• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Solution of Coral Reef Stability Due to Horizontal Wave Loading

    2022-06-14 04:04:14ZHANGQiyiLONGQuanandLIXiaowu
    Journal of Ocean University of China 2022年3期

    ZHANG Qiyi, LONG Quan, and LI Xiaowu

    Variational Solution of Coral Reef Stability Due to Horizontal Wave Loading

    ZHANG Qiyi1), 2), *, LONG Quan1), 2), and LI Xiaowu1), 2)

    1) Department of Ocean Engineering, College of Engineering, Ocean University of China, Qingdao 266100, China 2) Key Laboratory of Ocean Engineering of Shandong Province, Ocean University of China, Qingdao 266100, China

    This paper proposes a theoretical method that can be used in calculating the stability of coral reefs or artificial islands. In this work, we employ the variational limiting equilibrium procedure to theoretically determine the slope stability of coral reefs covered with hard reef shells as a result of horizontal wave loads. A reasonable functional is proposed and its extremum is calculated based on the conservation of energy. Then, we deduce the stability factorNof coral reefs under combined vertical self-gravity and horizontal wave loads, which is consistent with the published results. We compare some classic examples of homogeneous slopes without hard shells in order to analyze the accuracy of results generated by this variational procedure. The variational results are accurate and reliable according to the results of a series of detailed calculations and comparisons. Simultaneously, some other influence parameters on the reef stability, including the top-layer tensile strength of coral reef, the amplitude of wave loading, and the tensile crack, are calculated and discussed in detail. The analysis results reveal that the existence of a hard reef shell could enhance the stability of reef slope and that there is a nonlinear relationship between the stability factorN, the shear strength, and the thicknessDof the covered coral reef shell. Furthermore, the emergence of top-layer tensile cracks on the coral reefs reduces their stability, and the action of horizontal wave loads greatly decreases the stability of coral reefs. Thus, the hard shell strength and its thickness D, surface tensile crack, and wave loading require more careful attention in the field of practical engineering.

    coral reef stability; tensile crack; variational solution; horizontal wave loading

    1 Introduction

    Coral reefs are representative components of marine geomorphology, are widely distributed in the deep sea and shallow waters, and especially exist in warm waters onboth sides of the equator (Putnam., 2017). In particular, coral reef topography is widely distributed in Taiwan Island, the South China Sea, and Australian waters (Pirazzoli, 1993; Harris, 2004; Beaman, 2008;Woodroffe and Webster, 2014). In recent years, with the rapid expansion of marine resources and the ongoing construction of civil structures and military facilities on coral reefs, there is an urgent need to carefully study the stability of coral reef slopes. The regularity of horizontal distribution of coral reefs tends to form steep seaward slopes, hard reef flats and coral sand lagoons covered with hard reef shells depending on the hydrodynamic environment and geological conditions, as well as the long-term formation process of coral reefs in the South China Sea (Rogers, 2017). In this special marine environment and geological condition, a typical two-layer profile appears on the vertical cross-section, with incompact coral sand to a depth of 10–20m consisting of coral debris, gravel, and coarse sand; and a deep layer of hard coral reef with good integrity (Gong., 2012; Kordi and O’Leary, 2016). A typical profile of the geomorphic features of coralreef in the South China Sea is shown in Fig.1 (Zhang, 2017), wherein the coral reef is covered with a hard shell at the surface. As shown in Fig.1, the geological structure of the coral reef consists of the following parts:1) the upper seaward slope; 2) the outer reef flat; 3) the reef margin; 4) the inner reef flat; 5) the lagoon slope; 6) the lagoon basin. The first four parts (1–4) are strongly subjected to hydrodynamic action.

    Such projects as the construction of ports and military structures, along with shipping and tourism activities, tend to destroy the hard shell of coral reefs, which may significantly reduce their general stability; in turn, this can reduce the stability of structures established on the reefs (Chen, 2017). Therefore, the integrity of the reef shellhas a great influence on ensuring the stability of coral reefs. In order to investigate theoretically the influence of horizontal wave loads on the stability of coral reefs, and in light of energy conservation considerations, we propose an energy functional for coral reef stability resulting from the combined vertical self-gravity and horizontal wave loads. Then, we obtain a variational solution for the stability of coral reefs covered with a hard shell under horizontal wave loading, thereby demonstrating the influence of the horizontal wave loads and the original reef shell on the reef slope stability. We simplified the geomorphic features of the coral reef in order to reduce the difficulty of theoretical derivation and mathematical calculation, as shown in Fig.2. Table 1 presents data on the hydrodynamic and geological conditions related to the coral reef, obtained from the actual monitoring of the sea area and the coral reefs.

    Fig.1 Typical coral reef profile.

    Fig.2 Simplified model of a coral reef covered with hard shell.

