• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Chito-Oligosaccharide (COS) in Vitro and in Vivo: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetics Properties in Rats

    2022-06-14 06:18:24ZHANGPengpengZHANGMiaomiaoDONGKaiyuZHANGYicongYANGShuangWANGYuanhongJIANGTingfuYUMingmingandLVZhihua
    Journal of Ocean University of China 2022年3期

    ZHANGPengpeng,ZHANG Miaomiao, DONG Kaiyu, ZHANGYicong, YANGShuang, 2), 3), 4), WANGYuanhong, 2), 3), 4), JIANG Tingfu, 2), 3), 4), YU Mingming, 2), 3), 4), *, and LVZhihua, 2), 3), 4) , *

    Evaluation of Chito-Oligosaccharide (COS)and: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetics Properties in Rats

    ZHANGPengpeng1),ZHANG Miaomiao1), DONG Kaiyu1), ZHANGYicong1), YANGShuang1), 2), 3), 4), WANGYuanhong1), 2), 3), 4), JIANG Tingfu1), 2), 3), 4), YU Mingming1), 2), 3), 4), *, and LVZhihua1), 2), 3), 4) , *

    1)School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China 2) Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China 3) Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, China 4) Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, China

    Chito-oligosaccharide (COS) had shown a variety of biological activities and potential biomedical implications.The present study investigated the pharmacokinetics, bioavailability, andabsorption of COS with degrees of polymerization (DPs) 2-7 and explored the influence of DPs on them. From Caco-2 cell permeation studies, COS were low permeability compounds with no directional effects, suggesting a lowabsorption mediated by facilitation diffusion and paracellular absorption. After an intragastrical administration to rats, COS2 showed the highest systemic exposure in six oligosaccharides. The bioavailability of COS2-7 was 7.33%, 6.11%, 4.67%, 4.13%, 4.02%, 0.99%, respectively. Differences in bioavailability for each COS correlated to structural variations, with high DPs contributing to a decrease in bioavailability. In conclusion, COS could be absorbed by the intestinal tract bothand. The very low oral bioavailability of COS could be due to low permeability. DPs can affect absorption and bioavailability of COS2-7. This study provided evidence for the absorption characteristics of COS2-7 to help us better understanding the pharmacological actions.

    chito-oligosaccharide (COS); Caco-2; transport; pharmacokinetics; bioavailability

    1 Introduction

    Chito-oligosaccharide (COS) were the hydrolyzed pro- ducts of chitin or chitosan derived from abundant marine biological resource (shrimp and crab shells) and were an oligomer of β-(1-4)-linked D-glucosamine (Muanprasat and Chatsudthipong, 2017). Fig.1 shows the chemical structure of COS with complete deacetylation.Over the past decades, COS have been shown to exhibit remarka- ble antimicrobial (Rahman., 2014), anti-tumor (Park., 2014), antioxidant (Ngo., 2008), anti-inflammatory (Chung., 2012), immuno-stimulating (Zhang., 2014), anti-obesity (Huang., 2015), anti-diabetic (Zheng., 2018), anti-Alzheimer’s disease (Pan- gestuti., 2011) effect. Overall, COS had drawn significant interest among scholars and researchers as bioactive molecules.

    In contrast to the widely explored pharmacological ac- tions, studies on the absorption mechanisms and thefate of COS were limited and the influence of DPs was also unknown.Several researchers had indicated only COS2 and COS3 could be absorbed from the gastrointestinal tract (Chen., 2005). On the contrary, COS6 protected against acetaminophen-induced hepatotoxicity in mice (Barman., 2016). Therefore, the pharmacokinetics and bioavailability of COS with other DPs remain to be addressed due to challenging aspects of quantitative analysis. To have a better understanding of the pharmacokinetics behavior of COS, a transport study is necessary to clarify its absorption mechanism. COS had been shown to enter cells by facilitated passive diffusion for the first time (Li., 2014) in previous studies. On the other hand, concentration and active transporter were capable of mediating the absorption of COS2 and COS5 (Chen., 2019), which was against the previous results. Meanwhile, FITC-COS were used for transport experiments instead of COS in these studies, so these results might not reflect its transport mechanism cor-rectly. Thus, absorption mechanisms of COS should be further investigated. Caco-2 cells model is widely used as a stan-dard screening tool to evaluate the absorption me- chanism of transport of drug candidates (Hidalgo., 1989). Thus, the Caco-2 monolayer model was chosen in this study.

    Fig.1 The structure of the chito-oligosaccharide (COS).

    Therefore, the present study aims to investigate the pharmacokinetics and bioavailability of COS in rats and to monitor absorption properties in Caco-2 cell models.

