination of rice genotypes by pre-sowing seed treatments., 115:1185–1190.

    Eizenga G C, Neves P C F, Bryant R J, Agrama H A, Mackill D J. 2016. Evaluation of a M-202 ×advanced backcross mapping population for seedling vigor, yield components and quality., 208(1): 157–171.

    Gaikwad K B, Singh N, Bhatia D, Kaur R, Bains N S, Bharaj T S, Singh K. 2014. Yield-enhancing heterotic QTL transferred from wild species to cultivated riceL., 9(6): e96939.

    Hattori Y, Nagai K, Furukawa S, Song X J, Kawano R, Sakakibara H, Wu J Z, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. 2009. The ethylene response factorsandallow rice to adapt to deep water., 460: 1026–1030.

    Kretzschmar T, Pelayo M A F, Trijatmiko K R, Gabunada L F M, Alam R, Jimenez R,Mendioro M S, Slamet-Loedin I H, Sreenivasulu N, Bailey-Serres J, Ismail A M, Mackill D J, Septiningsih E M. 2015. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice., 1:15124.

    Kumar K, Sarao P S, Bhatia D, Meelam K, Kaur A, Mangat G S, Brar D S, Singh K. 2018. High-resolution genetic mapping of novel brown planthopper resistance locus,inL.×(Sharma & Shastry) derived interspecific F2population., 131(5):1163–1171.

    Lee J, Kwon S W. 2015. Analysis of quantitative trait loci associated with seed germination and coleoptile length under low temperature condition., 18(4): 273–278.

    Lu B R, Ge S, Sang T, Chen J K, Hong D Y. 2001. The current taxonomy and perplexity of the genus(Poaceae)., 39(4):373–388.

    Lu Q, Zhang M C, Niu X J, Wang C H, Xu Q, Feng Y, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. 2016. Uncovering novel loci for mesocotyl elongation and shoot length inrice through genome-wide association mapping., 243(3): 645–657.

    Luo J, Tang S Q, Hu P S, Louis A, Jiao G A, Tang J. 2007. Analysis on factors affecting seedling establishment in rice., 14(1): 27–32.

    Sidhu B S, Sharda R, Singh S. 2021. Spatio-temporal assessment of groundwater depletion in Punjab, India., 12: 100498.

    Wu J H, Feng F J, Lian X M, Teng X Y, Wei H B, Yu H H, Xie W B, Yan M, Fan P Q, Li Y, Ma X S, Liu H Y, Yu S B, Wang G W, Zhou F S, Luo L J, Mei H W. 2015. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice., 15: 218.

    Wu M G, Zhang G H, Lin J R, Cheng S H. 2005. Screening for rice germplasms with specially-elongated mesocotyl., 12(3):226–228.

    Zhu C S, Gore M, Buckler E S, Yu J M. 2008. Status and prospects of association mapping in plants., 1(1):5–20.

    30 October 2021;

    18 February 2022

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.02.001

    Dharminder Bhatia (d.bhatia@pau.edu)