    Table 1 Water depth and wave condition in front of the coral reef

    According to a previous study, the variational limiting equilibrium (LE) solutions are identical to the upper plastic limit analysis solutions; thus, the top hard shell can obviously improve reef stability; however, this study ignored the horizontal action due to the wave loads (Zhang., 2018). The main advantage of this variational approach is that it is free from any artificial kinematical or static admissible assumptions, which is the case for many existing methods mentioned in the literature. In order to assess the stability of coral reefs under horizontal wave loading, the concept of safety factor is adopted in the current paper, which is usually defined as the ratio of the total shear strength available on the slip surface to the total shear strength required for equilibriums.

    2 Variational Analyses

    Here, we theoretically derive the stability factor of the coral reef using the variational LE in order to determine the reef stability covered with hard reef shells and undergoing the horizontal wave loads. The analysis process is as follows.

    2.1 Mathematical Formulation of the Basic Problem

    A typical reef slopeinclined in the horizontal direction is shown in Fig.3. The coral reef profile is identified by the unit weight, cohesion, and internal friction angle. Here,is an assumed height of coral reef described in this paper. The horizontal wave load(), the vertical load on top of the reef(), and the tension crackon the reef roof are introduced, assuming that the collapse of the coral reef is due to the combined vertical self-gravity load and horizontal wave loads. The LE method is based on the following equations:

    1) Satisfaction of the plastic yielding criterion=()along the shear slip surface(). We adopt the Mohr-Coulomb’s failure condition as:

    where=()and=()are the distributions of the tangential and normal stress along the assumed slip surface(), respectively, andDrefers to the thickness of the surface reef shell. To facilitate easy calculation in this paper, we set=tan().

    3) Here, the horizontal wave load() is applied on the coral reef, and the wave shape adopted before wave breakage is calculated as in Fig.4. Considering the complexity of wave force calculation theory on slope, and in order to simplify the theoretical derivation of horizontal wave pressure, it is assumed that the reef shell is inclined at a fixed angleto the horizontal plane; besides, the surface roughness of the reef shell and the wave reflection effect are ignored.

    Fig.3 Basic geometric parameters and definitions.

    Fig.4 Calculation of wave pressure p(x).

    The wave pressure(kPa) acting on the coral reef is calculated as follows:

    where1=1.35 and

    The vertical coordinates2and3of point 2 and point 3 are respectively determined by the following equations:

    whereandare the formula parameters, which can be found in the Soviet architecture standard.

    Based on the coral reef mass being in a state of LE, as shown in Fig.3, the equilibrium equations of horizontal and vertical forces and the moment are respectively satisfied as follows (Zhang, 2008):

    whereis the arc length along the shear sliding surface(), andis the slope inclination of(). Eqs. (3a) and (3b) are the horizontal and vertical force equilibrium equations in the two-dimensional (2D) plane strain state, respectively, and Eq. (3c) is the moment equilibrium equation of the rigid-plastic sliding coral reef. We then introduce Mohr-Coulomb’s failure criteria into the above equations and combine the geometrical relations along the continuous boundaries shown in Fig.3, cos=d/d; sin=d/d. Under these simplifications, we can obtain the following equilibrium equations which can indicate the overall stability equations of this layered slope:

    2.2 Safety Factor and Critical Height of Reef Slope

    To quantify the margin of reef safety relative to an LE state under combined horizontal and vertical loads, we replace the real shear strength parameters of coral reefs with an artificially reduced factor. This is also known as safety factor and is expressed as:

    The critical heighthof the coral reef under combined vertical and horizontal wave loads, for which we can obtain the reef stability when it reaches a state of LE, is decided by the normal stress functions and kinematical shape() and() along the shear sliding surface, respectively. Thus, the reduced factorand slope heightcan be described as a variational functional of the mentioned shape and stress functions. Consequently, the safety factorFand the critical heighthare respectively considered the extreme values, as follows:

    wherey() andσ() are the shear sliding surface and normal stress distribution along the optimal failure slip surface, respectively.

    In the process of solving the functional extremum shownin Eq. (6), we set the safety factorFto 1 and use the critical heighthto estimate the stability of the coral reef. Thus, the LE issue can be stated as solving two sets of mathematical functions() and(), which can obtain the extreme valuehof the functional and simultaneously satisfy the coral reef equilibrium equations (Eq. (4)) mentioned above.

    We can transform the basic equilibrium issues into the standard isoperimetric problem of the variational method using the derivation process previously introduced by Baker (1981, 2003). We select the force equilibrium equation in the vertical direction as the integral object, using the horizontal force and moment equilibrium equation as the integral constraints. The parameters1and2are Lagrange’s undetermined multipliers, respectively, which are constants in the process of variational derivation. Then, by introducing the two integral constraints (Eqs. (4a) and (4c), respectively), we can obtain the following expression[(),()] given by

    We have to obtain the optimal sliding surface and its corresponding normal stress distribution in order to solve the extremum of the above auxiliary functional shown in Eq. (7b).