    2 Materials and Methods

    2.1 Chemicals and Materials

    Caco-2 cell lines were purchased from the cell resource center of the Shanghai Institutes for Biological Sciences (Shanghai, China). COS standards (purity >95.0%) were provided by Qingdao BZ Oligo Biotech Co., Ltd (Qingdao, China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl- tetra-zolium bromide (MTT), penicillin, streptomycin, propranolol, and atenolol were purchased from Sigma- Aldrich (St Louis, MO, USA). Phosphate buffer saline (PBS) and Hank’s balanced salt solution (HBSS) were bought from Solarbio Life Science (Beijing, China). Fetalbovine serum (FBS), trypsin, and Iscove’s Modified Dubecco’s Medium (IMDM) were obtained from Gibco (Grand Island, NY).HPLC-grade ammonium hydroxide, ammonium acetate, phloretin, quercetin, melibiose (internal standard, IS), and sodium deoxycholate were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Transwell cell culture plate (0.4μm pore size) and 96-well cell culture plates were purchased from Corning Inc. (New York, USA). Acetonitrile and water (LC-MS grade) were obtained from Merck technologies Co., Ltd. (Darmstadt, Germany).

    2.2 UPLC-MS/MS Apparatuses and Operation Conditions

    The chromatography separation was performed using the UPLC System (UltiMate 3000, Thermo Fisher Scientific, MA, USA). The collected samples were separated by theXBridge Amide column (3.5μm, 2.1mm×150mm). Optimized mobile phase A consisted of 10mmolL?1aque- ous ammonium acetate (pH=9) in water, whereas mobile phase B consisted of 10mmolL?1aqueous ammonium acetate (pH=9) in acetonitrile run at a flow rate of 0.20mLmin?1and the column temperature was 60℃. The pro- portion of organic phase used for elution of plasma samples and cell samples were 50% and 40%, respectively.

    Quantitative analysis was conducted on TSQ QuantivaTM triple quadruple mass spectrometer (Thermo Fisher Scientific, MA, USA). The data were collected in the MRM mode, and the parameters were listed in Table 1.

    Table 1 Optimized MS/MS parameters of analytes and internal standards in MRM mode

    2.3 Transport of COS Across Caco-2 Cells

    The cells were grown in IMDM containing 20% FBS, 100UmL?1penicillin, and 100μgmL?1streptomycin and inoculated in polycarbonate at a density of 5×104cells per well and cultured for 21 days. Caco-2 cells were cultured in an incubator at 37℃in humidified air containing 5% CO2. The integrity of the cells monolayer was examined by calculating the apparent permeability coefficients (app) values of the markers atenolol and propranolol and measuring the transepithelial electrical resistance (TEER) across each well before and after transport experiments. When the TEER values of a consistent monolayer were no lower than 300Ωcm2during the experiment (Li., 2016) and atenolol (around 10?7cms?1) and propranolol (around 10?5cms?1) had appropriateappvalues,the Caco-2 monolayer cells can be used for transport experiments.

    Before the study, the consistent cell monolayer was washed with HBSS (pH7.4) twice times to remove the interfering substances on the cell surface and incubated in HBSS alone or HBSS containing phloretin (100μmolL?1) or quercetin (50μmolL?1) or sodium deoxycholate (1mmolL?1). Following a 30min incubation, for transfer in the AP-BL direction, 0.2mL drug solution was added to the AP side as the supply pool, and 0.6mL HBSS solution was added to the BL side as the receiving pool. In the BL-AP direction, 0.6mL compound solution was added to the BL side as the supply pool, and 0.2mL HBSS solution was added to the AP side as the receiving pool. To see whether transporters were involved in the absorption of COS2-7, the bidirectional transport assays with or without phloretin (Granchi., 2016) (100μmolL?1, the inhibitor of GLUT1) or quercetin (Kwon., 2007) (50 μmolL?1, the inhibitor of GLUT2) were performed.Meanwhile, sodium deoxycholate (Chen., 2019) (1mmolL?1) was used to explore whether the transport of COS wasthe paracellular pathway. Samples (50μL) were collected from the receiver chamber every half hour for three hours and replaced with an equal volume of HBSS alone or in HBSS containing phloretin (100μmolL?1) or quercetin (50μmolL?1) or sodium deoxycholate (1mmolL?1). All samples were stored at ?40℃ prior to tes- ting. The absorption and transport characteristics of COS in the Caco-2 cell model were evaluated with theapp(Grès., 1998), Efflux ratio (ER) (Ma., 2019).

    2.4 Pharmacokinetics Study of COS

    The male SD rats were purchased from Qingdao Daren Fortune Animal Technology Co., Ltd. (Qingdao, China, SCXK 20190003). The relevant animal experiment design was carried out in accordance with the guidelines of the Institutional Animal Care and Use Committee of Qingdao. Animals were housed under controlled environmental conditions (12 h dark-light cycle, the temperature was 23±2℃, and the humidity was 55±5%). Male rats (body weight 200±20g) were fasted overnight with free access to water in preparation for the experiments. COS were dissolved in sterile saline and administered to rats via the caudal vein at doses of 3.5mgkg?1. Blood samples (0.30mL) were collected from the orbital cavity at 0, 0.083, 0.167, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 4.0 and 8.0h after drug administration. COS were dissolved in sterile saline and administered to rats by oral gavage at doses of 35mgkg?1(Chen., 2005). Blood samples were collected from the orbital cavity at 0, 0.083, 0.167, 0.25, 0.50, 1.0, 1.5, 2.0, 4.0, 8.0, 12.0, 24.0h after intragastrical administration. All samples were stored in tubes moistened with heparin. After each sampling, an equal volume of heparinized normal saline was given to rats immediately for compensation of blood withdrawal. Plasma was obtained by centrifugation at 4000rmin?1for 10min. Rat plasma (100μL) was extracted with 200μL acetonitrile containing internal standard (IS, melibiose). Then the mixtures were vortexed and centrifuged at 14000rmin?1for 10min. The supernatant was evaporated and the residue was reconstituted in 50μL of acetonitrile-water1:1, v/v). The supernatant after vortex and centrifuged was used for LC-MS/MS detection (Elendran., 2019).