    大码成人一级视频| 免费一级毛片在线播放高清视频 | 欧美日韩瑟瑟在线播放| 一本久久中文字幕| 日韩欧美三级三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕日韩| 久久青草综合色| 色综合婷婷激情| 久久婷婷成人综合色麻豆| 亚洲专区中文字幕在线| 夜夜看夜夜爽夜夜摸| 69精品国产乱码久久久| 日韩欧美一区视频在线观看| 亚洲精品国产区一区二| 亚洲熟女毛片儿| 国产精品99久久99久久久不卡| 91在线观看av| 亚洲自偷自拍图片 自拍| 激情在线观看视频在线高清| 国产精品一区二区在线不卡| 12—13女人毛片做爰片一| 午夜成年电影在线免费观看| 桃色一区二区三区在线观看| 脱女人内裤的视频| 精品国产超薄肉色丝袜足j| 欧美+亚洲+日韩+国产| www.自偷自拍.com| 久久国产精品影院| 久久精品亚洲精品国产色婷小说| 大码成人一级视频| 精品无人区乱码1区二区| 国产精华一区二区三区| 国产欧美日韩一区二区精品| 午夜免费观看网址| 成人国产一区最新在线观看| 不卡av一区二区三区| 久久青草综合色| 制服诱惑二区| 99国产综合亚洲精品| 亚洲精品中文字幕一二三四区| 可以在线观看的亚洲视频| 夜夜夜夜夜久久久久| 久久性视频一级片| 高清黄色对白视频在线免费看| 99国产精品免费福利视频| 天堂动漫精品| 日韩欧美一区视频在线观看| 岛国在线观看网站| 国产精品永久免费网站| 99国产精品99久久久久| 村上凉子中文字幕在线| 90打野战视频偷拍视频| 亚洲七黄色美女视频| 99热只有精品国产| 亚洲国产精品999在线| 亚洲精品国产区一区二| 国产精品亚洲一级av第二区| 在线十欧美十亚洲十日本专区| 欧美国产日韩亚洲一区| 女警被强在线播放| 香蕉国产在线看| 国产av又大| 久久精品国产亚洲av高清一级| 亚洲精品美女久久av网站| 久久久久久大精品| 在线av久久热| 亚洲情色 制服丝袜| 欧美中文日本在线观看视频| 99香蕉大伊视频| 老鸭窝网址在线观看| 日日干狠狠操夜夜爽| а√天堂www在线а√下载| 久久精品国产亚洲av高清一级| 国产xxxxx性猛交| 色哟哟哟哟哟哟| 黑人巨大精品欧美一区二区mp4| 热re99久久国产66热| √禁漫天堂资源中文www| 婷婷丁香在线五月| 激情在线观看视频在线高清| 久久人人97超碰香蕉20202| 国产高清视频在线播放一区| 欧美日韩瑟瑟在线播放| 岛国在线观看网站| 在线观看舔阴道视频| 久久精品国产99精品国产亚洲性色 | 欧美亚洲日本最大视频资源| www日本在线高清视频| 一级毛片精品| 国产亚洲精品综合一区在线观看 | 丁香六月欧美| 97人妻天天添夜夜摸| 12—13女人毛片做爰片一| 国产99白浆流出| 国产一级毛片七仙女欲春2 | 久久久久久久久免费视频了| www国产在线视频色| 可以免费在线观看a视频的电影网站| 香蕉久久夜色| 亚洲成人国产一区在线观看| 欧美在线一区亚洲| 精品熟女少妇八av免费久了| 91国产中文字幕| 麻豆国产av国片精品| 亚洲第一欧美日韩一区二区三区| 脱女人内裤的视频| 97人妻天天添夜夜摸| 欧美日韩精品网址| 无限看片的www在线观看| 亚洲中文日韩欧美视频| 搞女人的毛片| 国产一级毛片七仙女欲春2 | 又大又爽又粗| 黄片大片在线免费观看| 亚洲人成电影观看| 两性夫妻黄色片| www国产在线视频色| 曰老女人黄片| 亚洲国产精品999在线| 99国产精品免费福利视频| 国产一区二区在线av高清观看| 日韩三级视频一区二区三区| 欧美日本中文国产一区发布| 久久中文字幕人妻熟女| 欧美成人性av电影在线观看| a在线观看视频网站| 亚洲人成电影观看| 高清毛片免费观看视频网站| 大型av网站在线播放| cao死你这个sao货| 亚洲精品久久国产高清桃花| 美女 人体艺术 gogo| 丝袜人妻中文字幕| bbb黄色大片| 91麻豆av在线| 一区二区三区高清视频在线| 美女高潮喷水抽搐中文字幕| 精品免费久久久久久久清纯| 国产精品自产拍在线观看55亚洲| 19禁男女啪啪无遮挡网站| 久久香蕉国产精品| 久久精品国产亚洲av高清一级| 香蕉国产在线看| 久久久久精品国产欧美久久久| 黄网站色视频无遮挡免费观看| 在线免费观看的www视频| 久久精品国产亚洲av高清一级| 露出奶头的视频| 最近最新中文字幕大全免费视频| 又大又爽又粗| 久久九九热精品免费| 国产精华一区二区三区| 伦理电影免费视频| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 国产单亲对白刺激| 一区二区三区国产精品乱码| 精品久久久久久久久久免费视频| 夜夜躁狠狠躁天天躁| 脱女人内裤的视频| 岛国在线观看网站| 中文亚洲av片在线观看爽| 巨乳人妻的诱惑在线观看| 免费在线观看完整版高清| 一a级毛片在线观看| av天堂在线播放| av天堂在线播放| 