    2.3 Functional Variational Solution

    In order to solve the safety factorFand critical heighthof the coral reef, the mentioned functional must satisfy the Euler partial differential equations,, the necessary conditions for the existence of an extreme, namely,

    According to Baker and Garber (1977, 1978), we can derive the family of the potential shear sliding surface by solving the first Euler partial differential equation, whereas the second Euler equation could yield the normal stress acting along the shear sliding surface. In this paper, the shear slip surface equation and the normal stress equation are derived easily by solving the Euler partial differential equations (Eqs. (8a) and (8b)), which could be expressed as Eqs. (9a) and (9b). The derivation process is consistent with that followed by Baker. The final theoretical formulas of the slip surface and its corresponding normal stress are as follows:

    whereρ, Ω,1, and2are the integration constants. Note that Eqs. (9a) and (9b) are formulations of the family of the potential sliding surface and its corresponding normal stress in a polar coordinate system, respectively. We utilized the following coordinate transformation, which can convert the coordinate values from polar to rectangular coordinates:

    where (,) is the polar coordinate system with a center (x,y), as shown in Fig.3.

    Next, we can integrate the force and moment equilibrium equation explicitly once the form of the potential sliding surface and its corresponding normal stress distribution are obtained. The final form of this equilibrium equation is described as

    (11)

    It is important to note that we must still consider the constraints listed below in order to obtain a specific theoretical solution of the above Euler partial differential equation.

    1) Geometrical boundary conditions

    Note that the two endpoints, 0 and 2, of the sliding surface are not fixed,, they are separately variable along the slope surface. The tensile crack depthcan be obtained using the tensile strength of the coral reef. The longitudinal coordinates are already given.

    2) Transversality condition among layers

    In the process of searching for the optimal sliding surface, the coordinates of the two endpoints, 0 and 2, cannot ascertain which are related to the loading and the geological properties, so it is necessary to apply the transversality conditions among the layers, whose general form is given below:

    wherexmay be either0,1, and2. The Θis a particular curve passing through the two endpoints. By substituting relevant expressions into Eq. (14), utilizing the coordinate transformations in Eq. (10), and then making a detailed calculation, the following expression is obtained:

    By applying the above Eq. (15) to the endpoint 0, we obtain the following expression:

    where the parametercindicates the cohesion of the coral reef shell.

    On the other hand, if the ultimate tensile strengthof the hard reef roof is known, we can obtain the depth of tension crack, as follows:

    3) Stress boundary condition

    Let us substitute the stress boundary condition2=(=2) into Eq. (9). In doing so, we can solve the integral constants Ω and2, after which the following expressions are obtained as shown in Eq. (18):

    Hence, we can statically determine the basic variational problem by simultaneously solving the equilibrium equations as well as the geometrical boundary, stress boundary, and transversality conditions. The following two calculation results, which consider different slope inclinations and reef tensile strengths shown in Fig.5, give the typical shear sliding surfaces and their corresponding normal stress distributions with slope angles π/4 and π/2, respectively.

    2.4 Numerical Verification of Theoretical Solutions

    As shown in Fig.5, the general finite element software Plaxis is used to simulate the engineering example. This is done in order to verify the rationality of the variational results derived theoretically in this paper and to check the shape of the sliding surface and the normal stress distribution law along the sliding surface. The numerical calculation results are shown below.

    The shear sliding surfaces shown in Figs.6(a) and (c) indicate that the hard surface shell constrains the shallow sliding of the coral reef and increases the general stability of the coral reef. The safety factorNof the coral reef withfour differential potential critical sliding surfaces is shownin Fig.6(a), which indicates that the sliding surface gradually transits from shallow failure to deep failure, increases from 16.6 to 28.6. In addition, Fig.6(c) shows that the safety factor increases from 4.16 to 10.3. Furthermore, the failure modes shown in Figs.6(b) and (d) indicate that the appearance of tensile cracks at the top surface of the coral reef accelerates the appearance of shear sliding surface and reduces the general stability of the coral reef. Furthermore, the failure modes of the numerical calculation are consistent with those of the variational solution derived in this paper. Therefore, protecting the integrity of the coral reef shell is very important in ensuring the overall stability of the coral reef.

    Fig.5 Typical slip surfaces and normal stress distributions of variational solutions.

    Fig.6 Numerical results of coral reef failure modes.