    2.5 Statistical Analysis

    All data were expressed as the mean ± standard deviation (SD). The datum was processed with Microsoft Excel 2019 edited by Microsoft (Seattle, WA, USA). The pharmacokinetics data was analyzed using Phoenix WinNon- Lin 6.4 (Pharsight, CA) by non-compartmental analysis. The image was processed by GraphPad 7.0. The peak plasma concentration (max) and time to reach maximum plasma concentration (max) were obtained directly from the plasma values. Half-life (1/2)–the time required for blood concentration to fall by 50%, is a way to express rate of drug elimination. Clearance (CL) is another pharmacokinetic parameter used to describe drug elimination. The AUC is quite literally the area under a concentration versus time graph. Apparent volume of distribution (d) refers to the ratio of drug doseto blood drug concentration after the drug has reached dynamic equilibrium. The bioavailability () of COS was the ratio ofig×ivtoiv×ig(iv, intravenous administration; ig, intragastrical administration).

    3 Results and Discussion

    3.1 Transport of COS Across Caco-2 Cells

    Caco-2 cell monolayer has been widely used to study the mechanism of drug absorption and transport (Volpe, 2011). The Caco-2 cell membrane resistance values had been more than 300Ωcm2during the experiment. In this study, theappvalue of propranolol and atenolol were (18.82±1.90)×10?6cms?1and (0.43±0.09)×10?6cms?1respectively, which was the same as previous studies (Madgula., 2008; Manda., 2013). These results showed that the Caco-2 cells model established in this study was complete and reliable. Thus, the Caco-2 cells model was successfully established, which could be applied to the next transport experiment. COS are non-toxic to Caco-2 cells at concentrations below 1000μmolL?1. Only concentrations below this limit were used in subsequent experiments.

    As shown inFigs.2A and 2B, regardless of the direction of transport, the amount of transported COS2-7 increased gradually with the increase of dosing concentration within 180min. The results show that COS transport was clearly concentration-dependent and time-dependent and there was no saturation below 400μmolL?1. In previous studies, model drugs exhibiting experimentalappvalues >3×10?6cms?1are highly permeable, whereasappvalues <3×10?6cms?1are characteristic of low permeability model drugs(Artursson., 1991; Lau., 2004; Fossati., 2008). Based on these values (Table 2), it can be concluded that COS were lowly permeable.

    The relationship between structure and permeability was analyzed by comparingapp (AP-BL)values of COS2-7. As shown in Table 2,there is a decrease in the value ofapp (AP-BL)with increasing DPs. These results showed that the DPs could affect the absorption and transport of COS. No significant difference inappvalues for COS2-7 were observed in both the apical-to-basolateral and the basolateral-to-apical directions and the values of ER (app (BL-AP)/app (AP-BL)) of COS2-7 were closed to 1.0 (Elendran., 2019), suggesting that COS appear to be transported across the monolayers at a low ratea direction-independent passive diffusion mechanism.

    Fig.2 Cumulative amount of COS2-7 in different concentration across Caco-2 monolayers (A) from AP to BL; and (B) from BL to AP (n=3).

    Table 2 Values of Papp and ER of COS2-7 (n=3)

    From Fig.3,the values ofapp(AP-BL)of COS decreased significantlyin the presence of quercetin indicated that GLUT2 might be involved in the transport of COS. After adding phloretin, only the value ofapp (AP-BL)of COS4 reduced significantly showed that GLUT1 played almost no role in the transport of COS. When sodium deoxycholate was added, the value ofapp(AP-BL)increased significantly showed that COS might be absorbed through the paracellular pathway. There were no significant differences between the values ofapp (AP-BL)for a single COS and the mixture indicating that six oligosaccharides did not inhibit or promote each other during the transport process.

    In contrast to our findings, Chen. (2019) reported that the transport of COS5 involved SGLTs mediated active transport in addition to passive diffusion, evidenced by a significantly increased transport in the presence of phlorizin. Their study, however, was carried out using FITC-COS. It is evident that the absorption between pure compounds and that of derives can be different.

    Fig.3 The values of Papp (AP-BL) in the absence and presence of phloretin, quercetin, sodium deoxycholate and the mixture of COS2-7.*P<0.05, ***P<0.001 compared with the control (the corresponding COS, 200μmolL?1) (n=3).

    3.2 Pharmacokinetics and Bioavailability of COS

    After a single oral gavage of 35mgkg?1and a single intravenous injection of 3.5mgkg?1of COS2-7, the concentrations of COS2-7 in plasma were monitored up to 24 h after intragastrical administration and 8h after intravenous injection.