国产精品久久久av美女十八| 黑人巨大精品欧美一区二区蜜桃| 午夜免费成人在线视频| 中文字幕人成人乱码亚洲影| 亚洲一码二码三码区别大吗| 女人精品久久久久毛片| 91麻豆av在线| 国产精品电影一区二区三区| 免费一级毛片在线播放高清视频 | 午夜免费成人在线视频| 少妇被粗大的猛进出69影院| 90打野战视频偷拍视频| 日日干狠狠操夜夜爽| 亚洲欧美一区二区三区黑人| 一个人观看的视频www高清免费观看 | 国产片内射在线| 我的亚洲天堂| 亚洲少妇的诱惑av| 国产精品爽爽va在线观看网站 | 亚洲欧美精品综合一区二区三区| 国产精品亚洲一级av第二区| 久久国产精品男人的天堂亚洲| 国产精品久久久久久精品电影 | 国产男靠女视频免费网站| 国产欧美日韩一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 精品国产一区二区三区四区第35| 国产一区二区三区综合在线观看| 99国产精品免费福利视频| 日韩三级视频一区二区三区| 在线免费观看的www视频| 99国产综合亚洲精品| 精品一区二区三区四区五区乱码| 精品国产亚洲在线| 亚洲视频免费观看视频| 日韩欧美免费精品| 国产成人精品久久二区二区91| 在线观看日韩欧美| 精品久久久久久成人av| 波多野结衣巨乳人妻| 少妇粗大呻吟视频| 女人被躁到高潮嗷嗷叫费观| 97碰自拍视频| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| 精品国产国语对白av| 国产欧美日韩一区二区三区在线| 亚洲美女黄片视频| 日韩 欧美 亚洲 中文字幕| 黄色视频不卡| 日日干狠狠操夜夜爽| 亚洲九九香蕉| 国产熟女午夜一区二区三区| 亚洲精品国产一区二区精华液| 色尼玛亚洲综合影院| 色播在线永久视频| 久久久久久免费高清国产稀缺| 久热这里只有精品99| 亚洲成av人片免费观看| 亚洲在线自拍视频| 国产亚洲av高清不卡| 村上凉子中文字幕在线| 午夜免费观看网址| 欧美日韩亚洲综合一区二区三区_| 久久精品成人免费网站| 成人国语在线视频| 人人澡人人妻人| 亚洲欧美激情在线| 韩国精品一区二区三区| 欧美黄色片欧美黄色片| 露出奶头的视频| 99精品久久久久人妻精品| www.熟女人妻精品国产| 丝袜美足系列| 九色亚洲精品在线播放| 乱人伦中国视频| 日韩av在线大香蕉| 欧美 亚洲 国产 日韩一| 99re在线观看精品视频| cao死你这个sao货| 别揉我奶头~嗯~啊~动态视频| 校园春色视频在线观看| 啦啦啦韩国在线观看视频| 国产乱人伦免费视频| 伊人久久大香线蕉亚洲五| 免费av毛片视频| 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 变态另类丝袜制服| 很黄的视频免费| 亚洲国产欧美网| 亚洲专区中文字幕在线| 在线观看一区二区三区| 欧美黄色片欧美黄色片| 久久亚洲真实| 午夜福利成人在线免费观看| 亚洲一区二区三区不卡视频| 日本五十路高清| 国产精品一区二区三区四区久久 | 亚洲va日本ⅴa欧美va伊人久久| 此物有八面人人有两片| 亚洲,欧美精品.| 香蕉丝袜av| 中文字幕人妻熟女乱码| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 真人一进一出gif抽搐免费| 久久人人爽av亚洲精品天堂| 亚洲色图av天堂| 午夜福利18| 淫秽高清视频在线观看| 久久性视频一级片| xxx96com| 国产精品一区二区精品视频观看| 午夜a级毛片| 90打野战视频偷拍视频| a级毛片在线看网站| 老司机午夜福利在线观看视频| 久久久久国产精品人妻aⅴ院| 黑人巨大精品欧美一区二区蜜桃| 淫秽高清视频在线观看| 免费看十八禁软件| 国产97色在线日韩免费| 怎么达到女性高潮| 欧美老熟妇乱子伦牲交| 黄色丝袜av网址大全| 欧美亚洲日本最大视频资源| 啦啦啦 在线观看视频| 亚洲精华国产精华精| 免费不卡黄色视频| 色综合婷婷激情| 午夜视频精品福利| 久久人妻福利社区极品人妻图片| 极品人妻少妇av视频| 看片在线看免费视频| 在线观看66精品国产| 欧美一区二区精品小视频在线| 久久婷婷人人爽人人干人人爱 | 熟女少妇亚洲综合色aaa.