    3 Comparison and Discussion of Results

    3.1 Variational Solution of the Stability FactorNs

    Actually, it is difficult to obtain the analytical results of the nonlinear simultaneous equations derived theoretically in this paper. For this reason, a trial-and-error process is utilized to generate the numerical solutions. To facilitate easier calculation, we express all the quantities in their non-dimensional forms. For example, the length-type parameters take the expression of=/, and the stress-type parameters are expressed as=/. Furthermore, we use a non-dimensional parameter, which has been defined as N=h/by Taylor (1948). By doing so, we obtained some theoretical results indicating the critical safety factors for various conditions with the different slope inclinations as well as the internal friction angle of the coral reef, as illustrated in Fig.7. By comparison, we find that the safety factor derived using the variational LE procedure is similar to that obtained by the upper bound analysis method.

    Fig.7 shows that the safety factorNis a function ofand(internal friction angle and reef inclination, respectively) for the case of no reef shell covered. Comparing the results with the upper bound analysis results published by Chen (1975), we can expect the variational approach to obtain the exact theoretical values ofN, and to derive a set of theoretical calculation fourmulas.

    Fig.7 Safety factor without reef shell. (a), effect of internal friction angle on Ns; (b), effect of reef inclination on Ns.

    3.2 Safety Factor with Hard Reef Shell

    Some investigators have concluded that the influence of shell thicknessDon the coral reef stability (, to cover the surface of a coral reef) is not negligible. Fig.8 presentsNas a function of internal friction angleand reef inclinationfor the case of a coral reef with a hard shell (D). On the one hand, the dotted lines in Fig.8 represent the reef safety factor without the reef shell being covered. On the other hand, the straight lines mean that with a hard reef shell, the existence of a continuous covered reef shell significantly increases the stability of the coral reef.

    3.3 Safety Factor with Tensile Crack

    Fig.9 shows the effect of surface tensile strengthon the safety factorNwith the emergence of the tensile crack. We can see that there exists a linear growth relationship between the safety factorNand the tensile strength. Furthermore, the figure shows that the safety factorNof the coral reef is approximately linearly related to the surface tensile strength, and the line slopes are basically the same under different reef inclination angles. 3.4 Safety Factor Due to Horizontal Wave Loads

    Two sets of typical wave data (Figs.10 and 11), which include water depth in front of the coral reef 40m, wave period 4s, wave length 24.98m, and wave heights 1 and 5m, respectively. The wave loads() acting on the reef are solved, and the safety factorNof coral reefs is analyzed under wave loads and self-gravity. Based on the variational calculation results, we determine that the safety factorNof the coral reef decreases with the increase of wave load.

    Fig.8 Safety factor with hard shell covered.

    Fig.9 Safety factor with tensile crack ζ.(a), internal friction angle φ=5?; (b), internal friction angle φ=20?.

    Fig.10 Safety factor with an inclination angle of 45?. (a), wave height, 1m; (b), wave height, 1.5m.

    Fig.11 Safety factor with an inclination angle of 60?. (a), wave height, 1m; (b), wave height, 1.5m.

    4 Conclusions

    In this paper, the variational LE procedure is applied to obtain the safety factorNof the coral reefs covered with hard reef shells and to withstand wave loads in the horizontal direction. Some meaningful conclusions are drawn as follows:

    1) The analysis results show that the continuous hard shell covering the coral reef enhances the stability of the coral reef. Furthermore, there is a nonlinear relationship between the safety factorNand the tensile strengthand the thicknessDof the surface reef shell.

    2) The horizontal wave loads weaken the safety factorNof the coral reef, and the existence of tensile crackfurther reduces the safety factorNof the coral reef.

    Acknowledgements

    This paper is supported by the Project of National Science and Technology Ministry (No. 2014BAB16B03), andthe National Natural Science Foundation of China (No. 51679224).

    Baker, R., 1981. Tensile strength, tension cracks, and stability of slopes., 21 (2): 1-17.

    Baker, R., 2003. Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis., 40: 3717-3735.

    Baker, R., and Garber, M., 1977. Variational approach to slope stability.. Tokyo, Japan, 2: 9-12.

    Baker, R., and Garber, M., 1978. Theoretical analysis of the stability of slopes., 28 (4): 395-411.

    Beaman, R. J., Webster, J. M., and Wust, R. A. J., 2008. New evidence for drowned shelf edge reefs in the Great Barrier Reef, Australia., 247: 17-34.

    Chen, C. S., Xia, Y. Y., and Bowa, V. M., 2017. Slope stability analysis by polar slice method in rotational failure mechanism., 81: 188-194.

    Chen, W. F., 1975.. Elsevier, Amsterdam, 851pp.

    Gong, E. P., Zhang, Y. L., Guan, C. Q., and Chen, X. H., 2012. The Carboniferous reefs in China., 1 (1): 27-42.

    Harris, P. T., Heap, A. D., Wassenberg, T., and Passlow, V., 2004. Submerged coral reefs in the Gulf of Carpentaria, Australia., 207: 185-191.