    After intravenous administration of COS through the caudal vein, mean plasma concentration-time curves were presented in Fig.4A and the pharmacokinetics parameters were calculated and summarized in Table 3. These data showedmax(from 8.38±1.53 to 2.99±0.72μgmL?1) andof COS (from 2.96±0.07 to 1.31±0.18hμgmL?1) to decrease as DPs increased.(from 1.11±0.06 to 2.57 ±0.32Lh?1) anddof COS (from 0.95±0.21 to 1.61 ± 0.33Lh?1) increased when DPs increased.

    Fig.4 Mean plasma concentrations-time profiles of COS2-7 after intravenous administration at dose of 3.5mgkg?1(A) and oral administration at dose of 35mgkg?1(B) to rats (= 3).

    Table 3 Pharmacokinetic parameters of COS2-7 after intravenous administration to rats (n=3)

    Fig.4B presented the mean plasma concentration-time profiles of COS2-7 after intragastrical administration. The pharmacokinetics parameters of COS2-7 after intragastrical administration were summarized in Table 4. COS2- 6 were detected at 5min in plasma after intragastrical administration to rats, indicating their rapidabsorption. The changes ofmaxand AUC of COS after intragastrical administration were similar to changes after intravenous administration with the increase of DPs. After intragastrical administration, the absorption of drugs in the gastrointestinal tract was largely determined by permeability (Motty., 2018). The bioavailability (from 7.33% to 0.99%) of COS were inversely correlated with the DP, had a similar trend to that of previous study. Fig.5 showed the correlation analysis between bioavailability andapp (AP-BL). The correlation coefficient was 0.89, indicating that a certain correlation could be obtained to some extent between thepermeability andpharmacokinetics of COS.

    Table 4 Pharmacokinetic parameters of COS2-7 after oral administration to rats (n=3)

    Fig.5 Correlation between bioavailability and the values of Papp (AP-BL).

    4 Conclusions

    In this study, COS could be rapidly absorbed by the Caco-2 cell model and the gastrointestinal tract through facilitation diffusion and paracellular absorption. But poor permeability leads to low oral bioavailability of COS. In addition, the DPs of COS had an effect on the pharmacokinetics and transport of COS. The pharmacokinetics of COSwere a certain correlated with the permeability. These results provided meritorious information for the further investigate of COS absorption characteristics.

    Acknowledgements

    This work was supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2019BC025), and the Fundamental Research Funds for the Central Uni- versities (Nos. 201912008, 201964019).

    Artursson, P., and Karlsson, J., 1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells., 175 (3): 880-885.

    Barman, P. K., Mukherjee, R., Prusty, B. K., Suklabaidya, S., Senapati, S., and Ravindran, B.,2016. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice., 7: e2224.

    Chen, A. S., Taguchi, T., Okamoto, H., Danjo, K., Sakai, K., Matahira, Y.,., 2005. Pharmacokinetics of chitobiose and chitotriose administered intravenously or orally to rats., 28 (3): 545-548.

    Chen, P., Zhao, M., Chen, Q., Fan, L., Gao, F., and Zhao, L., 2019. Absorption characteristics of chitobiose and chitopentaose in the human intestinal cell line Caco-2 and everted gut sacs., 67 (16): 4513-4523.

    Chen, Z., Tang, J., Wang, P., Zhu, J., and Liu, Y., 2019. GYY 4137 Attenuates sodium deoxycholate-induced intestinal barrier injury bothand., 2019: 5752323.

    Chung, M. J., Park, J. K., and Park, Y. I., 2012. Anti-inflam- matory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice., 12 (2): 453-459.

    Elendran, S., Muniyandy, S., Lee, W. W., and Palanisamy, U. D., 2019. Permeability of the ellagitannin geraniin and its metabolites in a human colon adenocarcinoma Caco-2 cell culture model., 10 (2): 602-615.

    Fossati, L., Dechaume, R., Hardillier, E., Chevillon, D., Prevost, C., Bolze, S.,., 2008. Use of simulated intestinal fluid for Caco-2 permeability assay of lipophilic drugs., 360 (1-2): 148-55.

    Granchi, C., Fortunato, S., and Minutolo, F., 2016. Anticancer agents interacting with membrane glucose transporters., 7 (9): 1716-1729.

    Grès, M. C., Julian, B., Bourrié, M., Meunier, V., Roques, C., Berger, M.,., 1998. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco-2 cell line.,15 (5): 726-733.

    Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability., 96 (3): 736-749.

    Huang, L., Chen, J., Cao, P., Pan, H., Ding, C., Xiao, T.,., 2015. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats.,13 (5): 2732-2756.

    Kwon, O., Eck, P., Chen, S., Corpe, C. P., Lee, J. H., Kruhlak, M.,., 2007. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids., 21 (2): 366- 377.

    Lau, Y. Y., Chen, Y. H., Liu, T. T., Li, C., and Cheng, K. C., 2004. Evaluation of a novelCaco-2 hepatocyte hybrid system for predictingoral bioavailability., 32 (9): 937-942.