| 亚洲一区中文字幕在线| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 男人的好看免费观看在线视频 | 亚洲一区高清亚洲精品| 国产精品国产高清国产av| 欧美日本亚洲视频在线播放| 在线天堂中文资源库| 丝袜人妻中文字幕| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 巨乳人妻的诱惑在线观看| 国产高清有码在线观看视频 | 欧美日韩瑟瑟在线播放| 丝袜在线中文字幕| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| 亚洲人成网站在线播放欧美日韩| 巨乳人妻的诱惑在线观看| 18禁美女被吸乳视频| 怎么达到女性高潮| 啦啦啦 在线观看视频| 我的亚洲天堂| 亚洲国产精品sss在线观看| av超薄肉色丝袜交足视频| 精品欧美一区二区三区在线| 美国免费a级毛片| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 国产97色在线日韩免费| 校园春色视频在线观看| 韩国av一区二区三区四区| 久热这里只有精品99| 久久午夜亚洲精品久久| 亚洲欧美日韩高清在线视频| 黑人巨大精品欧美一区二区mp4| 国产91精品成人一区二区三区| 久久九九热精品免费| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 12—13女人毛片做爰片一| 亚洲熟妇熟女久久| 精品无人区乱码1区二区| 色综合婷婷激情| 久久久久久免费高清国产稀缺| 国产精品免费一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 香蕉国产在线看| 变态另类成人亚洲欧美熟女 | 亚洲成国产人片在线观看| 亚洲最大成人中文| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 久久久精品国产亚洲av高清涩受| 熟妇人妻久久中文字幕3abv| 国产精品久久久人人做人人爽| 日韩大码丰满熟妇| 韩国av一区二区三区四区| 国产野战对白在线观看| 亚洲无线在线观看| 国产极品粉嫩免费观看在线| 一本综合久久免费| 亚洲人成77777在线视频| 亚洲av成人一区二区三| 欧美日韩乱码在线| 色播在线永久视频| 他把我摸到了高潮在线观看| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 此物有八面人人有两片| 国产伦人伦偷精品视频| 午夜久久久久精精品| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 性少妇av在线| 美女免费视频网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲激情在线av| 可以免费在线观看a视频的电影网站| 亚洲电影在线观看av| 欧美老熟妇乱子伦牲交| 操出白浆在线播放| 亚洲国产欧美网| 久久精品国产亚洲av香蕉五月| 夜夜爽天天搞| 免费久久久久久久精品成人欧美视频| 亚洲专区国产一区二区| 男人的好看免费观看在线视频 | 国产区一区二久久| 99久久99久久久精品蜜桃| 久久久国产欧美日韩av| 日日干狠狠操夜夜爽| 日日爽夜夜爽网站| 国产精品影院久久| 性色av乱码一区二区三区2| 亚洲男人的天堂狠狠| 国产成人系列免费观看| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 91麻豆av在线| 午夜精品国产一区二区电影| 18禁美女被吸乳视频| www.熟女人妻精品国产| 麻豆成人av在线观看| 国产精品一区二区三区四区久久 | 国产黄a三级三级三级人| 国产麻豆69| 亚洲中文字幕日韩| 长腿黑丝高跟| 中文字幕人妻熟女乱码| 色综合婷婷激情| 嫩草影视91久久| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 国产精品九九99| 精品一区二区三区四区五区乱码| 亚洲国产日韩欧美精品在线观看 | 国产欧美日韩一区二区三区在线| 国产精品一区二区三区四区久久 | 免费在线观看完整版高清| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 亚洲国产毛片av蜜桃av| 久久精品91无色码中文字幕| 九色国产91popny在线| 久久婷婷成人综合色麻豆| 亚洲av电影在线进入| www国产在线视频色| 97人妻天天添夜夜摸| 99精品欧美一区二区三区四区| www.www免费av| 黄片播放在线免费| 欧美一区二区精品小视频在线| 日本a在线网址| 国产精品98久久久久久宅男小说| 91成年电影在线观看| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 校园春色视频在线观看| 波多野结衣av一区二区av| 亚洲国产中文字幕在线视频| 国产精品二区激情视频| 久久影院123| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 亚洲成av人片免费观看| 99国产精品一区二区三区| 精品人妻在线不人妻| 亚洲第一欧美日韩一区二区三区| 久久婷婷成人综合色麻豆| 日本a在线网址| 好看av亚洲va欧美ⅴa在| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器 | 精品欧美国产一区二区三| 超碰成人久久| 黄片小视频在线播放| x7x7x7水蜜桃| 欧美精品亚洲一区二区| 黑丝袜美女国产一区| 可以在线观看毛片的网站| 国内毛片毛片毛片毛片毛片| 国产精品免费视频内射| 这个男人来自地球电影免费观看| 九色亚洲精品在线播放| 国产高清有码在线观看视频 | 欧美不卡视频在线免费观看 | 亚洲在线自拍视频| 国产又爽黄色视频| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费 | 国产成人一区二区三区免费视频网站| 老熟妇乱子伦视频在线观看| 天天添夜夜摸| 免费在线观看日本一区| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| 嫩草影视91久久| 一级,二级,三级黄色视频| 咕卡用的链子| 欧美黄色片欧美黄色片| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 亚洲精品在线美女| 亚洲成av人片免费观看| 亚洲成人免费电影在线观看| 久久精品成人免费网站| 欧美 亚洲 国产 日韩一| 国产亚洲欧美在线一区二区| 国产高清videossex| 欧美av亚洲av综合av国产av| 女警被强在线播放| 精品国产亚洲在线| 亚洲人成电影观看| 欧美成人午夜精品| 午夜福利在线观看吧| 精品福利观看| 免费女性裸体啪啪无遮挡网站| 免费在线观看日本一区| 1024香蕉在线观看| 多毛熟女@视频| 亚洲自拍偷在线| 免费在线观看亚洲国产| 女人被躁到高潮嗷嗷叫费观| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 欧美成狂野欧美在线观看| 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 精品久久久久久成人av| 伊人久久大香线蕉亚洲五| 这个男人来自地球电影免费观看| 一二三四在线观看免费中文在| 丝袜美腿诱惑在线| 黑人操中国人逼视频| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 亚洲九九香蕉| 亚洲最大成人中文| av网站免费在线观看视频| 国产精品1区2区在线观看.| 大香蕉久久成人网| 国产一级毛片七仙女欲春2 | 国产成人精品在线电影| 脱女人内裤的视频| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3 | 岛国在线观看网站| 免费高清在线观看日韩| 窝窝影院91人妻| 十八禁网站免费在线| 国产高清videossex| 亚洲av美国av| 成人永久免费在线观看视频| 久久久久九九精品影院| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 757午夜福利合集在线观看| 中文字幕人妻丝袜一区二区| 欧美国产日韩亚洲一区| 午夜视频精品福利| 欧美在线一区亚洲| 无限看片的www在线观看| 久久人妻福利社区极品人妻图片| 国产精品亚洲美女久久久| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看午夜福利视频| 一区二区三区高清视频在线| 午夜成年电影在线免费观看| 国产精品自产拍在线观看55亚洲| 激情视频va一区二区三区| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 亚洲精品国产一区二区精华液| 在线永久观看黄色视频| 多毛熟女@视频| avwww免费| av天堂久久9| 国产精品,欧美在线| 久久热在线av| 成人免费观看视频高清| 日日摸夜夜添夜夜添小说| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 大陆偷拍与自拍| 成年版毛片免费区| 日韩一卡2卡3卡4卡2021年| 美女高潮喷水抽搐中文字幕| 成人国产综合亚洲| 老司机午夜十八禁免费视频| 国产精品二区激情视频| 午夜福利影视在线免费观看| 一个人观看的视频www高清免费观看 | 一夜夜www| 咕卡用的链子| 亚洲av第一区精品v没综合| 亚洲最大成人中文| 电影成人av| 国产午夜福利久久久久久| 18禁黄网站禁片午夜丰满| 国产亚洲精品第一综合不卡| 女人被狂操c到高潮| av欧美777| 人人澡人人妻人| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 日日干狠狠操夜夜爽| 手机成人av网站| 国产精华一区二区三区| 国产成人欧美| 免费不卡黄色视频| 精品一品国产午夜福利视频| 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| 久久久久久久久免费视频了| 亚洲熟妇熟女久久| 一本大道久久a久久精品|