    Kordi, M. N., and O’Leary, M., 2016. Geomorphic classification of coral reefs in the north western Australian shelf., 7: 100-110.

    Pirazzoli, P. A., Arnold, M., Giresse, P., Hsieh, M. L., and Liew, P. M., 1993. Marine deposits of late glacial times exposed by tectonic uplift on the east coast of Taiwan., 110: 1-6.

    Putnam,H. M., Barott, K. L., Ainsworth, T. D., and Gates, R. D., 2017. The vulnerability and resilience of reef-building corals., 27 (11): 528-540.

    Rogers, J. S., Monismith, S. G., Fringer, O. B., Koweek, D. A., and Dunbar, R. B., 2017. A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications., 110: 66-82.

    Taylor, D. W., 1948.. Wiley, New York, 714pp.

    Woodroffe, C. D., and Webster, J. M., 2014. Coral reefs and sea-level change., 352: 248-267.

    Zhang, Q. Y., Liu, Z. J., Dong, X. S., and Wu, L. P., 2018. Theoretical analysis of coral reef stability in South Sea., 17 (5): 1026-1032.

    Zhang, Q. Y., Luan, M. T., Yuan, F. F., and Jin, D., 2008. Bearing capacity of rectangular footings on inhomogeneous foundation under combined loading., 30: 970-975.

    Zhang, Q. Y., Shi, H. D., Gao, W., and Li, J. F., 2017. Non-hydrostatic numerical simulation of wave propagation deformation on coral reef terrain., 36: 1-9.

    (Oceanic and Coastal Sea Research)

    https://doi.org/10.1007/s11802-022-4846-0

    ISSN 1672-5182, 2022 21 (3): 647-655

    (November 21, 2020;

    February 28, 2021;

    March 16, 2021)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    Corresponding author. E-mail: zhangqiyi@163.com

    (Edited by Xie Jun)