    Li, S., Wang, Y., Jiang, T., Wang, H., Yang, S., and Lv, Z., 2016. Absorption and transport of sea cucumber saponins from., 14 (6): 114-121.

    Li, X., Zhou, C., Chen, X., and Zhao, M., 2014. Subcellular localization of chitosan oligosaccharides in living cells., 59 (20): 2449-2454.

    Ma, Z., Guo, R., Elango, J., Bao, B., and Wu, W., 2019. Evaluation of marine diindolinonepyraneand: Permeability characterization in Caco-2 cells monolayer and pharmacokinetic properties in beagle dogs.,17 (12): 651-665.

    Madgula, V. L., Avula, B., Choi, Y. W., Pullela, S. V., Khan, I. A., Walker, L. A.,., 2008. Transport ofextract and its biologically-active constituents across Caco-2 cell monolayers–Anmodel of intestinal transport.,60 (3): 363-370.

    Manda, V. K., Avula, B., Ali, Z., Wong, Y. H., Smillie, T. J., Khan, I. A.,., 2013. Characterization ofADME properties of diosgenin and dioscin from., 79 (15): 1421-1428.

    Motty, S., 2018. Drug-like properties: Concepts, structure de- sign and methods from ADME to toxicity optimization., 7: 28-29.

    Muanprasat, C., and Chatsudthipong, V., 2017. Chitosan oligosaccharide: Biological activities and potential therapeutic applications.,170: 80-97.

    Ngo, D. N., Kim, M. M., and Kim, S. K., 2008. Chitin oligosaccharides inhibit oxidative stress in live cells.,74 (2): 228-234.

    Pangestuti, R., Bak, S. S., and Kim, S. K., 2011. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharidesthe MAPK signaling pathway.,49 (4): 599-606.

    Park, J. K., Chung, M. J., Choi, H. N., and Park, Y. I., 2011. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity., 12 (1): 266-277.

    Rahman, M. H., Hjeljord, L. G., Aam, B. B., S?rlie, M., and Tronsmo, A., 2014. Antifungal effect of chito-oligosaccha- rides with different degrees of polymerization.,141 (1): 147-158.

    Volpe, D. A., 2011. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines., 3 (16): 2063-2077.

    Zhang, P., Liu, W., Peng, Y., Han, B., and Yang, Y., 2014. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages., 23 (1): 254-261.

    Zheng, J., Yuan, X., Cheng, G., Jiao, S., Feng, C., Zhao, X.,., 2018. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice., 190: 77-86.

    (Oceanic and Coastal Sea Research)

    https://doi.org/10.1007/s11802-022-5088-x

    ISSN 1672-5182, 2022 21 (3): 782-788

    (May 26, 2021;

    October 25, 2021;

    December 13, 2021)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    Corresponding authors. E-mail: yumingming@ouc.edu.cnE-mail: lvzhihua@ouc.edu.cn

    (Edited by Ji Dechun)