    久久99精品国语久久久| 啦啦啦在线观看免费高清www| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| 免费观看无遮挡的男女| 欧美3d第一页| 中国美白少妇内射xxxbb| 久久热精品热| 啦啦啦在线观看免费高清www| 国产av国产精品国产| 青春草国产在线视频| 成人一区二区视频在线观看| 国产成人精品久久久久久| 观看av在线不卡| 国产 一区精品| 亚洲av成人精品一二三区| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲91精品色在线| 欧美性感艳星| 欧美精品国产亚洲| 亚洲av男天堂| 日日撸夜夜添| 爱豆传媒免费全集在线观看| 精品午夜福利在线看| 午夜激情久久久久久久| 777米奇影视久久| 激情五月婷婷亚洲| 国产精品女同一区二区软件| 观看美女的网站| 天天躁日日操中文字幕| av卡一久久| 男人爽女人下面视频在线观看| 男人爽女人下面视频在线观看| 人妻系列 视频| 成人美女网站在线观看视频| 国产免费福利视频在线观看| 一级a做视频免费观看| 五月天丁香电影| av在线老鸭窝| 交换朋友夫妻互换小说| 丰满乱子伦码专区| 性色av一级| 久久亚洲国产成人精品v| 亚洲av中文av极速乱| 多毛熟女@视频| 国产精品一区www在线观看| 美女中出高潮动态图| 大话2 男鬼变身卡| 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 特大巨黑吊av在线直播| 国产在线免费精品| 中国三级夫妇交换| 精品人妻熟女av久视频| 人人妻人人爽人人添夜夜欢视频 | 成人一区二区视频在线观看| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 一本一本综合久久| 日韩欧美一区视频在线观看 | 亚州av有码| 夜夜骑夜夜射夜夜干| 国产日韩欧美亚洲二区| 大话2 男鬼变身卡| 亚洲av电影在线观看一区二区三区| 欧美日韩国产mv在线观看视频 | 黑人高潮一二区| 夫妻午夜视频| 午夜福利视频精品| 观看免费一级毛片| 久久久久久九九精品二区国产| 亚州av有码| 女性被躁到高潮视频| 国产免费又黄又爽又色| 国产亚洲5aaaaa淫片| 舔av片在线| 日韩 亚洲 欧美在线| 久热这里只有精品99| 久久久久久九九精品二区国产| av免费在线看不卡| 亚洲av免费高清在线观看| 一级爰片在线观看| 日韩av不卡免费在线播放| 欧美少妇被猛烈插入视频| 免费黄色在线免费观看| 久久久欧美国产精品| 国产精品国产三级专区第一集| 多毛熟女@视频| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| 日日啪夜夜撸| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 黑丝袜美女国产一区| 美女国产视频在线观看| 麻豆成人午夜福利视频| 99国产精品免费福利视频| 在线观看一区二区三区| 久久国内精品自在自线图片| 久久毛片免费看一区二区三区| 在线看a的网站| 国产精品免费大片| 亚洲精品456在线播放app| 国产一区二区三区综合在线观看 | 精品人妻一区二区三区麻豆| 男女啪啪激烈高潮av片| av在线播放精品| 欧美高清性xxxxhd video| 久久久久久久久久人人人人人人| 97超视频在线观看视频| a级毛色黄片| 国产成人freesex在线| 深夜a级毛片| 又粗又硬又长又爽又黄的视频| 国产男人的电影天堂91| 国产视频首页在线观看| 亚洲欧美清纯卡通| 特大巨黑吊av在线直播| 尾随美女入室| 免费观看av网站的网址| 日本免费在线观看一区| 婷婷色麻豆天堂久久| 日韩大片免费观看网站| 久久久精品94久久精品| 精品久久久久久久末码| 亚洲欧美一区二区三区国产| 国产视频内射| 又爽又黄a免费视频| 久久婷婷青草| 国产精品一区二区在线观看99| 九九在线视频观看精品| av网站免费在线观看视频| 日本av免费视频播放| 夫妻午夜视频| 亚洲四区av| 男人添女人高潮全过程视频| 亚洲成人中文字幕在线播放| 毛片女人毛片| 91精品一卡2卡3卡4卡| 国产一区二区三区av在线| 毛片一级片免费看久久久久| 欧美97在线视频| 日韩av不卡免费在线播放| 天堂8中文在线网| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| 激情 狠狠 欧美| 成人二区视频| 久久人妻熟女aⅴ| 丰满乱子伦码专区| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃| 综合色丁香网| 一级爰片在线观看| 国产精品无大码| 亚洲成人手机| 亚洲av成人精品一区久久| 日韩av在线免费看完整版不卡| 国产男女内射视频| 91精品国产九色| .国产精品久久| 爱豆传媒免费全集在线观看| 国产精品伦人一区二区| 国产成人精品久久久久久| 伦理电影免费视频| 高清在线视频一区二区三区| 久久久午夜欧美精品| 欧美zozozo另类| 亚洲国产毛片av蜜桃av| 国产精品无大码| 国语对白做爰xxxⅹ性视频网站| 欧美高清性xxxxhd video| 免费观看av网站的网址| 午夜免费鲁丝| 国产免费又黄又爽又色| 只有这里有精品99| 亚洲va在线va天堂va国产| 久久久精品免费免费高清| 日本与韩国留学比较| av卡一久久| 亚洲三级黄色毛片| 亚洲美女黄色视频免费看| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频 | 亚洲欧洲日产国产| 18禁动态无遮挡网站| 天堂中文最新版在线下载| av一本久久久久| 如何舔出高潮| 亚洲av欧美aⅴ国产| 亚洲精品国产色婷婷电影| 女的被弄到高潮叫床怎么办| 国产成人精品久久久久久| 色哟哟·www| 狂野欧美激情性bbbbbb| av在线app专区| 欧美+日韩+精品| 两个人的视频大全免费| 大码成人一级视频| 国精品久久久久久国模美| 久久女婷五月综合色啪小说| 亚洲成人中文字幕在线播放| 激情 狠狠 欧美| 熟女人妻精品中文字幕| 亚洲第一av免费看| av福利片在线观看| 亚洲天堂av无毛| 多毛熟女@视频| 国语对白做爰xxxⅹ性视频网站| 亚洲成人手机| 国产69精品久久久久777片| 黄色欧美视频在线观看| 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 激情 狠狠 欧美| 国产 精品1| 欧美一级a爱片免费观看看| 插逼视频在线观看| 搡女人真爽免费视频火全软件| 多毛熟女@视频| 国产精品一二三区在线看| 久久国产精品大桥未久av | 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| 国产真实伦视频高清在线观看| 国产免费视频播放在线视频| 久久久欧美国产精品| 高清日韩中文字幕在线| 国产精品一二三区在线看| 国产av码专区亚洲av| 美女xxoo啪啪120秒动态图| 老师上课跳d突然被开到最大视频| 国内少妇人妻偷人精品xxx网站| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线 | www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 色5月婷婷丁香| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 国产av一区二区精品久久 | 国内精品宾馆在线| 伦理电影大哥的女人| 国产精品欧美亚洲77777| 老熟女久久久| 亚洲天堂av无毛| 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费 | 各种免费的搞黄视频| 亚洲精品成人av观看孕妇| 99视频精品全部免费 在线| 我要看日韩黄色一级片| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 妹子高潮喷水视频| 久久精品人妻少妇| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 久久人人爽人人爽人人片va| 精品亚洲乱码少妇综合久久| 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 嫩草影院新地址| 成人一区二区视频在线观看| 大码成人一级视频| 中文字幕人妻熟人妻熟丝袜美| 91久久精品电影网| 在现免费观看毛片| 精品国产露脸久久av麻豆| 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 有码 亚洲区| 在线观看人妻少妇| 视频区图区小说| 国产亚洲一区二区精品| 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 免费观看av网站的网址| 欧美成人一区二区免费高清观看| 97超碰精品成人国产| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| 日日啪夜夜撸| 国产美女午夜福利| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频| 卡戴珊不雅视频在线播放| 麻豆乱淫一区二区| 免费看不卡的av| 男人舔奶头视频| 99热网站在线观看| 久久影院123| 精品人妻熟女av久视频| 久久久精品免费免费高清| 免费人妻精品一区二区三区视频| 免费久久久久久久精品成人欧美视频 | 性高湖久久久久久久久免费观看| 一区在线观看完整版| 天天躁日日操中文字幕| 国产 一区 欧美 日韩| 日韩人妻高清精品专区| 色视频在线一区二区三区| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 日本av手机在线免费观看| 一级毛片aaaaaa免费看小| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 男的添女的下面高潮视频| 97热精品久久久久久| 国产精品一区二区三区四区免费观看| 国产精品免费大片| 亚洲三级黄色毛片| xxx大片免费视频| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 妹子高潮喷水视频| 国产 一区精品| 久久久久性生活片| 亚洲av国产av综合av卡| 日韩一区二区三区影片| 午夜福利在线在线| 少妇熟女欧美另类| 国产永久视频网站| 色婷婷久久久亚洲欧美| 免费观看在线日韩| 2021少妇久久久久久久久久久| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 男女免费视频国产| 日韩亚洲欧美综合| 纵有疾风起免费观看全集完整版| 丰满少妇做爰视频| 美女脱内裤让男人舔精品视频| av在线播放精品| 欧美高清成人免费视频www| 男女边吃奶边做爰视频| 在线观看免费视频网站a站| 国产欧美另类精品又又久久亚洲欧美| 国产在线一区二区三区精| 五月伊人婷婷丁香| 在线亚洲精品国产二区图片欧美 | 久久人人爽人人片av| 全区人妻精品视频| 美女cb高潮喷水在线观看| 老司机影院毛片| 亚洲色图综合在线观看| 人妻制服诱惑在线中文字幕| 欧美zozozo另类| 99re6热这里在线精品视频| 成人18禁高潮啪啪吃奶动态图 | 97热精品久久久久久| 国产成人freesex在线| 校园人妻丝袜中文字幕| 亚洲无线观看免费| 观看美女的网站| 久久av网站| 亚洲国产精品一区三区| 亚洲精品一二三| 成人影院久久| kizo精华| 国产亚洲欧美精品永久| 男女无遮挡免费网站观看| 日韩中文字幕视频在线看片 | 国产一区亚洲一区在线观看| 国产高清三级在线| 大码成人一级视频| 久久久精品免费免费高清| 有码 亚洲区| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 在线观看免费视频网站a站| 有码 亚洲区| 一级毛片aaaaaa免费看小| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看 | 婷婷色综合www| 老司机影院毛片| 午夜老司机福利剧场| 久久女婷五月综合色啪小说| 国语对白做爰xxxⅹ性视频网站| 国产在线免费精品| 在线观看免费高清a一片| 国产精品.久久久| 91精品伊人久久大香线蕉| 欧美激情极品国产一区二区三区 | 国产精品99久久久久久久久| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 黄色配什么色好看| 91精品国产国语对白视频| .