    三级国产精品欧美在线观看 | 国产视频一区二区在线看| www.自偷自拍.com| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 日韩有码中文字幕| 亚洲在线自拍视频| 亚洲最大成人中文| 巨乳人妻的诱惑在线观看| 中文字幕熟女人妻在线| 真人一进一出gif抽搐免费| 久久伊人香网站| 国产亚洲精品综合一区在线观看 | aaaaa片日本免费| 日韩大尺度精品在线看网址| 妹子高潮喷水视频| 亚洲av美国av| 高清毛片免费观看视频网站| 无人区码免费观看不卡| 久久久精品大字幕| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 中亚洲国语对白在线视频| 久久久久国产一级毛片高清牌| 中文字幕久久专区| 999久久久精品免费观看国产| 丰满的人妻完整版| a在线观看视频网站| www.精华液| 天天一区二区日本电影三级| 美女大奶头视频| 中文字幕熟女人妻在线| 久久草成人影院| 欧美乱码精品一区二区三区| 久久人人精品亚洲av| 久久久久久大精品| 很黄的视频免费| 亚洲 欧美一区二区三区| 久久精品91蜜桃| 少妇被粗大的猛进出69影院| 国产精华一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲精品中文字幕在线视频| 国产午夜精品久久久久久| 给我免费播放毛片高清在线观看| 亚洲人成网站高清观看| 国产高清视频在线播放一区| 亚洲无线在线观看| 国产成人aa在线观看| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 两性夫妻黄色片| 制服人妻中文乱码| 小说图片视频综合网站| 少妇被粗大的猛进出69影院| 麻豆国产av国片精品| 日本三级黄在线观看| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区三| 久久久久久久精品吃奶| 免费在线观看亚洲国产| 国产精品一区二区三区四区免费观看 | 18禁美女被吸乳视频| www国产在线视频色| 国产伦一二天堂av在线观看| 美女大奶头视频| а√天堂www在线а√下载| 女人被狂操c到高潮| 欧美日韩国产亚洲二区| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| xxxwww97欧美| 日本熟妇午夜| 少妇被粗大的猛进出69影院| 成人av在线播放网站| 成人一区二区视频在线观看| 亚洲av成人不卡在线观看播放网| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 波多野结衣高清无吗| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 国产在线精品亚洲第一网站| 悠悠久久av| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 成人永久免费在线观看视频| 99久久精品热视频| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站 | 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 男女做爰动态图高潮gif福利片| 一级片免费观看大全| 丰满人妻熟妇乱又伦精品不卡| 日本成人三级电影网站| 久久久久久久午夜电影| 久久久久性生活片| 亚洲专区字幕在线| 欧美黑人精品巨大| 好男人在线观看高清免费视频| 真人做人爱边吃奶动态| 欧美在线黄色| 91国产中文字幕| 黄色a级毛片大全视频| 999精品在线视频| 亚洲精品国产精品久久久不卡| 国产成人av教育| 国产亚洲精品av在线| 村上凉子中文字幕在线| 99久久无色码亚洲精品果冻| 精品国产乱子伦一区二区三区| 好男人电影高清在线观看| 午夜福利免费观看在线| 婷婷丁香在线五月| 国产99白浆流出| 19禁男女啪啪无遮挡网站| 国产成人av教育| 99国产精品一区二区三区| 男人舔女人下体高潮全视频| tocl精华| 欧美高清成人免费视频www| 日韩成人在线观看一区二区三区| 免费人成视频x8x8入口观看| 国产激情欧美一区二区| 成人三级黄色视频| 中亚洲国语对白在线视频| 男女那种视频在线观看| 波多野结衣高清无吗| 日本a在线网址| 99热这里只有精品一区 | 老熟妇仑乱视频hdxx| 成在线人永久免费视频| 国产高清videossex| 久久久久久免费高清国产稀缺| 国产精品九九99| aaaaa片日本免费| 亚洲一区中文字幕在线| 一二三四社区在线视频社区8| 日韩有码中文字幕| 成人国产综合亚洲| 国产av不卡久久| 1024手机看黄色片| 日韩 欧美 亚洲 中文字幕| 日韩av在线大香蕉| 成人一区二区视频在线观看| 国产真人三级小视频在线观看| 久久久久九九精品影院| 在线观看舔阴道视频| 99re在线观看精品视频| 久99久视频精品免费| 亚洲av中文字字幕乱码综合| 久久久国产欧美日韩av| 国产av又大| 好看av亚洲va欧美ⅴa在| www日本黄色视频网| 欧美成人一区二区免费高清观看 | 一区二区三区激情视频| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 婷婷精品国产亚洲av在线| 男女之事视频高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 亚洲av熟女| 国产精品永久免费网站| 十八禁网站免费在线| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 久久精品国产清高在天天线| 在线观看日韩欧美| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 日韩欧美国产在线观看| av中文乱码字幕在线| 麻豆av在线久日| 欧美最黄视频在线播放免费| 精华霜和精华液先用哪个| 丝袜人妻中文字幕| 亚洲国产欧美网| 在线观看一区二区三区| 久9热在线精品视频| 国产熟女xx| 草草在线视频免费看| 真人一进一出gif抽搐免费| 特级一级黄色大片| av有码第一页| 正在播放国产对白刺激| 色在线成人网| 黄片大片在线免费观看| 天天一区二区日本电影三级| 国产精品日韩av在线免费观看| 99久久综合精品五月天人人| 免费在线观看影片大全网站| 