国产精品久久| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| 七月丁香在线播放| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 一本色道久久久久久精品综合| 国产精品蜜桃在线观看| 日韩伦理黄色片| 老熟女久久久| 免费不卡的大黄色大毛片视频在线观看| 国产乱来视频区| 三级国产精品欧美在线观看| 亚洲精品日本国产第一区| 网址你懂的国产日韩在线| 狂野欧美激情性xxxx在线观看| 又爽又黄a免费视频| 黄片无遮挡物在线观看| 中文字幕免费在线视频6| 少妇人妻 视频| 亚洲精品一区蜜桃| 777米奇影视久久| 成年女人在线观看亚洲视频| 男女国产视频网站| 看免费成人av毛片| 日韩欧美精品免费久久| 1000部很黄的大片| 熟女人妻精品中文字幕| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 国产亚洲5aaaaa淫片| 极品教师在线视频| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 男人和女人高潮做爰伦理| 91久久精品电影网| 国产无遮挡羞羞视频在线观看| 久久久午夜欧美精品| 干丝袜人妻中文字幕| av国产免费在线观看| 欧美成人午夜免费资源| 成人国产av品久久久| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 国模一区二区三区四区视频| 日本-黄色视频高清免费观看| 性色avwww在线观看| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区国产| 免费高清在线观看视频在线观看| 少妇 在线观看| 亚洲精品乱码久久久久久按摩| 国产美女午夜福利| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 精品一区二区免费观看| 秋霞伦理黄片| 青春草亚洲视频在线观看| 人妻一区二区av| 国精品久久久久久国模美| 高清午夜精品一区二区三区| 下体分泌物呈黄色| 男人舔奶头视频| 国产一级毛片在线| h日本视频在线播放| 亚洲国产av新网站| 一级黄片播放器| 久久人妻熟女aⅴ| 午夜福利视频精品| 伦精品一区二区三区| 一级片'在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产女主播在线喷水免费视频网站| 免费观看性生交大片5| 久久这里有精品视频免费| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 九九在线视频观看精品| av在线播放精品| 欧美变态另类bdsm刘玥| www.色视频.com| 热re99久久精品国产66热6| 久久99蜜桃精品久久| 国产欧美日韩一区二区三区在线 | 交换朋友夫妻互换小说| 日本黄色片子视频| 精品久久久久久电影网| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂 | 亚洲va在线va天堂va国产| 身体一侧抽搐| 热re99久久精品国产66热6| 精品国产三级普通话版| 99热这里只有是精品50| 一级a做视频免费观看| 在线观看免费视频网站a站| 欧美性感艳星| .国产精品久久| 亚洲国产精品成人久久小说| av免费观看日本| 乱码一卡2卡4卡精品| 色哟哟·www| 十八禁网站网址无遮挡 | 久久久久久久久久久丰满| 啦啦啦在线观看免费高清www| 成年女人在线观看亚洲视频| 午夜免费鲁丝| 熟女电影av网| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 国产亚洲一区二区精品| 久久久久久伊人网av| 国产av一区二区精品久久 | 欧美一级a爱片免费观看看| 亚洲精品国产色婷婷电影| 国产在线免费精品| 免费观看的影片在线观看| 久久99蜜桃精品久久| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃| 国产乱来视频区| 久久久久久久久大av| 99久久精品一区二区三区| 久久青草综合色| 男女免费视频国产| 蜜桃亚洲精品一区二区三区| 日本午夜av视频| 观看免费一级毛片| 日本wwww免费看| 成人综合一区亚洲| 日本爱情动作片www.在线观看| 国产欧美亚洲国产| 大香蕉97超碰在线| 久久99精品国语久久久| 涩涩av久久男人的天堂| 久久影院123| 欧美最新免费一区二区三区| 最近2019中文字幕mv第一页| 亚洲国产av新网站| 人妻 亚洲 视频| 亚洲aⅴ乱码一区二区在线播放| 国产成人精品福利久久| 在线免费十八禁| 观看av在线不卡| 国产成人精品一,二区| 舔av片在线| 久久国产精品大桥未久av | 最近最新中文字幕大全电影3| 日韩av免费高清视频| 国产伦理片在线播放av一区| 最后的刺客免费高清国语| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 观看av在线不卡| 成年女人在线观看亚洲视频| 国产成人免费无遮挡视频| 亚洲精品aⅴ在线观看| 干丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 国产在线视频一区二区| 日韩亚洲欧美综合| 成人黄色视频免费在线看| 久久精品熟女亚洲av麻豆精品| 伦理电影免费视频| 久久久久久久久久人人人人人人| 日韩亚洲欧美综合| 日本午夜av视频| 国产伦精品一区二区三区四那| 久久影院123| 熟女电影av网| 热re99久久精品国产66热6| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av国产av综合av卡| av黄色大香蕉| 狂野欧美激情性xxxx在线观看| 国产一区二区三区综合在线观看 | 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 国产精品免费大片| 女性生殖器流出的白浆| 狂野欧美白嫩少妇大欣赏| www.色视频.com| kizo精华| 国产在视频线精品| 欧美日韩视频精品一区| 联通29元200g的流量卡| 美女福利国产在线 | 成人无遮挡网站| 午夜福利在线在线| 日本欧美视频一区| 久久99热这里只频精品6学生| 在线天堂最新版资源| 热re99久久精品国产66热6| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 狂野欧美激情性bbbbbb| 高清日韩中文字幕在线| 高清视频免费观看一区二区| 五月天丁香电影| 菩萨蛮人人尽说江南好唐韦庄| 成人综合一区亚洲| 欧美zozozo另类| 男女边摸边吃奶| 免费黄频网站在线观看国产| 天美传媒精品一区二区| 天堂中文最新版在线下载| 熟妇人妻不卡中文字幕| 国产精品一区二区在线不卡| 全区人妻精品视频| 亚洲精品国产av蜜桃| 狂野欧美激情性xxxx在线观看| 女人久久www免费人成看片|