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 亚洲av日韩精品久久久久久密| 精品久久久久久成人av| 国产野战对白在线观看| 欧美色视频一区免费| 特级一级黄色大片| 久久久国产精品麻豆| 美女扒开内裤让男人捅视频| 午夜福利在线在线| 一本一本综合久久| 欧美乱色亚洲激情| 91麻豆精品激情在线观看国产| 一进一出抽搐动态| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 免费搜索国产男女视频| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 国产精品美女特级片免费视频播放器 | 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 无限看片的www在线观看| 黄片小视频在线播放| 国产亚洲欧美98| 久久香蕉精品热| 欧美日韩乱码在线| 国产亚洲精品综合一区在线观看 | 男男h啪啪无遮挡| 欧美黑人精品巨大| 精品欧美一区二区三区在线| 亚洲精品一区av在线观看| 久久性视频一级片| 国产乱人伦免费视频| 国产精品爽爽va在线观看网站| 成人18禁在线播放| 国产一区二区在线观看日韩 | 19禁男女啪啪无遮挡网站| 亚洲国产精品久久男人天堂| 搡老岳熟女国产| 国产精品美女特级片免费视频播放器 | 妹子高潮喷水视频| 久久精品成人免费网站| 中文资源天堂在线| 变态另类丝袜制服| 最新美女视频免费是黄的| 国产在线观看jvid| 国产区一区二久久| 亚洲 国产 在线| 亚洲五月婷婷丁香| 国产黄片美女视频| 一夜夜www| 国产99久久九九免费精品| 草草在线视频免费看| 亚洲成a人片在线一区二区| 国产精品久久久久久久电影 | 国产亚洲欧美在线一区二区| 国内精品久久久久精免费| 久久亚洲精品不卡| 成人三级做爰电影| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 国产高清视频在线播放一区| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 欧美成人性av电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久精品影院6| 欧美中文综合在线视频| 国产不卡一卡二| 欧美色欧美亚洲另类二区| 动漫黄色视频在线观看| 麻豆av在线久日| 熟妇人妻久久中文字幕3abv| 叶爱在线成人免费视频播放| 精品高清国产在线一区| АⅤ资源中文在线天堂| 欧美一级a爱片免费观看看 | 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久av网站| 国产片内射在线| 日韩欧美精品v在线| 午夜精品久久久久久毛片777| 精品福利观看| 一个人观看的视频www高清免费观看 | 丝袜人妻中文字幕| 激情在线观看视频在线高清| 亚洲成人国产一区在线观看| 久久久久久亚洲精品国产蜜桃av| 免费看a级黄色片| 日韩有码中文字幕| 久久久久久九九精品二区国产 | 亚洲va日本ⅴa欧美va伊人久久| 欧美精品亚洲一区二区| 亚洲精品久久成人aⅴ小说| 亚洲中文字幕日韩| 久久精品影院6| 特大巨黑吊av在线直播| 亚洲熟女毛片儿| 久久香蕉国产精品| 91麻豆av在线| 中文资源天堂在线| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 国产精品久久久久久亚洲av鲁大| 哪里可以看免费的av片| 后天国语完整版免费观看| 在线播放国产精品三级| 色哟哟哟哟哟哟| videosex国产| 国产v大片淫在线免费观看| 制服诱惑二区| 一级毛片精品| av中文乱码字幕在线| 亚洲av第一区精品v没综合| 精品第一国产精品| ponron亚洲| 视频区欧美日本亚洲| 成人三级做爰电影| 一区二区三区激情视频| 嫩草影院精品99| 亚洲第一电影网av| 久久精品人妻少妇| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 免费搜索国产男女视频| 亚洲 欧美一区二区三区| 国产一区在线观看成人免费| 又大又爽又粗| 国产成人精品久久二区二区免费| av国产免费在线观看| 麻豆国产av国片精品| 91九色精品人成在线观看| 久久久久久久午夜电影| 91老司机精品| 欧美黑人欧美精品刺激| 91老司机精品| 19禁男女啪啪无遮挡网站| 欧美一级a爱片免费观看看 | 国产亚洲精品一区二区www| 国产精品日韩av在线免费观看| 脱女人内裤的视频| 中国美女看黄片| 欧美激情久久久久久爽电影| 老鸭窝网址在线观看| 色老头精品视频在线观看| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 在线观看美女被高潮喷水网站 | 亚洲精品美女久久久久99蜜臀| xxx96com| 亚洲av美国av| 国产99久久九九免费精品| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| 99热只有精品国产| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 中文字幕久久专区| 亚洲av日韩精品久久久久久密| 一级毛片高清免费大全| 久久中文字幕人妻熟女| 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 国内精品一区二区在线观看| 狠狠狠狠99中文字幕| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 久热爱精品视频在线9| 免费看十八禁软件| 国产午夜福利久久久久久| 制服诱惑二区| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 美女午夜性视频免费| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| 亚洲国产精品久久男人天堂| 精品乱码久久久久久99久播| 成人一区二区视频在线观看| 亚洲人成77777在线视频| 人人妻人人看人人澡| 久久精品综合一区二区三区| 亚洲一区二区三区不卡视频| 搡老妇女老女人老熟妇| 国产精品98久久久久久宅男小说| 91国产中文字幕| 久久精品aⅴ一区二区三区四区| 99热这里只有精品一区 | 九色成人免费人妻av| 中文字幕久久专区| 一个人免费在线观看的高清视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品人妻蜜桃| 十八禁网站免费在线| 可以在线观看毛片的网站| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 男女之事视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片| 国产99白浆流出| 别揉我奶头~嗯~啊~动态视频| 午夜视频精品福利| 国内精品久久久久久久电影| 巨乳人妻的诱惑在线观看| 国产久久久一区二区三区| 色综合亚洲欧美另类图片| 两个人看的免费小视频| 久久久久久久午夜电影| 搞女人的毛片| 18美女黄网站色大片免费观看| 欧美成人午夜精品| 在线观看免费午夜福利视频| 久久久国产欧美日韩av| 久久伊人香网站| 丰满人妻一区二区三区视频av | 操出白浆在线播放| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 亚洲精品久久成人aⅴ小说| 午夜久久久久精精品| 久久精品影院6| 在线国产一区二区在线| 欧美日韩乱码在线| 久久久久久久精品吃奶| 久久久水蜜桃国产精品网| www国产在线视频色| 一二三四在线观看免费中文在| 欧美性猛交黑人性爽| 校园春色视频在线观看| 免费看a级黄色片| 亚洲人成电影免费在线| 午夜两性在线视频| 日日干狠狠操夜夜爽| 欧美乱码精品一区二区三区| 亚洲精品美女久久av网站| 亚洲天堂国产精品一区在线| 一区福利在线观看| 性欧美人与动物交配| 床上黄色一级片| 久久久久久久久免费视频了| 久久亚洲精品不卡| 欧美一级毛片孕妇| 色在线成人网| aaaaa片日本免费| 成人av一区二区三区在线看| 丝袜人妻中文字幕| 一级黄色大片毛片| 免费人成视频x8x8入口观看| 妹子高潮喷水视频| 桃色一区二区三区在线观看| 午夜福利欧美成人| 两个人看的免费小视频| 国产精品自产拍在线观看55亚洲| 又黄又爽又免费观看的视频| 一本一本综合久久| 最好的美女福利视频网| 在线播放国产精品三级| 亚洲中文av在线| 99国产精品一区二区三区| 丝袜人妻中文字幕| 日韩欧美国产一区二区入口| 熟女少妇亚洲综合色aaa.| 亚洲精品色激情综合| 亚洲午夜理论影院| 亚洲国产精品成人综合色| 亚洲精品在线美女| 亚洲人成伊人成综合网2020| 草草在线视频免费看| 一级毛片女人18水好多| 国产黄色小视频在线观看| 黄色成人免费大全| 国产熟女午夜一区二区三区| 美女大奶头视频| 国产aⅴ精品一区二区三区波| 黄色视频不卡| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 又爽又黄无遮挡网站| 欧美午夜高清在线| 亚洲国产欧美网| 男女视频在线观看网站免费 | 久久久久九九精品影院| 欧美又色又爽又黄视频| 成人18禁在线播放| videosex国产| 亚洲精品一卡2卡三卡4卡5卡| 成人av在线播放网站| 亚洲成人中文字幕在线播放| 黄色a级毛片大全视频| 叶爱在线成人免费视频播放| 久久香蕉精品热| 免费在线观看亚洲国产| 国产精品久久久久久精品电影| 精品国内亚洲2022精品成人| 国产伦人伦偷精品视频| 国产精品久久久久久久电影 | 欧美色视频一区免费| 日韩欧美精品v在线| 久久国产精品人妻蜜桃| 丝袜美腿诱惑在线| 在线观看免费视频日本深夜| 在线看三级毛片| 免费av毛片视频| 在线国产一区二区在线| 国模一区二区三区四区视频 | 色综合站精品国产| 国语自产精品视频在线第100页| tocl精华| 国产真人三级小视频在线观看| 亚洲欧美日韩高清在线视频| 亚洲七黄色美女视频| 久久精品91蜜桃| 欧美丝袜亚洲另类 | 免费搜索国产男女视频| 日韩免费av在线播放| 亚洲男人的天堂狠狠| 久久亚洲精品不卡| 成人精品一区二区免费| 国模一区二区三区四区视频 | 叶爱在线成人免费视频播放| 亚洲中文字幕日韩| 久久久国产成人精品二区| 88av欧美| 特级一级黄色大片| 亚洲欧美日韩高清专用| 国产一区二区在线观看日韩 | 国产成人av教育| 草草在线视频免费看| 亚洲中文日韩欧美视频| 国模一区二区三区四区视频 | 91av网站免费观看| 国产亚洲精品久久久久久毛片| 久久这里只有精品19| 婷婷六月久久综合丁香| 亚洲国产欧美网| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡欧美一区二区| 99热这里只有是精品50| 亚洲七黄色美女视频| 一进一出抽搐gif免费好疼| 亚洲男人的天堂狠狠| videosex国产| 久久香蕉精品热| 女人被狂操c到高潮| 波多野结衣高清作品| 国内精品一区二区在线观看| 国产精品美女特级片免费视频播放器 | 1024香蕉在线观看| 国产伦在线观看视频一区| 午夜精品在线福利| 男人舔女人下体高潮全视频| 亚洲中文日韩欧美视频| 午夜免费激情av| 村上凉子中文字幕在线| 精品国产乱子伦一区二区三区| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 欧美大码av| 男女之事视频高清在线观看| 午夜福利高清视频| 午夜成年电影在线免费观看| 色综合站精品国产| 午夜两性在线视频| 亚洲第一欧美日韩一区二区三区| 老汉色av国产亚洲站长工具| 国语自产精品视频在线第100页| 老司机午夜十八禁免费视频| 深夜精品福利| 在线十欧美十亚洲十日本专区| 亚洲成人久久爱视频| 午夜免费观看网址| 女人爽到高潮嗷嗷叫在线视频| 真人一进一出gif抽搐免费| 久久精品夜夜夜夜夜久久蜜豆 | 中文字幕人成人乱码亚洲影| 亚洲欧洲精品一区二区精品久久久| 天堂动漫精品| 久久精品亚洲精品国产色婷小说| 十八禁人妻一区二区| 人人妻,人人澡人人爽秒播| 国产精品久久电影中文字幕| 老汉色av国产亚洲站长工具| 搞女人的毛片| 禁无遮挡网站| 亚洲专区中文字幕在线| 欧美一级毛片孕妇| 88av欧美| 又黄又粗又硬又大视频| 桃红色精品国产亚洲av| 婷婷精品国产亚洲av在线| 老司机午夜十八禁免费视频| 久久精品国产亚洲av香蕉五月| 国产1区2区3区精品| 免费搜索国产男女视频| 日本免费一区二区三区高清不卡| 亚洲第一欧美日韩一区二区三区| 久久天堂一区二区三区四区| 国产99久久九九免费精品|